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ABSTRACT 
Monitoring is essential to ensure that environmental goals are being achieved, including those of 
sustainable agriculture. Growing interest in environmental monitoring provides an opportunity to 
improve monitoring practices. Platforms that directly monitor land cover change and biodiversity 
annually by coupling the wall-to-wall coverage from remote sensing and the site-specific 
community composition from environmental DNA (eDNA) can provide timely, relevant results 
for parties interested in the success of sustainable agricultural practices. To ensure that the 
measured impacts are due to the environmental projects and not exogenous factors, sites where 
projects have been implemented should be benchmarked against counterfactuals (no project) and 
control (natural habitat) sites. Results can then be used to calculate diverse sets of indicators 
customized to monitor different projects. Here, we report on our experience developing and 
applying one such platform to assess the impact of shaded cocoa projects implemented by the 
Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA) near São Félix do Xingu, 
in Pará, Brazil. We used the Continuous Degradation Detection (CODED) and LandTrendr 
algorithms to create a remote sensing-based assessment of forest disturbance and regeneration, 
estimate carbon sequestration, and changes in essential habitats. We coupled these remote 
sensing methods with eDNA analyses using arthopod-targeted primers by collecting soil samples 
from intervention and counterfactual pasture field sites and a control secondary forest. We used a 
custom set of indicators from the pilot application of a coupled monitoring framework called 
TerraBio. Our results suggest that, due to IMAFLORA’s shaded cocoa projects, over 400 acres 
were restored in the intervention area and the community composition of arthropods in shaded 
cocoa is closer to second-growth forests than that of pastures. In reviewing the coupled approach, 
we found multiple aspects worked well, and we conclude by presenting multiple lessons learned.  

Key words: Agroforestry; sustainable agriculture; monitoring; remote sensing; environmental 
DNA; Brazil; biodiversity conservation; shaded cocoa  
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INTRODUCTION 
Sustainable agriculture projects, which both generate income and contribute to environmental 
conservation, are important to address biodiversity loss, climate change, and to improve living 
conditions (Gomiero et al., 2011; Ruggerio, 2021; Bhagwat et al., 2008). In Brazil, sustainable 
agriculture approaches have been developed in response to the simultaneous pressures of 
combatting ongoing habitat and biodiversity loss caused by agricultural expansion and food 
security issues (Martinelli et al., 2010; Curtis et al., 2018; Lewis et al., 2015; Ferreira et al., 
2012; Sano et al., 2010; Perfecto et al., 2007; Jezeer et al., 2017). Such practices include 
agroforestry, sustainability certifications, and the promotion of non-timber forest products. 

1.​ Gomiero, T., Pimentel, D. and Paoletti, M.G., 2011. Is there a need for a more sustainable 
agriculture? Critical reviews in plant sciences, 30(1-2), pp.6-23. 

2.​ Ruggerio CA. Sustainability and sustainable development: A review of principles and 
definitions. Science of the Total Environment. 2021 Sep 10;786:147481. 

3.​ Bhagwat SA, Willis KJ, Birks HJ, Whittaker RJ. Agroforestry: a refuge for tropical 
biodiversity? Trends in ecology & evolution. 2008 May 1;23(5):261-7. 

4.​ Martinelli, L.A., Naylor, R., Vitousek, P.M. and Moutinho, P. (2010) Agriculture in 
Brazil: impacts, costs, and opportunities for a sustainable future. Current Opinion in 
Environmental Sustainability, 2, 431–438. 

5.​ Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). 
Classifying drivers of global forest loss. Science, 361(6407), 1108-1111. 

6.​ Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of 
tropical forests. Science, 349(6250), 827-832. 

7.​ Ferreira, J., Pardini, R., Metzger, J. P., Fonseca, C. R., Pompeu, P. S., Sparovek, G., & 
Louzada, J. (2012). Towards environmentally sustainable agriculture in Brazil: challenges 
and opportunities for applied ecological research. Journal of Applied Ecology, 49(3), 
535-541. 

8.​ Sano, E.E., Rosa, R., Brito, J.L.S. & Ferreira, L.G. (2010) Land cover mapping of the 
tropical savanna region in Brazil. Environmental Monitoring and Assessment, 166, 
113–124. 

9.​ Perfecto, I., Armbrecht, I., Philpott, S. M., Soto-Pinto, L., & Dietsch, T. V. (2007). 
Shaded coffee and the stability of rainforest margins in northern Latin America. In 
Stability of tropical rainforest margins (pp. 225-261). Springer, Berlin, Heidelberg. 

10.​Jezeer, R. E., Verweij, P. A., Santos, M. J., & Boot, R. G. (2017). Shaded coffee and 
cocoa–double dividend for biodiversity and small-scale farmers. Ecological economics, 
140, 136-145. 

11.​Thompson BS. Impact investing in biodiversity conservation with bonds: An analysis of 
financial and environmental risk. Business Strategy and the Environment. 2023 
Jan;32(1):353-68. 
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Environmental monitoring is essential to ensure that the promised impacts of sustainable 
agriculture are being achieved (Credit Suisse and McKinsey, 2016), and a growing interest in 
environmental monitoring provides an opportunity to improve monitoring practices (Threlfall et 
al., 2020; Hill et al., 2019, Bhagwat et al. 2008; Milder et al., 2015; Tropek et al., 2014). To 
improve transparency and enhance credibility, organizations need accurate, timely, and easily 
digestible information collected using robust methods informed by the best available science. 
Because the environmental impacts of projects or interventions can take many years to become 
evident, any monitoring system must be replicable and comparable across time. Monitoring 
systems should examine multiple scales to account for both individual farm and landscape-scale 
habitat loss or fragmentation, habitat diversity, and connectivity (Edwards et al. 2012, Ferreira et 
al. 2012, Tscharntke et al. 2015). Similarly, to ensure that the measured impacts are due to the 
project and not exogenous factors, sites where projects have been implemented should be 
benchmarked against counterfactuals (no projects) and control (natural habitat) sites. Indicators, 
or predefined metrics for assessing ecosystem services, ecosystem health and biodiversity, can be 
used to assess relative performance rapidly and can be designed with communication to both 
experts and non-experts in mind. 

12.​Credit Suisse and McKinsey. (2016). Conservation finance: From niche to mainstream: 
The building of an institutional asset class. Credit Suisse, Zurich, 2016. 

13.​Threlfall R, King A, Shulman J, Bartels W. The time has come: The KPMG Survey of 
sustainability reporting 2020. KMPG IMPACT: Singapore. 2020:63. Available online at 
https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2020/11/the-time-has-come.pdf. 
Accessed 6/22/23. 

14.​Hill, S.L., Arnell, A., Maney, C., Butchart, S.H., Hilton-Taylor, C., Ciciarelli, C., Davis, 
C., Dinerstein, E., Purvis, A. and Burgess, N.D., 2019. Measuring forest biodiversity 
status and changes globally. Frontiers in Forests and Global Change, 2, p.70. 

15.​Milder JC, Arbuthnot M, Blackman A, Brooks SE, Giovannucci D, Gross L, Kennedy 
ET, Komives K, Lambin EF, Lee A, Meyer D. An agenda for assessing and improving 
conservation impacts of sustainability standards in tropical agriculture. Conservation 
biology. 2015 Apr;29(2):309-20. 

16.​Tropek R, Sedláček O, Beck J, Keil P, Musilová Z, Šímová I, Storch D. Comment on 
“High-resolution global maps of 21st-century forest cover change”. Science. 2014 May 
30;344(6187):981-. 

17.​Edwards, D. P., Fisher, B., & Wilcove, D. S. (2012). High Conservation Value or high 
confusion value? Sustainable agriculture and biodiversity conservation in the tropics. 
Conservation Letters, 5(1), 20-27.  

18.​Tscharntke T, Milder JC, Schroth G, Clough Y, DeClerck F, Waldron A, Rice R, Ghazoul 
J. Conserving biodiversity through certification of tropical agroforestry crops at local and 
landscape scales. Conservation Letters. 2015 Jan;8(1):14-23. 
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Using remote sensing and environmental DNA (eDNA) approaches, systematic, broad-scale, 
multi-year monitoring efforts are financially and operationally feasible. Traditional approaches to 
monitoring forests and biodiversity, such as forest surveys and biodiversity transects, are 
expensive and require significant methodological and taxonomic expertise, particularly in 
megadiverse regions (Beng and Corlett, 2020). In contrast, products derived from remote sensing 
facilitate a substantial reduction in monitoring costs and simultaneously increase the timeliness 
of information needed to inform management (Slough et al., 2021, Townsend et al., 2021, Zhang 
et al., 2021). Remote sensing uses satellite and aircraft imagery and statistical approaches to 
detect and monitor the Earth. Existing remote sensing approaches for monitoring biodiversity 
allow for the evaluation of ecosystem structure and ecosystem function but are not yet 
extensively used in biodiversity assessment, monitoring, or conservation (Reddy et al., 2021). 

19.​Beng, K. C., and Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in 
ecology and conservation: opportunities, challenges and prospects. Biodiversity and 
Conservation, 29(7), 2089-2121. 

20.​Slough, T., Kopas, J., and Urpelainen, J. (2021). Satellite-based deforestation alerts with 
training and incentives for patrolling facilitate community monitoring in the Peruvian 
Amazon. Proceedings of the National Academy of Sciences, 118(29). 

21.​Townsend, P. A., Clare, J. D., Liu, N., Stenglein, J. L., Anhalt‐Depies, C., Van Deelen, T. 
R., ... and Zuckerberg, B. (2021). Snapshot Wisconsin: networking community scientists 
and remote sensing to improve ecological monitoring and management. Ecological 
Applications, 31(8), e02436. 

22.​Zhang, T., Zhang, W., Yang, R., Liu, Y., and Jafari, M. (2021). CO2 capture and storage 
monitoring based on remote sensing techniques: A review. Journal of Cleaner Production, 
281, 124409. 

23.​Reddy, C.S., 2021. Remote sensing of biodiversity: what to measure and monitor from 
space to species? Biodiversity and Conservation, 30(10), pp.2617-2631. 

Similarly, eDNA monitoring has speed and cost advantages over traditional methods; thus, it is 
rapidly becoming a preferred method to monitor biodiversity, including in agricultural systems 
(Leese et al., 2018; Cordier et al., 2021; Ladin et al., 2021; Kestel et al., 2022). eDNA refers to 
genetic material obtained directly from environmental samples, such as water, soil, or air, 
without capturing or observing the organisms themselves (Taberlet et al., 2012), and coupled 
with the metabarcoding approach allows for the simultaneous identification of multiple species 
from a single sample (Deiner et al., 2017). eDNA sampling approaches have the ability to 
monitor entire taxonomic groups at multiple spatial scales depending on whether eDNA is 
collected from leaves, soil, animal waste, water, or air (Thomsen and Willerslev, 2015; Banerjee 
et al., 2022; Sales et al., 2020; Nørgaard et al., 2021; Aucone et al, 2023; Altermatt et al., 2023). 

24.​Leese, F., Bouchez, A., Abarenkov, K., Altermatt, F., Borja, A., Bruce, K., ... and 
Weigand, A. M. (2018). Why we need sustainable networks bridging countries, 
disciplines, cultures and generations for aquatic biomonitoring 2.0: a perspective derived 
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from the DNAqua-Net COST action. In Advances in ecological research (Vol. 58, pp. 
63-99). Academic Press. 

25.​Cordier, T., Alonso‐Sáez, L., Apothéloz‐Perret‐Gentil, L., Aylagas, E., Bohan, D. A., 
Bouchez, A., ... and Lanzén, A. (2021). Ecosystems monitoring powered by 
environmental genomics: A review of current strategies with an implementation 
roadmap. Molecular Ecology, 30(13), 2937-2958. 

26.​Ladin, Z. S., Ferrell, B., Dums, J. T., Moore, R. M., Levia, D. F., Shriver, W. G., ... and 
Wommack, K. E. (2021). Assessing the efficacy of eDNA metabarcoding for measuring 
microbial biodiversity within forest ecosystems. Scientific reports, 11(1), 1-14. 

27.​Kestel, J.H., Field, D.L., Bateman, P.W., White, N.E., Allentoft, M.E., Hopkins, A.J., 
Gibberd, M. and Nevill, P., 2022. Applications of environmental DNA (eDNA) in 
agricultural systems: Current uses, limitations and future prospects. Science of the Total 
Environment, 847, p.157556. 

28.​Taberlet P et al. 2012 Soil sampling and isolation of extracellular DNA from large 
amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 
1816–1820. (doi:10.1111/j.1365-294X. 2011.05317.x) 

29.​Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière‐Roussel A, Altermatt F, Creer 
S, Bista I, Lodge DM, De Vere N, Pfrender ME. Environmental DNA metabarcoding: 
Transforming how we survey animal and plant communities. Molecular ecology. 2017 
Nov;26(21):5872-95. 

30.​Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation 
for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015). 

31.​Banerjee, P., Stewart, K.A., Dey, G., Antognazza, C.M., Sharma, R.K., Maity, J.P., Saha, 
S., Doi, H., de Vere, N., Chan, M.W. and Lin, P.Y., 2022. Environmental DNA analysis as 
an emerging non-destructive method for plant biodiversity monitoring: a review. AoB 
Plants, 14(4), p.plac031. 

32.​Sales, N.G., McKenzie, M.B., Drake, J., Harper, L.R., Browett, S.S., Coscia, I., 
Wangensteen, O.S., Baillie, C., Bryce, E., Dawson, D.A. and Ochu, E., 2020. Fishing for 
mammals: Landscape‐level monitoring of terrestrial and semi‐aquatic communities 
using eDNA from riverine systems. Journal of Applied Ecology, 57(4), pp.707-716. 

33.​Nørgaard, L., Olesen, C.R., Trøjelsgaard, K., Pertoldi, C., Nielsen, J.L., Taberlet, P., 
Ruiz-González, A., De Barba, M. and Iacolina, L., 2021. eDNA metabarcoding for 
biodiversity assessment, generalist predators as sampling assistants. Scientific reports, 
11(1), pp.1-12. 

34.​Aucone, E., Kirchgeorg, S., Valentini, A., Pellissier, L., Deiner, K. and Mintchev, S., 
2023. Drone-assisted collection of environmental DNA from tree branches for 
biodiversity monitoring. Science Robotics, 8(74), p.eadd5762. 

35.​Altermatt, F., Carraro, L., Antonetti, M., Albouy, C., Zhang, Y., Lyet, A., Zhang, X. and 
Pellissier, L., 2023. Quantifying biodiversity using eDNA from water bodies: General 
principles and recommendations for sampling designs. Environmental DNA. 
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Coupling the two technologies allows for both wall-to-wall coverage from remote sensing and 
the site-specific community composition from eDNA (Figure 1). Together, these methods can be 
used to calculate diverse sets of indicators for monitoring sustainable agriculture projects and 
other sustainable interventions. These indicators can include but are not limited to measures of 
ecosystem function such as landscape scale and site scale habitat loss and conservation, 
ecosystem structure, carbon sequestration through revegetation, species richness, community 
composition, and relative changes in community composition over time. The approaches are cost 
effective, and the results provide a complete picture of activities occurring across the full project 
site.  

Here, we report on the pilot application of this approach to assess the effect of one of the 
sustainable agriculture initiatives of Florestas de Valor, created by the Instituto de Manejo e 
Certificação Florestal e Agrícola (IMAFLORA). Florestas de Valor consists of multiple 
initiatives including agroforestry and collection of non-timber forest products (Imaflora, 2019). 
We applied the coupled monitoring platform to shaded cocoa projects implemented by 
IMAFLORA near São Félix do Xingu, in Pará, Brazil. Shaded cocoa in Brazil is currently being 
supported as an alternative to unshaded cocoa and low-yield pasturelands used for cattle 
ranching (Johns, 1999; Gramacho et al., 1992). Key research questions included: 1) have the 
shaded cocoa projects contributed to conservation in the Brazilian Amazon? and 2) what impacts 
does shaded cocoa have on community structure and forest landscape patterns? We tested the 
relative effects of these management activities on biodiversity conservation and compared the 
results with counterfactual “business as usual” pastures and control second-growth forests to 
control for outside factors.  

36.​Imaflora. (2019). Florestas de Valor: the bioeconomy that generates income and preserves 
a standing forest. Accessed 7/11/2023. Available online at: 
https://www.imaflora.org/noticia/florestas-de-valor-the-bioeconomy-that-generates-incom
e-and-preserves-a-standing-forest 

37.​Johns, N. D. (1999). Conservation in Brazil's chocolate forest: the unlikely persistence of 
the traditional cocoa agroecosystem. Environmental Management, 23(1), 31-47. 

38.​Gramacho, I. C. P., Magno, A. E. S., Mandarino, E. P., and Matos, A. (1992). Cultivo e 
beneficiamento do cacau. Ilhéus, CEPLAC–MAPA, 66-73. 

This implementation of coupling remote sensing and eDNA for biodiversity monitoring provided 
an opportunity to test multiple approaches and improve the methodology. Key areas of testing 
included our remote sensing mapping approach, including algorithm selection, sampling design 
and our data collection approach, and indicator choices. These tests contributed to lessons 
learned that will greatly improve coupled biodiversity monitoring methods moving forward. 
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Figure 1: An overview of the proposed coupled approach to environmental monitoring. In the 
remote sensing component, we identify and pre-process key satellite imagery. Next, we input data 
into change algorithms or other models. Then, we assess the accuracy of the produced maps. In 
the eDNA component, we design the sampling approach by identifying locations to sample. Next, 
we visit sites to collect eDNA data. Then, the soil samples go through the eDNA extraction and 
biodiversity analysis processes. Finally, we calculate indicators from the map outputs and 
biodiversity results. 

MATERIALS AND METHODS 

STUDY AREA 
The study area is located in the Xingu River basin, near the city of São Félix do Xingu, in the 
state of Pará, Brazil (06°38′30″South and 51°58′32″West). The region is warm moist equatorial, 
with dry months from May to October. The average annual rainfall is 2,041 mm. The average 
annual temperature is 25 °C, with minimum and maximum temperatures of 20 °C and 30 °C, 
respectively (INMET, 2022). Native tree species in the region include Attalea speciosa (Mart.) 
and Cedrela odorata L., for example (Carneiro et al., 2012). Primary forest cover was almost 
entirely removed from the area in the 1960s for agriculture and was slowly replaced by 
secondary vegetation, including forest. Subsequently, farmers cleared secondary forests for cattle 
grazing (Mertens et al., 2002; Schmink et al., 2019).  

39.​Instituto Nacional de Meteorologia (INMET). Banco de dados meteorológicos. Accessed 
on April 27, 2022. 

40.​Carneiro, V., Sablayrolles, P., Oliveira, C., & das Graças Sablayrolles, M. (2012). 
Composição e Diversidade Florística de Remanescentes Florestais Presentes em Lotes de 
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Agricultores na Área de Proteção Ambiental Triunfo do Xingu, Pará, Brasil. Enciclopédia 
Biosfera, 8(15). 

41.​Mertens, B., Poccard‐Chapuis, R., Piketty, M. G., Lacques, A. E., & Venturieri, A. 
(2002). Crossing spatial analyses and livestock economics to understand deforestation 
processes in the Brazilian Amazon: the case of Sao Felix do Xingu in South Para. 
Agricultural economics, 27(3), 269-294. 

42.​Schmink, M., Hoelle, J., Gomes, C. V. A., & Thaler, G. M. (2019). From contested to 
‘green’ frontiers in the Amazon? A long-term analysis of São Félix do Xingu, Brazil. The 
Journal of Peasant Studies, 46(2), 377-399. 

More recently, shade-grown cacao (Theobroma cacao L.) has been promoted in the region as a 
sustainable alternative (Schroth et al., 2016; Schmink et al., 2019; Braga et al., 2019). Shaded 
cocoa is thought to reduce agricultural inputs, disease susceptibility, and drought susceptibility as 
well as increase food security and environmental benefits (Braga et al., 2019; Schroth et al., 
2016). There are two phases to cultivating shade trees in cocoa agroforestry systems. First, 
specific shade trees, including banana and papaya, are cultivated while native regeneration 
occurs, and second, these cultivated trees are thinned, and native shade trees become dominant 
(Braga et al., 2019). During the first phase, annual crops like cassava and maize are also grown, 
with cassava chosen to increase the nitrogen content in the soil (Braga et al., 2019; IMAFLORA, 
personal communication). Native shade trees include Apuleia leiocarpa (Vogel) J.F. Macbr., 
Bagassa guianensis Aubl., Pouteria macrophylla (Lam.) Eyma, Erythrina verna Vell., Pouteria 
pariry (Ducke) Baehni, Chrysophyllum cuneifolium (Rudge) A. DC., Perebea guianensis Aubl., 
Spondias mombin L., Colubrina glandulosa Perkins, Cenostigma tocantinum Ducke, Annona 
mucosa Jacq., Handroanthus serratifolius (Vahl) S.Grose, Inga edulis Mart. and Samanea 
tubulosa (Benth.) Barneby and J. W. Grimes (Braga et al., 2019). 

43.​Schroth G, Garcia E, Griscom BW, Teixeira WG, Barros LP (2016) Commodity 
production as restoration driver in the Brazilian Amazon? Pasture re-agro-forestation 
with cocoa (Theobroma cacao) in southern Para. Sustain Sci 11:277–293 

44.​Braga, D. P., Domene, F., & Gandara, F. B. (2019). Shade trees composition and diversity 
in cacao agroforestry systems of southern Pará, Brazilian Amazon. Agroforestry Systems, 
93(4), 1409-1421. Shade trees composition and diversity in cacao agroforestry systems of 
southern Pará, Brazilian Amazon | SpringerLink 

IMAFLORA is a nonprofit partner in the SERVIR Amazonia consortium based in Brazil. 
IMAFLORA maintains a database of 150 farms participating in multiple agricultural practices 
and has worked with a subset of these farmers to implement shaded cocoa practices over the past 
20 years (Neves et al., 2015; Figure 2). Within this context, our study boundary encapsulated the 
farms partnering with IMAFLORA. 

45.​Neves, Andressa, Nachtergaele, Marcos Froes, and Gonçalves, Eduardo Trevisan. (2015). 
São Félix do Xingu: farmers lead exchange of experiences in cocoa management 
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workshops. Available online at: 
https://www.imaflora.org/noticia/sao-felix-do-xingu-agricultores-lidera. Accessed 
9/7/2022. 

 
Figure 2: Study area in the state of Pará, Brazil. Yellow dots represent the farms that have 
partnered with IMAFLORA. 

REMOTE SENSING METHODS 

DISTURBANCE MAPPING 

Forest disturbances were mapped using a combination of two pixel-based methods: the 
Continuous Degradation Detection (CODED) algorithm (Bullock et al., 2020a; Bullock et al., 
2020b), and the Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr) 
algorithm (​​Kennedy et al., 2018). Both algorithms utilize Landsat collections in a time series 
approach (30 m spatial resolution). Here, disturbances are separated into deforestation and forest 
degradation. We consider deforestation a permanent conversion of forested land to non-forested 
land (FAO, 2007), and degradation a process that does not lead to a categorical land cover 
change but shows the loss in tree cover canopy (Aryal et al., 2021; Souza et al., 2005). The 
changes were mapped for the 5-year period 2010-2015, when most of the interventions occurred. 
The results of the two algorithms were combined and evaluated for accuracy.  
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46.​Bullock, E. L., Nolte, C., Reboredo Segovia, A. L., & Woodcock, C. E. (2020a). Ongoing 
forest disturbance in Guatemala's protected areas. Remote sensing in ecology and 
conservation, 6(2), 141-152. 

47.​Bullock, E. L., Woodcock, C. E., & Olofsson, P. (2020b). Monitoring tropical forest 
degradation using spectral unmixing and Landsat time series analysis. Remote sensing of 
Environment, 238, 110968. 

48.​Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W. B., & 
Healey, S. (2018). Implementation of the LandTrendr algorithm on google earth engine. 
Remote Sensing, 10(5), 691. 

49.​FAO (2007) Manual on deforestation, degradation and fragmentation using remote 
sensing and GIS. FAO, Rome. 

50.​Aryal, R. R., Wespestad, C., Kennedy, R., Dilger, J., Dyson, K., Bullock, E., ... & 
Tenneson, K. (2021). Lessons Learned While Implementing a Time-Series Approach to 
Forest Canopy Disturbance Detection in Nepal. Remote Sensing, 13(14), 2666. 

51.​Souza Jr, C. M., Roberts, D. A., & Cochrane, M. A. (2005). Combining spectral and 
spatial information to map canopy damage from selective logging and forest fires. 
Remote Sensing of Environment, 98(2-3), 329-343. 

CODED is a freely available tool on Google Earth Engine (GEE), an online planetary-scale 
computing platform for remote sensing and satellite imagery analysis (Gorelick et al., 2017). 
CODED uses all the Landsat imagery available from Landsat collections 5, 7, and 8 to perform a 
subpixel spectral mixture analysis (SMA), analyzing time series changes in the Normalized 
Degradation Fraction Index (NDFI) (30 m resolution; Souza et al., 2005, Bullock et al., 2020a). 
The spectral index of choice was the NDFI to be in accordance with CODED and also since 
previous studies have shown that NDFI is more sensitive to disturbances in tropical forests 
compared to the commonly used Normalized Difference Vegetation Index (NDVI), which tends 
to show higher variability (Schultz et al., 2016, Bullock et al., 2020a; Bullock et al., 2020b). We 
used 3,000 training points labeled as forest or non-forest and tested chi-squared values of both 
0.9 and 0.99, which controls the width of the change-detection moving time window (Aryal et 
al., 2021). We defined the required number of sequential out-of-range NDFI values to flag an 
event as four times. In post-processing, we required the magnitude of these flagged disturbances 
to be above 0.4 in order to be considered severe enough to include in the final map. In this 
manner CODED is able to detect low-severity disturbances, which is often characteristic of the 
more difficult-to-detect forest degradation events, as opposed to forest loss. These parameter 
values were suggested for work in the Amazon by CODED’s designer (Eric Bullock, personal 
communication, July 22, 2021). The final CODED output is a map with 30 m pixels labeled as 
non-forest, stable forest, deforestation, or degradation. 

52.​Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of 
Environment, 202, 18-27. 
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53.​Schultz, Michael, et al. "Performance of vegetation indices from Landsat time series in 
deforestation monitoring." International journal of applied earth observation and 
geoinformation 52 (2016): 318-327. https://doi.org/10.1016/j.jag.2016.06.020 

 
Next, we used the LandTrendr algorithm, also freely available and hosted on GEE. LandTrendr is 
a collection of algorithms used to detect land cover change through time series analysis of 
Landsat imagery. Specifically, LandTrendr constructs an image collection by creating medoid 
composites of Landsat 5, 7, and 8 images, resulting in one image per year. The medoid image 
compositing approach compares each pixel’s spectral band values to the median spectral values 
of those bands across all images within the date-constrained collection for a given year. The pixel 
with spectral values closest to the median value, determined by Euclidean spectral distance, is 
then selected (​​Kennedy et al., 2018). This tool aims to filter out inter-annual noise in spectral 
signals and generate trajectory-based time series estimates and accomplishes this through 
simplifying multi-year spectral trajectories into several straight-line segments that capture the 
progressing changes of the signal (​​Kennedy et al., 2018). The algorithm was parameterized to 
estimate the “greatest” disturbance, and specific parameters are mostly in accordance with 
Reygadas et al. (2021) and Fragal et al. (2016). We further classified the disturbance events from 
LandTrend as degradation and deforestation using MapBiomas classification in 2015 (Souza et 
al., 2020). Disturbances classified as forest by MapBiomas in 2015 were considered degradation, 
whereas disturbances classified as non-forest were classified as deforestation. 

54.​Reygadas, Y., Spera, S., Galati, V., Salisbury, D. S., Silva, S., & Novoa, S. (2021). 
Mapping forest disturbances across the Southwestern Amazon: tradeoffs between 
open-source, Landsat-based algorithms. Environmental Research Communications, 3(9), 
091001. 

55.​Fragal, Everton Hafemann, Thiago Sanna Freire Silva, and Evlyn Márcia Leão de Moraes 
Novo. "Reconstructing historical forest cover change in the Lower Amazon floodplains 
using the LandTrendr algorithm." Acta Amazonica 46 (2016): 13-24. 

56.​Souza Jr, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F., 
... & Azevedo, T. (2020). Reconstructing three decades of land use and land cover 
changes in brazilian biomes with landsat archive and earth engine. Remote Sensing, 
12(17), 2735. https://doi.org/10.3390/rs12172735 

Lastly, the final disturbance map was generated by overlapping the CODED and LandTrendr 
maps and using a rule-based assignment, where pixels with classification disagreements were 
reclassified as: degradation if at least one of the outputs was classified as degradation, 
deforestation if none of the outputs were classified as degradation and at least one classified as 
deforestation, and, consequently, forest if both outputs were classified as forest. We used this 
system because degradation was underestimated in previous studies (Souza et al., 2013; Aryal et 
al., 2021; Reygadas et al., 2021).  
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57.​Souza, J.; Siqueira, J.V.; Sales, M.H.; Fonseca, A.V.; Ribeiro, J.G.; Numata, I.; Cochrane, 
M.A.; Barber, C.P.; Roberts, D.A.; Barlow, J. Ten-Year Landsat classification of 
deforestation and forest degradation in the Brazilian Amazon. Remote Sens. 2013, 5, 
5493–5513. https://doi.org/10.3390/rs5115493 

REGENERATION MAPPING 

Similarly to the disturbance mapping, we used LandTrendr to map forest regeneration following 
previous research (Fragal et al., 2016; Hua et al., 2021). LandTrendr was set up to detect upward 
trends in the spectral signature of forested areas. The same NDFI index was used, and the 
parameterization was set to estimate the “greatest” gain and specific parameters adjusted as an 
attempt to capture short-time regeneration given the 5-year period.  

58.​Hua, Jianwen, et al. "Improved Mapping of Long-Term Forest Disturbance and Recovery 
Dynamics in the Subtropical China Using All Available Landsat Time-Series Imagery on 
Google Earth Engine Platform." IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 14 (2021): 2754-2768. 

Silva Junior et al. (2020) developed maps of annual secondary forest extent, age, increment, and 
loss within Brazil for 1986-2019 based on maps by the Brazilian Annual Land Use and Land 
Cover Mapping Project (MapBiomas) (Souza et al., 2020). Using MapBiomas data, Silva Junior 
et al. (2020) determined that secondary forest growth is present when a pixel with an anthropic 
cover classification (e.g., pasture or agriculture) becomes a forest cover pixel (excluding 
mangroves and forest plantations) the following year. We utilized the same methodology to 
generate a map of secondary forests, here also considered as regeneration, from 2010 to 2015. 
These maps were also Landsat-based with a 30 m spatial resolution. 

59.​Silva Junior, C. H. L., Heinrich, V. H., Freire, A. T., Broggio, I. S., Rosan, T. M., Doblas, 
J., ... and Aragão, L. E. (2020). Benchmark maps of 33 years of secondary forest age for 
Brazil. Scientific data, 7(1), 1-9. 

60.​Souza, C. M., Z Shimbo, J., Rosa, M. R., Parente, L. L., A Alencar, A., Rudorff, B. F., ... 
& Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes 
in brazilian biomes with landsat archive and earth engine. Remote Sensing, 12(17), 2735. 

The final regeneration map was a combination of the LandTrendr output with the output from 
Silva Junior et al. (2020) methodology where a pixel is mapped as “regeneration” if at least one 
of the outputs was mapped as “regeneration”, in an “all-inclusive” approach. This way, we could 
assess this approach’s accuracy and inform future TerraBio work.  

ACCURACY ASSESSMENT OF MAPPING PRODUCTS 

An independent validation effort was conducted leveraging high- and medium-resolution optical 
imagery (Planet NICFI mosaics, Google Earth Pro basemaps, Sentinel-2, and Landsat 
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Collections) and ancillary datasets (MapBiomas products, the Global Forest Canopy Height 
2019, and NDFI time series) to assess classes on the ground (Planet, 2021; Buchhorn et al., 2020; 
ESA, 2015; Farr et al., 2007; Potapov et al., 2021; Olofsson et al., 2014). Visual interpretation 
was done in Collect Earth Online (CEO), a free and open-source web-based tool that facilitates 
data collection and validation (Bey et al., 2016; Saah et al., 2019). The interpreter utilized a 
decision tree approach for classifying the validation samples.  

61.​Planet. (2021) Planet and NICFI partnership data 
62.​Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and Smets, B. 

(2020). Copernicus global land cover layers—collection 2. Remote Sensing, 12(6), 1044. 
63.​ESA, 2015. SENTINEL-2 User Handbook, vol. 1, pp. 64. 
64.​Farr, T. G. et al., 2007, The Shuttle Radar Topography Mission, Rev. Geophys., 45, 

RG2004, doi:10.1029/2005RG000183 
65.​Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, 

A., ... and Hofton, M. (2021). Mapping global forest canopy height through integration of 
GEDI and Landsat data. Remote Sensing of Environment, 253, 112165. 

66.​Olofsson, Pontus, et al. "Good practices for estimating area and assessing accuracy of 
land change." Remote Sensing of Environment 148 (2014): 42-57. 
https://doi.org/10.1016/j.rse.2014.02.015.  

67.​Bey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., ... and 
Miceli, G. (2016). Collect earth: Land use and land cover assessment through augmented 
visual interpretation. Remote Sensing, 8(10), 807. 

68.​Saah, D., Johnson, G., Ashmall, B., Tondapu, G., Tenneson, K., Patterson, M., ... and 
Chishtie, F. (2019). Collect Earth: An online tool for systematic reference data collection 
in land cover and use applications. Environmental Modelling and Software, 118, 
166-171. 

For the validation of the disturbance and regeneration maps, the sample points were 30 by 30 
meters square, mimicking the map output pixel sizes. The validation of both change maps 
(disturbance and regeneration) was done using the same set of points. We also used a simple 
semi-random sampling design with proportional class distribution where we extracted 600 points 
from both maps, therefore, 100 points for each class: degradation, stable non-forest, stable forest, 
deforestation, regeneration, different events (Table S1). A “different events” category was used 
to capture locations where the mapping methods determined a different class for the same 
location. This class can include regeneration events on non-forest areas followed by degradation 
or deforestation or disturbance events, most likely deforestation, followed by regeneration. The 
accuracy metrics (overall, user, and producer accuracies) and unbiased area estimates for each 
class were calculated through the ratio estimator approach (Stehman, 2014) for when the strata 
are different from the map classes since we used the same sample points for disturbance map and 
regeneration map. 
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69.​Stehman, S. V. (2014). Estimating area and map accuracy for stratified random sampling 
when the strata are different from the map classes. International Journal of Remote 
Sensing, 35(13), 4923-4939. 

eDNA METHODS 

eDNA FIELD DATA COLLECTION 

We defined our sampling frame as the 150 farms partnering with IMAFLORA. Within this 
sampling frame, we verified which farms included our project sites, or farms with mature shaded 
cocoa, by checking average vegetation height of cocoa fields (minimum average canopy height 
of 7.5m; Potapov et al., 2021) and verifying that fields contained greater than 25% canopy cover 
in CEO. We identified 49 farms containing mature shaded cocoa. 

Our sampling design was chosen to reduce the influence of exogenous variables that influence 
biodiversity in order to maximize our statistical power in detecting differences between project 
and counterfactual sites. Key exogenous variables include the amount and configuration of forest 
both within the farm boundaries and in a 250m buffer (Gustafson, 1998; Jordan et al., 1995; 
Turner et al., 2001; Brudvig, 2011; de Souza Leite et al., 2013). To represent these exogenous 
influences, we selected a suite of landscape ecology metrics that best captured landscape 
variance using principal component analysis (PCA; McCabe 1984; Pacheco et al., 2013). Metrics 
used for clustering included within the farm boundaries: total forest area, number of forest 
patches, forest percentage of farm, forest contiguity, and forest aggregation index; and within the 
250m buffer included: total forest area, forest percentage of landscape, and forest aggregation 
index (Hesselbarth et al., 2019). We used these landscape metrics to assign each farm to a cluster 
using Ward’s hierarchical clustering with the Euclidean distance matrix (Maechler et al., 2019).  

70.​Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of the art? 
Ecosystems, 1(2), 143-156. 

71.​Jordan, G., Baskent, E. Z., & Whittaker, G. A. (1995). Spatial forest modelling and 
landscape management. 

72.​Turner, M. G., Gardner, R. H., O'neill, R. V., & O'Neill, R. V. (2001). Landscape ecology 
in theory and practice (Vol. 401). Springer New York. 

73.​Brudvig, L. A. (2011). The restoration of biodiversity: where has research been and 
where does it need to go? American journal of botany, 98(3), 549-558. 

74.​de Souza Leite, M., Tambosi, L. R., Romitelli, I., & Metzger, J. P. (2013). Landscape 
ecology perspective in restoration projects for biodiversity conservation: a review. 
Natureza & Conservação, 11, 108-118. 

75.​McCabe, G. P. (1984). Principal variables. Technometrics, 26(2), 137-144. 
76.​Pacheco, J., Casado, S., & Porras, S. (2013). Exact methods for variable selection in 

principal component analysis: Guide functions and pre-selection. Computational 
Statistics & Data Analysis, 57(1), 95-111. 
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77.​Hesselbarth, M.H.K., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J. 2019. 
landscapemetrics: an open-source R tool to calculate landscape metrics. - Ecography 
42:1648-1657(ver. 0). 

78.​Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2019).  cluster: Cluster 
Analysis Basics and Extensions. R package version 2.1.0. 

Following cluster assignment for each farm, we used stratified random sampling to select five 
project sites and five counterfactual sites with the same proportion of each cluster in each group 
of sites. We also used the same process to select two back-up sites for each group. We avoided 
excluding clusters since that would have changed the sampling frame. In addition, local experts 
identified five forest sites that represented the oldest known second growth forest areas in the 
study area (IMAFLORA, personal communication). However, the field team experienced 
difficulties accessing sites, weather delays, and COVID delays. This led to only one second 
growth forest being sampled, reduced numbers of plots sampled in one shaded cocoa field and 
two pastures, and the use of both shaded cocoa backup sites and one pasture backup site. 

A total of 38 plots were sampled, with 18 plots from 5 shaded-cocoa sites, 17 from 5 pasture 
sites and 3 from one forest site. Within each site, we randomly placed either 3 or 4 50m x 50m 
plots depending on the field size, with at least 25m between plots. Each plot had four 
sub-samples, set back from the edge of the plot by 12.5m, to better sample the heterogeneity 
found within the plot. Approximately 30g of the topsoil (between 0-5 cm deep) was collected for 
each sub-sample, making sure to avoid non-soil matter including leaf litter, and sub-samples 
were pooled to represent one sample per plot. To avoid sample contamination and ensure 
consistency across samples, a protocol was followed during sampling that included the use of 
disposable sampling materials and gloves and samples were labeled and individually packed 
according to plots and sites to ensure no cross-contamination occurred (Foucher et al., 2020; 
detail of methods see S2 File). Following collection, soil samples were stored with silica 
desiccant bags (minimum of 10g per sample) protected from heat and sunlight to prevent DNA 
degradation and later transported to the laboratory facilities for further laboratory analysis. 

79.​Foucher, A., Evrard, O., Ficetola, G. F., Gielly, L., Poulain, J., Giguet-Covex, C., … 
Poulenard, J. (2020). Persistence of environmental DNA in cultivated soils: implication 
of this memory effect for reconstructing the dynamics of land use and cover changes. 
Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-67452-1 

eDNA EXTRACTION 

Soil samples were pre-processed in a Department for Environment, Food & Rural Affairs 
(DEFRA) licensed laboratory facility. To avoid contamination, samples were handled in a 
pre-PCR laboratory, using disposable tools and gloves, following standard decontamination 
procedures (i.e., use of bleach to clean surfaces and equipment), and personnel wore disposable 
full-body suits when handling the samples.  
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The extraction method was conducted using 2 g of mixed soil (per analyzed plot) and following 
the Mu-DNA soil DNA extraction protocol described by Sellers et al. (2018). Negative controls 
were included, comprising DNA extraction blanks containing only the required buffers. 

80.​Sellers, G. S., Di Muri, C., Gómez, A., and Hänfling, B. (2018). Mu-DNA: a modular 
universal DNA extraction method adaptable for a wide range of sample types. 
Metabarcoding and Metagenomics, 2, e24556. 

Following DNA extractions, DNA amplification was conducted using three sets of primers 
targeting two partial mitochondrial genes. First, vertebrate specific primers were used targeting 
~106 bp of the 12S rRNA gene (Riaz et al., 2011; forward primer 
5’-TAGAACAGGCTCCTCTAG-3’ and reverse primer 5’-TTAGATACCCCACTATGC-3’). 
Second, to detect arthropods, DNA extracts were amplified using two primer sets targeting 
different short inserts of the mtDNA COI gene. The Zeale primer set (Zeale et al. 2011) was used 
to amplify a ~157 bp fragment, and the Gillet primers (Gillet et al., 2015; Hebert et al. 2003; 
Hajibabaei et al. 2011) were used to amplify a ~133 bp section (Zeale: forward primer 
5’-AGATATTGGAACWTTATATTTTATTTTTGG-3’ and reverse primer 
5’-WACTAATCAATTWCCAAATCCTCC-3’; Gillet: forward primer 
5’-CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNATTCHACDAAYCAYAA 
RGAYATYGG-3’ and reverse primer 
5’-CCTCTCTATGGGCAGTCGGTGATNNNNNNNACTATAAAARAAAATYTDAYAAA 
DGCRTG-3’).  

81.​Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P. & Coissac, E. (2011) 
ecoPrimers: inference of new DNA barcode markers from whole genome sequence 
analysis. Nucleic Acids Research, 39, e145. 

82.​Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C., & Jones, G. (2011). 
Taxon‐specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular ecology 
resources, 11(2), 236-244. 

83.​Gillet, F., Tiouchichine, M. L., Galan, M., Blan, F., Némoz, M., Aulagnier, S., & 
Michaux, J. R. (2015). A new method to identify the endangered Pyrenean desman 
(Galemys pyrenaicus) and to study its diet, using next generation sequencing from faeces. 
Mammalian Biology, 80(6), 505-509. 

84.​Hebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological 
identifications through DNA barcodes. Proceedings of the Royal Society of London. 
Series B: Biological Sciences, 270(1512), 313-321. 

85.​Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A., & Baird, D. J. (2011). 
Environmental barcoding: a next-generation sequencing approach for biomonitoring 
applications using river benthos. PLoS one, 6(4), e17497. 

PCR reactions consisted of 12.5 µl Master Mix, 7.5 µl molecular grade water, 2 µl of DNA 
template and 1 µl of the forward and reverse of each primer. The PCR conditions for the Riaz 
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primer followed the Kelly et al. (2014) methodology, consisting of an incubation of 5 minutes at 
95 °C, then 35 cycles for 15 seconds at 95 °C, 30 seconds at 57 °C, ending with 30 seconds at 
72°C. PCR conditions of the Gillet and Zeale primers followed the protocols set by Browett et al. 
(2021). Gillet cycles included an initial 15-minute denaturation at 95 °C, then 10 cycles for 30 
seconds at 94 °C, 45 seconds at 49 °C, 30 seconds at 72 °C, 30 cycles of 30 seconds at 95 °C, 45 
seconds at 47 °C and 30 seconds at 72 °C, with a final extension following of 10 minutes at 72 
°C. Zeale PCR conditions began with a 15-minute denaturation at 95 °C, then 40 cycles of 20 
seconds each at 95 °C, 30 seconds at 55 °C and 1 minute at 72 °C, with a final extension of 7 
minutes at 72 °C. PCR cycles were authenticated by electrophoresis in a 1.2% agarose gel 
stained with GelRed. PCRs were run in triplicates, and the success of the reactions was 
determined by electrophoresis on a 1.5% agarose gel. Four PCR blanks were included in each 
library to account for putative contaminations arising in the amplification steps. In total, 44 
samples were analyzed per library, 38 eDNA soil samples, two extraction blanks and four PCR 
blanks. A left-sided size selection was performed using 1.2× Agencourt AMPure XP (Beckman 
Coulter) and the KAPA HyperPrep kit (Roche) was used to construct the Illumina libraries using 
the dual-indexed adapters. Libraries were quantified using the NEBNext qPCR quantification kit 
(New England Biolabs) and pooled in equimolar concentrations. Two Illumina MiSeq 
sequencing runs were conducted, one MiSeq v2 Reagent Kit (2 × 150 bp paired-end reads) and 
one MiSeq v3 Reagent Kit (2 × 300 bp paired-end reads).  

86.​Kelly RP, Port JA, Yamahara KM, Crowder LB. Using environmental DNA to census 
marine fishes in a large mesocosm. PloS one. 2014 Jan 15;9(1):e86175. 

87.​Browett, S.S., Curran, T.G., O’Meara, D.B. et al. Primer biases in the molecular 
assessment of diet in multiple insectivorous mammals. Mamm Biol 101, 293–304 (2021). 
https://doi.org/10.1007/s42991-021-00115-4 

Bioinformatic steps were conducted as described in Browett et al. (2021). In brief, bioinformatic 
analysis used the OBITools 1.2.2 metabarcoding package (Boyer et al., 2016). Read quality was 
assessed using FastQC, Illumina pairedend aligned paired-end reads, and ngsfilter demultiplexed 
samples and removed primers. The obigrep command performed size selection by eliminating 
artifacts and ambiguous reads. Vsearch (Rognes et al., 2016) clustered unique sequences and 
removed chimeras using uchime-denovo (Edgar et al., 2011). Sumaclust clustered sequences into 
Molecular Operational Taxonomic Units (MOTUs) at thresholds of 0.95-0.98. Taxonomic 
assignment relied on Basic Local Alignment Search Tool (BLAST, specifically blastn) against 
Genbank, with a minimum of 90% alignment and >80% similarity (Benson et al., 2013). 
Species-level assignment required ≥98% identity, while MOTUs at 95%-98% or with multiple 
species were assigned at the genus level. MOTUs between 93%-95% were assigned to the family 
level, and MOTUs between 90%-93% were assigned to the order level (Browett et al. 2021). 
Sequences were retained when they could be identified at least to the Class level. A final filtering 
step was conducted, including the removal of putative contaminants, tag-jumping (MOTUs 
represented by less than 0.01% of the total reads were removed from each sample), and 
non-target taxa (e.g., Human DNA). Additionally, molecular operational taxonomic units 
(MOTUs) were retained when the total number of reads was over 50 (Valsecchi et al., 2020). 
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MOTUs were considered compositional data and treated as such (Gloor et al., 2017; Calle, 2019; 
McKnight et al., 2018), except for when indicators called for species abundance measures where 
reads were used (Di Muri et al., 2020).  
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460-476. ISSN 2637-4943 
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Microbiome datasets are compositional: and this is not optional. Frontiers in 
microbiology, 8, 2224.  
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Zenger, K. R. (2019). Methods for normalizing microbiome data: an ecological 
perspective. Methods in Ecology and Evolution, 10(3), 389-400. 
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Hänfling, B. (2020). Read counts from environmental DNA (eDNA) metabarcoding 
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4, 97-112. 

eDNA ANALYSIS 

The four initial biodiversity indicators and four proposed indicators were calculated based on the 
resulting data. For indicators using key species, we defined key species for mammals as 
threatened native species and also excluded domesticated and invasive species from analysis 
more broadly (IUCN, 2021). We defined key species for arthropods as members of the 
Hymenoptera and Lepidoptera orders as important pollinator species, including for coffee crops 
(Latini et al., 2020; Vaissière et al., 2008). These indicators require BLAST to match sequences 
to the Order level. As has been previously reported in other studies (e.g., Browett et al. 2021), 
the Gillet primers were notably better at detecting members of Hymenoptera, and the Zeale 
primers were better at detecting members of Lepidoptera. Due to the limited overlap between the 
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two primer sets, we combined the resulting datasets for further analysis. For determining if any 
MOTUs were associated with (indicative of) either cocoa fields or pasture and the ecological 
conditions found there (Bakker, 2008; De Caceres et al., 2012) we used the multipatt function 
{indicspecies} with a custom wrapper (De Caceres and Legendre, 2009; Dyson, 2023; Dyson, 
2020). 
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For community-based indicators, we used all sequences identified by BLAST as Arthropods, 
requiring identification to the Phylum level. We first accounted for zeros in the dataset using 
zCompositions (cmultRepl; Palarea-Albaladejo and Martín-Fernández, 2015), then transformed 
the data using compositions (cdt.acomp; Van den Boogaart and Tolosana-Delgado, 2008). We 
calculated Aitchison distance between sites and between treatments using the Euclidean distance 
matrix (Ladin et al., 2021; Gloor et al., 2016; Aitchison, 1983). We created PCA plots using the 
transformed compositional data (Gloor et al., 2016; Aitchison, 1983). 
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approach. Chemometrics and Intelligent Laboratory Systems, 143, 85-96. 
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106.​ Van den Boogaart, K. G., and Tolosana-Delgado, R. (2008). “Compositions”: a 
unified R package to analyze compositional data. Computers and Geosciences, 34(4), 
320-338. 

107.​ Gloor G. B., Wu J. R., Pawlowsky-Glahn V., Egozcue J. J. (2016). It's all relative: 
analyzing microbiome data as compositions. Ann. Epidemiol. 26, 322–329. 
10.1016/j.annepidem.2016.03.003 

108.​ Aitchison J. (1983). Principal component analysis of compositional data. Biometrika 
70, 57–65. 10.1093/biomet/70.1.57 

Where needed, we used linear mixed models to account for the repeated sampling design to test 
the difference between projects and counterfactuals (multiple plots per field; lmer {lme4}; Bates 
et al., 2015). Significance tests were performed using Anova and Type II Sums of Squares 
({car}; Fox and Weisberg, 2019). All data analysis was conducted in R (R Core Team, 2022) and 
all code is available on GitHub (https://github.com/sig-gis/TerraBioPilot) and will be published 
in a public repository. 

109.​ Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using 
lme4. Journal of Statistical Software. 2015 Oct 7;67:1-48. 

110.​ Fox, J. and Weisberg, S. (2019). An {R} Companion to Applied Regression, Third 
Edition. Thousand Oaks CA: Sage. URL: 
https://socialsciences.mcmaster.ca/jfox/Books/Companion/ 

111.​ R Core Team (2022). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

CARBON CALCULATIONS 
Carbon sequestration through revegetation estimates was calculated using modified methods 
based on the New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Gibbs and 
Ruesch, 2008). Tier 1 carbon estimates are defined using a look-up table which has an associated 
carbon value based on Global Land Cover 2000 (GLC2000; Bartholome and Belward, 2005) 
cover type, ecofloristic zone, continental region, and frontier forest designation. We assumed that 
the pre-regeneration GLC2000 land cover classification was the Cultivated and Managed land 
class. For regeneration areas, we used the Tropical Rainforest ecofloristic zone based on the UN 
FAO maps, modified with their 50% factor for disturbed vegetation categories (Ruesch and 
Gibbs, 2008). Areas of carbon gain were determined based on areas of gain from the 
regeneration map product located in the shaded cocoa areas for the 150 farms.  

112.​ Gibbs, H. K., and Ruesch, A. (2008). New IPCC tier-1 global biomass carbon map 
for the year 2000 (No. cdiac: New IPCC Tier-1 Global Biomass Carbon Map for the Year 
2000). Environmental System Science Data Infrastructure for a Virtual Ecosystem. 
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113.​ Bartholome, E., and Belward, A. S. (2005). GLC2000: a new approach to global land 
cover mapping from Earth observation data. International Journal of Remote Sensing, 
26(9), 1959-1977. 

114.​ Ruesch, Aaron, and Holly K. Gibbs. 2008. New IPCC Tier-1 Global Biomass Carbon 
Map For the Year 2000. Available online from the Carbon Dioxide Information Analysis 
Center [http://cdiac.ess-dive.lbl.gov], Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. 

MORPHOLOGICAL SPATIAL PATTERN ANALYSIS (MSPA) 
To calculate the number of hectares of essential habitat areas we used the Morphological Spatial 
Analysis (MSPA; Soille and Vogt, 2009) which takes a binary image composed of the objects of 
interest (foreground area) and complementary data and divides it into morphological classes, or 
classes that describe the spatial arrangement of habitat across the landscape. This is performed 
through a customized sequence of mathematical morphological operators targeted at the 
description of the geometry and connectivity of the image components. The MSPA segmentation 
results in 25 mutually exclusive feature classes which, when merged, exactly correspond to the 
initial foreground area. In this case, we used the binary image corresponding to loss areas from 
2001 to 2019 of the Global Forest Change dataset (Hansen et al., 2013) as input.The image 
output had 8 classes: patch forest, outer edge, inner edge, core forest, secondary degradation, 
secondary deforestation, primary degradation, and primary deforestation (for definitions, see S2 
File)  

115.​ Soille, P., and Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern 
recognition letters, 30(4), 456-459. 

116.​ Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., 
Tyukavina, A., ... and Townshend, J. (2013). High-resolution global maps of 21st-century 
forest cover change. science, 342(6160), 850-853. 

TERRABIO 
To assess the shaded cocoa projects implemented by IMAFLORA, we conducted a pilot of 
TerraBio. TerraBio is a platform developed to provide environmental assessment and 
accountability to private sector firms that (1) commercialize sustainable agriculture and forest 
products and/or, (2) invest in sustainable business models as profitable and conservation-driven 
development initiatives. TerraBio directly monitors the land cover change and biodiversity 
measures annually to provide timely and relevant results for investment funds, businesses, and 
other parties invested in the success of sustainable agricultural practices (USAID, 2020). 
TerraBio uses a coupled approach to environmental monitoring, with the landscape component 
conducted with remote sensing and the biodiversity component conducted with eDNA, which 
work together to calculate a series of indicators. Intervention areas were shaded cocoa fields; our 
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counterfactual areas or ‘business as usual’ areas were pasture fields, and our control areas were 
the areas of naturally regenerated second growth forest.  

117.​ USAID. (2020). Private sector engagement: Mobilizing finance for Amazon 
biodiversity conservation. Accessed November 8th, 2022. Available online at: 
https://pcabhub.org/en-us/resources/fact-sheets/abf-fact-sheet.pdf 

The initial set of indicators for the TerraBio pilot were derived from existing sources, including 
the Amazon Biodiversity Fund Brazil Key Performance Indicators (KPI; Althelia Climate Fund, 
2021; USAID, 2020) and the United States Agency for International Development/Brazil’s 
Partnership for the Conservation of Amazon Biodiversity standard indicators (USAID PCAB, 
2019). These indicators were: Number of hectares directly restored; Number of hectares 
indirectly conserved;  Carbon sequestration through revegetation; Number of keystone/priority 
species; Change in abundance of keystone/priority species; Change in species richness; Change 
in biodiversity index; Number of hectares showing improved biodiversity; and Number of 
hectares of essential habitat area conserved (Table 1). 
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https://ecosphere.plus/wp-content/uploads/2021/07/ACF-Impact-Report-2021-1.pdf. Last 
accessed 4-21-22. 

119.​ USAID Partnership for the Conservation for Amazon Biodiversity. (2019). Indicators 
Template. Available online at: 
https://pcabhub.org/en-us/monitoring-and-evaluation/2019-pcab-indicators-reporting-tem
plate-v2-english.xlsx/view. Last accessed 4-21-22. 

In addition to these indicators derived from existing sources, we proposed a number of new 
indicators based on the literature (Cordier et al., 2021; Leese et al., 2018; Pawlowski et al., 
2021). These proposed biodiversity indicators included: Alpha diversity; Beta diversity; Change 
in beta diversity due to the intervention; and a qualitative assessment of biodiversity change due 
to the intervention (Ladin et al., 2021; Drinkwater et al., 2021; Cordier et al., 2021; Jost, 2006). 
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& Rossiter, S. J. (2021). Leech blood‐meal invertebrate‐derived DNA reveals differences 
in Bornean mammal diversity across habitats. Molecular Ecology, 30(13), 3299-3312. 
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Table 1: Overview of all indicators calculated for the TerraBio implementation. 

Indicator Type # Name Calculation Method 
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Land Cover/ Land Use 
Indicator 

1 Number of hectares 
indirectly conserved 

We considered areas of stable forest within the 150 shaded cocoa 
farm properties provided by IMAFLORA excluding intervention 
sites (areas of shaded-grown cocoa) as areas that were indirectly 
conserved, i.e., areas that could have been deforested or degraded 
but were conserved due to project activities. 

Land Cover / Land Use 
Indicator 

2 Number of hectares 
directly restored.  

We calculated the number of hectares regenerated from 2010 to 
2015 within the intervention sites (areas of shaded-grown cocoa) 
of the 150 farms provided by IMAFLORA. 

Land Cover / Land Use 
Indicator 

3 Carbon sequestration 
through revegetation - net 
positive climate impact 
annually 

We calculated total carbon sequestration through revegetation 
from 2010 through 2015 within the areas of shade-grown cocoa 
for the 150 farms provided by IMAFLORA. 

Biodiversity Indicator 
(existing) 

1 Number of key species 
due to intervention 

We determined the number and identity of MOTUs associated 
with key species present only in shaded cocoa fields and only in 
pasture. We also calculated the number of species in both 
habitats. In addition, we used indicator species analysis to 
determine if there were any key species associated with either 
habitat. 

Biodiversity Indicator 
(existing) 

2 Change in abundance of 
keystone/ priority species 
due to interventions 

We calculated key species abundance for each plot using filtered 
reads (Di Muri et al., 2020).  

Biodiversity Indicator 
(existing) 

3 Change in species 
richness due to 
interventions 

We calculated the total species richness for each plot. 

Biodiversity Indicator 
(existing) 

4 Change in biodiversity 
indices due to 
interventions 

We calculated Shannon’s diversity index and Simpson’s diversity 
index (Gloor et al., 2017). 

Biodiversity Indicator 
(proposed) 

5 Change in alpha diversity We calculated species richness (Hill’s q = 0), effective species 
richness (Hill’s q = 1), and inverse Simpson’s (Hills q = 2; Jost, 
2006).  

Biodiversity Indicator 
(proposed) 

6 Beta diversity We calculated beta diversity using Aitchison distance between 
sites using the Euclidean distance matrix. 

Biodiversity Indicator 
(proposed) 

7 Change in beta diversity 
due to interventions 

We calculated Aitchison distance between treatments using the 
Euclidean distance matrix. 

Biodiversity Indicator 
(proposed) 

8 Qualitative assessment of 
change in biodiversity 
due to interventions 

We created PCA plots to assess change in communities 
qualitatively. 
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Landscape Integrity 
Indicator 

1 Number of hectares of 
essential habitat area 
conserved 

We calculated the number of hectares of core forest, patch forest, 
stable inner forest edge, and stable outer forest edge (buffer zone) 
within the 150 shaded cocoa farm properties provided by 
IMAFLORA. 

RESULTS 

MAPPING RESULTS 
According to the final disturbance mapping results, 183 hectares were degraded, and 358 
hectares were deforested within the 150 IMAFLORA properties (11,546 ha) between 2010-2015. 
Overall, producer’s and user’s accuracies (± 95% confidence interval) per class from the 
disturbances classified map (Figure 3) are summarized in Table 2. As expected, the stable classes 
(stable forest and non-forest) had higher user’s and producer’s accuracies and lower uncertainties 
compared to the dynamic classes (degradation and deforestation). Nevertheless, omission and 
commission errors happened within and across these two groups of classes (stable and dynamic 
classes). For example, in the dynamic classes (degradation and deforestation): most incorrectly 
classified pixels in the degradation class were omitted in the deforestation class and committed to 
the stable forest class, and both omission and commission errors in the deforestation class 
happened in the degradation class. The reasons behind these errors are explained in the 
discussion section. 

Table 2: Accuracy assessment of the disturbances map. 

Accuracies (%) Degradation Deforestation Stable forest Non-forest 

User’s accuracy 40.5 ± 10.2 60.5 ± 9.1 89.0 ± 6.2 85.0 ± 5.4 

Producer’s accuracy 6.8 ± 3.4 30.5 ± 16.2 95.9 ± 1.8 97.0 ± 4.0 

Overall accuracy 86.5 ± 4.3    
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Figure 3: (A) Disturbance classification 2010-2015. Inset maps (B: B1, B2, B3) are shown with 
black outline and inset maps (C: C1, C2) are shown with blue outline on the main map. (B1) 
Inset map of disturbance classification 2010-2015 over a particular area to outline classification 
vs. RGB images. (B2) Inset RGB image pre-study period from Landsat 5 (July 30, 2009). (B3) 
Inset RGB image post-study period from Sentinel-2 (June 26, 2016). (C1, C2) Example of 
disturbances within one of the properties (degradation in yellow, deforestation in red, stable 
forest in dark green, and non-forest in gray). Note that the satellite image in (C1, C2) is from 
Google and does not have a timestamp associated with it. 

Overall, producer’s and user’s accuracies (± 95% confidence interval) from the regeneration 
classified map (Figure 4) are summarized in Table 3. As expected, our approach performed better 
at identifying where regeneration did not occur compared to where regeneration did occur. The 
regeneration class presented low user’s and producer’s accuracies and higher levels of 
uncertainties. The biggest error source was regeneration pixels being committed to the 
non-regeneration class, i.e., an overestimation of areas where regeneration occurred.   

Table 3: Accuracy assessment of the regeneration map. 

Accuracies (%) Non-regeneration Regeneration 
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User’s accuracy 98.3 ± 1.7 34.1 ± 9.1 

Producer’s accuracy 97.6 ± 0.3 43.0 ± 25.3 

Overall accuracy 96.0 ± 1.6  

 

 
  
Figure 4: (A) regeneration map output 2010-2015. Inset maps (B: B1, B2, B3) are shown with 
black outline and inset maps (C: C1) are shown with blue outline on the main map. (B1) Inset 
map of regeneration output 2010-2015 over a particular area to outline regeneration areas vs. 
RGB images. (B2) Inset RGB median image pre-study period from Landsat 5 (July-August 2011). 
(B3) Inset RGB image post-study period from Planet NICFI mosaic (July - November 2016). 
(C1) Example of regeneration areas (in green) within two of the properties. 

eDNA RESULTS 
Overall, five cocoa sites and five pasture sites, in addition to one forest site, were surveyed by 
the field team. While the paired sampling design was not maintained, all but one of the fields 
sampled came from cluster 1 so the reduction in exogenous variation should be maintained (S3 
Table). 

Upon the initial bioinformatics filtering steps, a yield of 14,387,489 sequencing reads was 
obtained from the two sequencing runs, with 10,775,915 reads for the invertebrates dataset 
(5,598,018 Gillet, and 5,177,897 Zeale) and 3,611,574 for vertebrates. After applying all 
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taxonomic filtering steps and retrieving only target MOTUs, the number of reads retained were 
2,665,095 reads for arthropods including both Gillet and Zeale primer sets, and 38,806 reads for 
vertebrates after the removal of human and domestic animal reads. For the vertebrates dataset, a 
very high proportion of human reads was detected (>75% of total reads, from 6.9 million 
mammal reads, 5.2 million belonged to humans), with 14 MOTUs from 10 unique families 
identified when considering only the target wild mammalian taxa. For arthropods, 290 MOTU 
from 27 unique identified families were retained after the removal of MOTUs that were not 
assigned any taxonomic information. Due to the low amount of reads and MOTU returned for 
vertebrates, further analyses focused on the arthropod dataset (S3 File). 

INDICATOR RESULTS 
Land Cover/ Land Use Indicator 1: Number of hectares indirectly conserved. We found 
2,871 hectares within the 150 IMAFLORA properties (excluding intervention sites) were 
indirectly conserved between 2010-2015. 

Land Cover/ Land Use Indicator 2: Number of hectares directly restored. We found 471 
hectares within the intervention sites (areas of shaded-grown cocoa) of the 150 farms had 
regeneration between 2010-2015. 

Land Cover / Land Use Indicator 3: Carbon sequestration through revegetation - net 
positive climate impact annually. We found carbon sequestration through revegetation in 
shade-grown cocoa systems in the intervention farms of 44,300 Mg C (8,860 Mg C/yr) between 
2010 and 2015. 

Biodiversity Indicator 1: Number of key species due to intervention. Overall, we found a 
total of 19 key MOTUs, including 11 in Hymenoptera and 8 in Lepidoptera. Most Hymenoptera 
belonged to the family Formicidae (ants), while Lepidoptera belonged to families Saturniidae 
and Crambidae, among others. Only one group of butterflies was detected (Hermeuptychia 
hermes [Fabricius], or the Hermes satyr).  

One member of Hymenoptera was found in both cocoa fields and pasture. Five MOTU were 
found only in cocoa fields, including Labidus sp. (army ants), Solenopsis sp. (fire ants), Hileithia 
sp. (moth), a member of family Platygastridae and a member of Hymenoptera for which further 
identification was not possible. Thirteen MOTU were found only in pastures, including 
Crematogaster abstinens [Forel] and two other Crematogaster species, Solenopsis geminata 
[Fabricius] and another Solenopsis species, Argyria sp., Heliura sp., Hermeuptychia hermes, 
Hylesia sp. Clepsis sp., and a member of Hymenoptera for which further identification was not 
possible. No Hymenoptera or Lepidoptera were detected in forests. No species were consistently 
found to be indicator species. 

Biodiversity Indicator 2: Change in abundance of keystone/ priority species due to 
interventions. As this pilot only included one time period, we compared the intervention to the 
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counterfactual for this one time period. We found that there was also no significant difference in 
key species abundance when comparing cocoa fields (intervention) and pasture (counterfactuals; 
Pr(>Chisq) = 0.2648). 

Biodiversity Indicator 3: Change in species richness due to interventions. The mean species 
richness in cocoa fields was 17.9 species (SD = 11.0), while on pastures mean species richness 
was 18.2 (SD = 9.4). When comparing total species richness between cocoa fields and pasture, 
we found there was no significant difference in MOTU richness (Pr(>Chisq) = 0.978; Figure 5). 

 
Figure 5: Species richness by field type. Each dot represents a sample point in shaded cocoa 
fields (red) or pasture fields (blue). 

Biodiversity Indicator 4: Change in biodiversity indices due to interventions. When 
comparing diversity indices between shaded cocoa fields (intervention) and pasture 
(counterfactuals), we found that there were no significant differences for Shannon diversity 
(Pr(>Chisq) = 0.3639) or for Simpson’s diversity (Pr(>Chisq) = 0.2964; Figure 5). 
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Figure 5: Shannon diversity (left) and Simpson’s (right) by field type. 

Biodiversity Indicator 5: Alpha diversity. When comparing diversity indices between cocoa 
fields (intervention) and pasture (counterfactuals), we found that there were no significant 
differences for species richness (Hill’s q = 0; previous section), for effective species richness 
(Hill’s q = 1; Pr(>Chisq) = 0.4824), and for inverse Simpson’s (Hill’s q = 2; Pr(>Chisq) = 
0.5243; Figure 6). 

 
Figure 6: Effective species richness (L) and Inverse Simpson Diversity (R) by field type. Each dot 
represents a sample point in shaded cocoa fields (red) or pasture fields (blue). 

Biodiversity Indicator 6: Beta diversity. Pairwise distances between all sampling sites ranged 
from 10.3 and 35.1, where 0 represents no dissimilarity, and larger distances indicate increasing 
dissimilarity (Figure 7). The highest dissimilarities were observed between the Cocoa 1 field and 
the Pasture fields. 
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Figure 7: Beta diversity (Aitchison distance) between each site. 

Biodiversity Indicator 7: Change in beta diversity due to the intervention. The Aitchison 
distance between shaded cocoa (intervention) and pasture (BAU) was about equal to the distance 
between shaded cocoa (intervention) and forest (control; 16.6 and 16.8 respectively), but much 
smaller than the distance between pasture (BAU) and forest (control; 23.2), though this 
difference was not significant (Pocock, 2006; Figure 8).  

123.​ Pocock, S. J. (2006). The simplest statistical test: how to check for a difference 
between treatments. Bmj, 332(7552), 1256. 
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Figure 8: Aitchison distances within treatments and between treatments. 

Biodiversity Indicator 8: Qualitative assessment of change in biodiversity due to the 
intervention. PCA graphs of plots and sites revealed that cocoa and forest sites were co-located 
in site-species space, while pastures were strongly separated along the first axis (Figure 9). This 
agrees with our findings in Biodiversity Indicator 7. 

 
Figure 9: Arthropod PCA for arthropods found in shaded cocoa, forest, and pasture sites. 
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Landscape Integrity Indicator 1: No. of hectares of essential habitat area conserved. 
Essential habitat areas calculated using MSPA within all farm properties with shaded cocoa 
included 93 ha of core forest, 114 ha of patch forest, 82 ha of stable inner forest edge, and 1,000 
ha of stable outer forest edge (buffer habitat; S2 Table). Thus, a total of 289 ha can be considered 
critical habitat within the intervention farms, and an additional 1,000 ha is stable buffer habitat.  

DISCUSSION 

PILOTING THE TERRABIO PLATFORM 
The pilot application of TerraBio, a coupled eDNA and remote sensing environmental 
monitoring platform, demonstrated the potential for such systems in monitoring sustainable 
agriculture such as the shaded cocoa fields implemented by IMAFLROA. Overall, our remote 
sensing analysis suggests that the shaded cocoa established by IMAFLORA helped revegetate 
over 400 hectares, and the eDNA analysis suggests that the community composition of 
arthropods in shaded cocoa is closer to second growth forests than that of pastures. 

Based on the indicators, the broader impacts of shaded cocoa in the study area are most likely 
increased canopy cover, increased carbon sequestration, and more ‘forest-like’ habitat 
availability for arthropods. Land Cover/Land Use Indicators 1 and 2 both found support for the 
shaded cocoa indicators directly and indirectly restoring forest cover. Land Cover/Land Use 
Indicator 3 similarly found a net gain due to carbon sequestration by the shade canopy and cocoa 
in the intervention farms. While the results from the initially provided biodiversity indicators and 
vertebrates were inconclusive, the proposed biodiversity indicators found that arthropod 
communities in shaded cocoa fields were closer to forests than arthropod communities in 
pastures were to forests. This suggests that the habitat available to arthropods in shaded cocoa 
was more ‘forest-like’ than the pastures due to the interventions, in agreement with Landscape 
Integrity Indicator 1. 

Importantly, our results agree with previous studies on the impacts of shaded cocoa. In Ethiopia, 
researchers found that shade coffee certification increased the probability of forest conservation 
by 19.3% (Takahashi and Todo, 2014) and that indirect forest conservation was also observed 
within 100m of the project areas (Takahashi and Todo, 2017). Similarly, the contribution of 
shaded cocoa to biodiversity conservation viewed through the lens of retaining forest-like 
communities echoes decades of previous research (Francesconi et al., 2013; Jha et al., 2014; 
Schroth and Harvey, 2007; Maney et al., 2022). Contributions of shaded cocoa systems to 
landscape connectivity are also well supported (Schroth and Harvey, 2007; de Jesús 
Cervantes-López et al., 2022), though systems emphasizing native trees are likely more 
successful than those using bananas and Erythrina fusca (Cassano et al., 2009). In Brazil’s 
Atlantic Forest, traditional agroforests where cacao is planted under thinned native forests called 
cabrucas, have greater diversity of tree species, including forest specialist tree species, and while 
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they are not substitutes for undisturbed forest they do have a critical role in biodiversity 
conservation (Sambuichi et al., 2012).  

124.​ Takahashi, R., and Todo, Y. (2014). The impact of a shade coffee certification 
program on forest conservation using remote sensing and household data. Environmental 
Impact Assessment Review, 44, 76-81. 

125.​ Takahashi, R., and Todo, Y. (2017). Coffee certification and forest quality: evidence 
from a wild coffee forest in Ethiopia. World Development, 92, 158-166. 
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landscapes: an overview. Biodiversity and Conservation, 16(8), 2237-2244. 

129.​ Maney, C., Sassen, M., and Hill, S. L. (2022). Modelling biodiversity responses to 
land use in areas of cocoa cultivation. Agriculture, Ecosystems and Environment, 324, 
107712. 

130.​ de Jesús Cervantes-López, M., Andresen, E., Hernández-Ordónez, O., Mora, F., 
Reynoso, V. H., and Arroyo-Rodríguez, V. (2022). Lightly-harvested rustic cocoa is a 
valuable land cover for amphibian and reptile conservation in human-modified rainforest 
landscapes. Journal of Tropical Ecology, 1-10. 

131.​ Cassano, C. R., Schroth, G., Faria, D., Delabie, J. H., and Bede, L. (2009). Landscape 
and farm scale management to enhance biodiversity conservation in the cocoa producing 
region of southern Bahia, Brazil. Biodiversity and Conservation, 18(3), 577-603. 

132.​ Sambuichi, R. H., Vidal, D. B., Piasentin, F. B., Jardim, J. G., Viana, T. G., Menezes, 
A. A., ... and Baligar, V. C. (2012). Cabruca agroforests in southern Bahia, Brazil: tree 
component, management practices and tree species conservation. Biodiversity and 
Conservation, 21(4), 1055-1077. 

LEARNING FROM THE PILOT IMPLEMENTATION 
Implementing the pilot allowed us to both improve TerraBio and provide guidance for other 
coupled monitoring platforms for the future. In general, we found multiple aspects of our 
approach worked well, including robust field sampling using random samples, using the 
management unit as the unit of analysis, and benchmarking against a control and/or business as 
usual land use. 
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LESSONS FOR REMOTE SENSING 

With the remote sensing component of the coupled platform, we encountered some challenges 
specific to the complex agroecosystems of the Brazilian Amazon, highlighting the need for 
careful integration of region-specific remote sensing knowledge in developing coupled 
monitoring platforms. These were detected during the accuracy assessment, highlighting the 
importance of this step.  

First, to calculate the Land Cover/Land Use and Landscape Integrity indicators, we created two 
map products. While the methods used to create these map products have significant support in 
the literature (e.g. Hunt et al., 2020; Aryal et al., 2021; Pasquarella et al., 2022), we found that 
applying them in this specific context had wide margins of error and some unexpected results 
that provided an opportunity to learn and improve upon these methods. For example, our 
disturbance maps, which were used for LCLU Indicator 2, showed omission errors in the stable 
forest class. In accordance with Chen et al. (2021), many of the omission errors associated with 
this class were derived from the presence of deciduous tree species (“caducifólias'', in 
Portuguese) in this region, which show a seasonal leaf color change, leaf-off pattern (Figure 10), 
and changes in NDFI values. Therefore, the algorithms assume a disturbance event in forested 
lands, classifying most of these pixels as degradation, which explains the low accuracy obtained 
for these classes. Both CODED and LandTrendr should be able to capture seasonal variations of 
forests with varying crown covers, and parametrization for local conditions can mitigate this 
issue (Bullock et al., 2020a; Bullock et al., 2020b; ​​Kennedy et al., 2018). 

133.​ Hunt, D. A., Tabor, K., Hewson, J. H., Wood, M. A., Reymondin, L., Koenig, K., ... 
and Follett, F. (2020). Review of Remote Sensing Methods to Map Coffee Production 
Systems. Remote Sensing, 12(12), 2041. 

134.​ Pasquarella, V. J., Arévalo, P., Bratley, K. H., Bullock, E. L., Gorelick, N., Yang, Z., 
and Kennedy, R. E. (2022). Demystifying LandTrendr and CCDC temporal segmentation. 
International Journal of Applied Earth Observation and Geoinformation, 110, 102806. 

135.​ Chen, S., Woodcock, C. E., Bullock, E. L., Arévalo, P., Torchinava, P., Peng, S., & 
Olofsson, P. (2021). Monitoring temperate forest degradation on Google Earth Engine 
using Landsat time series analysis. Remote Sensing of Environment, 265, 112648. 
doi:10.1016/j.rse.2021.112648 
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Figure 10: Plot in the CEO disturbances validation project. This pixel was misclassified as 
Degradation. NDFI time series show a seasonal pattern with lower NDFI values around August 
of each year. It is important to note that the MapBiomas classification maps these areas as 
“Savannic Forest Formations”. 

Further, it is important to fully understand the forest conversion process and pastureland 
management practices in the region, as this greatly influences the interpretation itself of 
disturbance samples for validation. Many of the samples analyzed represented patches of 
degraded forest cover or “dirty pastures”. Some of the degraded patches presented recurrent 
regeneration and disturbance patterns, visible in the NDFI time series due to fragmentation or 
border effect (Figure 11). This is sometimes not captured in the visual interpretation analysis, 
where just one change event is recorded, which yields omission or commission errors for the 
change classes (e.g., regeneration and degradation, deforestation and degradation). For future 
applications, it will be important to separate the regeneration output validation from the 
disturbance output validation to refine confidence intervals.  
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Figure 11: Example plot of the CEO change validation project showing a fragmented/degraded 
forested patch and its variations on the NDFI time series. 

A better understanding of the degradation process and its relationship with deforestation is vital 
for the decision-making process of interpreting validation samples. Many times, the disturbances 
happen gradually, in phases, until they reach the final clear-cut stage of deforestation. The 
relationship between degradation and deforestation may vary significantly across the different 
land tenures. The same happens with the regeneration process, which will be characterized by 
secondary forests with different stages depending on how many years of recovery we are seeing. 
The interpretation of what is happening on the ground is not always clear and straightforward, 
especially when the interpretation is being made through satellite imagery (Figure 12). In a span 
of five years, we may observe two or three different events (e.g., selective logging followed by 
fire and then regeneration). Without the availability of Planet NICFI data prior to 2015, the 
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visual inspection of these events through Landsat imagery and NDFI time series interpretation 
was challenging, which could have yielded validation errors. 

 

Figure 12: Example plot of the CEO change validation project showing a plot that was classified 
as regrowth by the algorithm, but the interpreter classified it as a single degradation event. We 
note some regreening between the dates and the variation in NDFI values. Although not entirely 
clear, the interpreter assumed selective logging followed by a fire event in 2011. Another fire 
event seems to have happened in 2012. It is not clear that by the end of 2014 the area was 
already-established pastureland. 

Finally, our estimates of carbon sequestration due to revegetation do not align well with those 
that have been estimated previously. For example, potential sequestration for smallholder 
agroforestry systems like shaded cocoa has been estimated at 1.5 to 3.5 Mg per year per hectare 
(Montagnini and Nair, 2004). This rate suggests that we should expect approximately 6,000 Mg 
C sequestration due to revegetation over the study period based on our regeneration maps. Our 
overestimate is caused by the approach’s treatment of regeneration as entirely occurring within 
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the study time period, which is unrealistic. For future applications of TerraBio, we plan to adapt 
the carbon calculation method by Bernal et al. (2018). We will use forest stand age calculated by 
the LandTrendr algorithm to create more accurate estimates of carbon sequestration through 
revegetation by more realistically accounting for the rate of growth and thus rate of 
sequestration. 

136.​ Montagnini, F., & Nair, P. K. R. (2004). Carbon sequestration: an underexploited 
environmental benefit of agroforestry systems. In New vistas in agroforestry (pp. 
281-295). Springer, Dordrecht. 

137.​ Bernal, B., Murray, L. T., and Pearson, T. R. (2018). Global carbon dioxide removal 
rates from forest landscape restoration activities. Carbon balance and management, 13(1), 
1-13. 

We also recognize similar limitations with the MSPA calculations by using the Global Forest 
Change dataset. We plan to use the LandTrendr product and simplify the MSPA classes. By 
applying the existing LandTrendr product, and therefore, more local-based information, to both 
methods we expect the results to have higher accuracy, which can be supported by confidence 
intervals for the case of the carbon estimates. 

LESSONS FOR MONITORING WITH eDNA 

The success of using arthropod communities as indicators focused more on community 
composition points to some lessons learned for future coupled biodiversity monitoring platforms 
and implementations of TerraBio. The arthropod datasets did not encounter the same issues with 
high numbers of human reads and domesticated species, likely associated with the anthropogenic 
land uses (Sales et al., 2020; Strickler et al., 2015). Combined with their ecological importance, 
arthropods are thus a promising taxonomic group to use as a target moving forward (Latini et al., 
2020; Arribas et al., 2021). Both Gillet and Zeale primers succeeded in capturing different parts 
of the Arthropoda phylum, however the majority of reads obtained belonged to non-target taxa, 
and for future studies, we recommend that both primer sets be used if both Hymenoptera and 
Lepidoptera groups are targeted taxa.  

138.​ Sales, N.G., Kaizer, M.D.C., Coscia, I., Perkins, J.C., Highlands, A., Boubli, J.P., 
Magnusson, W.E., Da Silva, M.N.F., Benvenuto, C. and McDevitt, A.D., 2020. Assessing 
the potential of environmental DNA metabarcoding for monitoring Neotropical 
mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mammal Review, 
50(3), pp.221-225. 

139.​ Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of 
UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological 
Conservation, 183, 85-92. 

140.​ Arribas P, Andújar C, Bidartondo MI, Bohmann K, Coissac É, Creer S, Dewaard JR, 
Elbrecht V, Ficetola GF, Goberna M, Kennedy S. Connecting high‐throughput 
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biodiversity inventories: Opportunities for a site‐based genomic framework for global 
integration and synthesis. Molecular Ecology. 2021 Mar;30(5):1120-35. 

From the reads attributed to Arthopoda, a significant fraction of detected MOTUs could not be 
successfully assigned at the taxonomic rank required for the downstream analyses. The lack of 
resolution at short fragments associated with eDNA monitoring and sparse or incomplete 
reference databases is a well-known issue in understudied regions such as the Neotropics 
(Jackman et al., 2021). For the “key species” indicators requiring identification to species, many 
key arthropod species were present in only one plot. Thus, when monitoring these indicators over 
time, as TerraBio plans to do, researchers must either use an outdated database or constantly 
update previous years’ results in order to separate the effect of improving databases from any 
real biological change. Further, due to the fundamental character of eDNA data, some traditional 
indicators such as species abundance calculated with eDNA data can be misleading (Pawlowski 
et al., 2021).  

141.​ Jackman, J.M., Benvenuto, C., Coscia, I., Oliveira Carvalho, C., Ready, J.S., Boubli, 
J.P., Magnusson, W.E., McDevitt, A.D. and Guimarães Sales, N., 2021. eDNA in a 
bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. 
Environmental DNA, 3(4), pp.837-849. 

This points to one key benefit of using indicators focused on overall community composition 
over those focused on species specific (e.g., keystone, rare, endangered, or endemic species) 
used elsewhere. The initial set of indicators selected for use in the pilot implementation of 
TerraBio were derived from existing indicators based on traditional field ecology methods where 
organisms are directly observed. However, eDNA represents a fundamental shift in how 
ecological communities are measured. Any taxonomy-based indicator requires accurate 
databases linking genomic sequences with their taxonomic identity (Cordier et al., 2021; Beng 
and Corlett, 2020). New approaches to ecological indicator selection are able to better leverage 
eDNA data to monitor communities using taxonomy-free approaches (Cordier et al., 2021; Leese 
et al., 2018; Pawlowski et al., 2021).  

Our proposed indicators, chosen specifically to take advantage of eDNA data, were much more 
successful at identifying differences between communities found in the intervention. For 
example, Biodiversity Indicators 2-4 found no significant differences between the shaded cocoa 
and pasture sites, however, the community focused Biodiversity Indicators 6-8 all found that 
cocoa fields were more similar to forest plots than the pasture sites. Using these community 
ecology-based taxonomy-free approaches in order to fully make use of eDNA data is an 
important lesson learned for coupled environmental monitoring platforms, including TerraBio. 
However, when implementing this approach to indicators, they must be clearly communicated to 
stakeholders accustomed to the outputs of traditional field ecology methods. Overall, eDNA is 
well suited to monitoring these projects, but successful integration inmonitoring, reporting, and 
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verification (MRV) standards will require balancing the best available science with reporting 
requirements. 

We also encountered some challenges with our sampling protocols when implemented in remote 
areas by field partners and packaging scientific best practices in a way that is easily accessible 
and actionable. During data collection, our field team ran into multiple practical issues while 
collecting soil samples using the plot sample design. Having specific areas to collect from 
proved very time consuming, which when added to the already long transit times between field 
locations resulted in reduced data collection. The size and shape of the fields also limited the 
field team’s ability to change the location of plots if necessitated by field conditions. These 
challenges will become increasingly important when farm owners and community scientists are 
collecting data.  

Thus, we suggest using a simplified larger volume sampling approach, and will be moving to this 
in future implementations of TerraBio. In particular, we are moving away from a plot-based 
approach with small amounts of soil collected to an approach collecting large volumes of soil 
from the entire site (1-2 L; Leempoel et al., 2020). Recent research suggests that large soil 
volumes are likely needed to accurately capture community representation (e.g., Cantera et al., 
2019; Holmes, 2021; Sakata et al., 2021; Leempoel et al., 2020). This sampling approach will 
also be significantly easier for farmers and community scientists to implement, and early testing 
is promising (unpublished data).  

142.​ Leempoel, K., Hebert, T., and Hadly, E. A. (2020). A comparison of eDNA to camera 
trapping for assessment of terrestrial mammal diversity. Proceedings of the Royal Society 
B, 287(1918), 20192353. 

143.​ Cantera, I., Cilleros, K., Valentini, A., Cerdan, A., Dejean, T., Iribar, A., ... and 
Brosse, S. (2019). Optimizing environmental DNA sampling effort for fish inventories in 
tropical streams and rivers. Scientific Reports, 9(1), 1-11. 

144.​ Holmes, V. (2021). Environmental DNA Monitoring of Non-Native Mudpuppy 
(Necturus Maculosus) and Transient Rainbow Smelt (Osmerus Mordax). The University 
of Maine.  

145.​ Sakata, M. K., Watanabe, T., Maki, N., Ikeda, K., Kosuge, T., Okada, H., ... and 
Minamoto, T. (2021). Determining an effective sampling method for eDNA 
metabarcoding: a case study for fish biodiversity monitoring in a small, natural river. 
Limnology, 22(2), 221-235. 

Further, during our data analysis, we noticed that fewer reads were returned for cocoa fields than 
for pasture fields, with multiple plots missing data entirely or exhibiting very low species 
richness (i.e., number of detected species, S3 Table). Differences in soil moisture may have 
accounted for this result, as pastures were generally drier than shaded cocoa fields and forests. If 
the desiccant volume was not sufficient to handle higher soil moistures, then sample degradation 
may have occurred unevenly between the more shaded and thus wetter cocoa and forest samples 
and the drier pasture samples (Strickler et al., 2015). We will be testing higher volumes of 
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desiccant and Longmire’s solution, as many of the sustainable agricultural projects occur in 
remote areas and tropical or sub-tropical climates (Guerrieri et al., 2020; Williams et al., 2016). 
Early results suggest this approach may help with high moisture soils, allowing for more 
accurate comparisons between land uses (unpublished data). 

146.​ Guerrieri, A., Bonin, A., Münkemüller, T., Gielly, L., Thuiller, W., and Francesco 
Ficetola, G. (2021). Effects of soil preservation for biodiversity monitoring using 
environmental DNA. Molecular Ecology, 30(13), 3313-3325. 

147.​ Williams, K. E., Huyvaert, K. P., and Piaggio, A. J. (2016). No filters, no fridges: a 
method for preservation of water samples for eDNA analysis. BMC research notes, 9(1), 
1-5. 

CONCLUSION 
Platforms that directly monitor land cover change and biodiversity on an annual basis by 
coupling remote sensing and environmental DNA (eDNA) can provide timely and relevant 
results for parties interested in the success of sustainable agricultural practices. Monitoring 
information collected from these platforms serves two essential functions: assessing the 
effectiveness of project-level management actions and approaches and facilitating ongoing 
learning about the circumstances in which different approaches outperform others. 

In this pilot, we found that shaded cocoa projects implemented by IMAFLORA contributed to 
forest and biodiversity conservation in the Brazilian Amazon. The broader impacts of shaded 
cocoa projects in the study area, as revealed through the indicators, are most likely increased 
canopy cover, increased carbon sequestration, and more ‘forest-like’ habitat availability for 
arthropods. Following the successful pilot application of TerraBio to assess the effect of shaded 
cocoa interventions near São Félix do Xingu, in Pará, Brazil on biodiversity conservation, the 
platform will be expanded to other projects created through innovative funding mechanisms. 

Implementing this pilot allowed us to provide guidance for coupled monitoring platforms for the 
future, including TerraBio. In general, we found multiple aspects of our coupled approach 
worked well. These included our sampling design using randomly selected farms and using the 
management unit as the unit of analysis. Benchmarking the intervention against a control and 
business as usual land use was a unique and cost-effective way to validate results on the project 
level while controlling for exogenous variables. Using remote sensing and eDNA data collection 
in tandem to calculate indicators also provided a more holistic view than either alone. 

For our remote sensing analysis, we found that detecting forest disturbances and regeneration 
was challenging due to regional land management practices and vegetation characteristics, 
suggesting better algorithm parametrization to local conditions is needed to improve future 
accuracy. Understanding the degradation process and its relationship with deforestation is also 
vital for interpreting validation samples. Additionally, more realistic approaches to forest growth 
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for carbon calculation analysis are needed. For our eDNA analysis, we suggest moving to 
straightforward sampling designs using high volume sampling and replication. We also found 
that taxonomy-free arthropod community focused indicators were more successful at 
illuminating ecologically holistic differences between intervention (shaded cocoa) and business 
as usual (pasture) scenarios.  
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