Мы продолжаем изучать основные классы неорганических соединений. Что же мы с вами уже знаем? Нам известен класс оксиды и класс основания. Дайте определение этих классов веществ.

Ответ учащегося: Оксид – это сложное вещество, которое состоит из двух элементов, одним из которых является кислород.

Ответ учащегося: Основание – это сложное вещество, в состав которого входит атом металла, соединенный с одной или несколькими гидроксогруппами ОН.

Назовите вещества CuO, KOH, Ca(OH)₂, HCl, Ba(OH)₂, Na₂O, HNO₃, Al₂O₃, H₂SO₄

- Чем похожи формулы оставшихся веществ?
- Чем отличаются?

С одним из представителей веществ этого класса вы уже познакомились, когда рассматривали летучие водородные соединения на примере хлороводорода HCl. Раствор его в воде и представляет собой соляную кислоту. Она имеет ту же формулу HCl. Аналогично при растворении в воде другого летучего водородного соединения — сероводорода H_2S — образуется раствор сероводородной кислоты с формулой H_2S .

Молекулы этих кислот состоят из двух элементов, т. е. они являются бинарными соединениями. Однако к классу кислот относят также и соединения, состоящие из большего числа химических элементов. Как правило, третьим элементом, входящим в состав кислоты, является кислород. Поэтому такие кислоты называют кислородсодержащими, в отличие от HCl и $\rm H_2S$, которые называют бескислородными. Перечислим некоторые кислородсодержащие кислоты.

- Азотная кислота HNO₃.
- Азотистая кислота HNO₂.
- Серная кислота H₂SO₄.
- Сернистая кислота H₂SO₃.
- Угольная кислота H₂CO₃.
- Кремниевая кислота H_2SiO_3 .
- Фосфорная кислота H₃PO₄.

Обратите внимание, что все кислоты (и кислородсодержащие, и бескислородные) обязательно содержат водород, который в формуле записывают на первом месте.

- Если в формуле кислоты закрыть символ H, то останется кислотный остаток.
- Дадим определение, что же такое кислоты.

Всю остальную часть формулы называют кислотным остатком. Например, у HCl кислотным остатком является Cl, а у H_3PO_4 кислотный остаток PO_4 .

Кислотами называют сложные вещества, молекулы которых состоят из атомов водорода и кислотного остатка.

Как правило, кислотные остатки образуют элементы-неметаллы.

В тетради учащихся должна появиться схема:

По наличию кислорода

Кислородсодержащие Бескислородные

По основности

Одноосновные Двухосновные Трехосновные

По формулам кислот можно определить степени окисления атомов химических элементов, образующих кислоты.

Для бинарных кислот это сделать просто. Так как у водорода степень окисления +1, то в

соединении $\vec{H}\vec{C}$ у хлора степень окисления -1, а в соединении $\vec{H}_2\tilde{S}$ у серы степень окисления -2.

Несложно будет рассчитать и степени окисления атомов элементов-неметаллов, образующих кислотные остатки кислородсодержащих кислот. Нужно только помнить, что суммарная степень окисления атомов всех элементов в соединении равна нулю, а степени окисления водорода +1 и кислорода -2.

Зная степень окисления элемента-неметалла, образующего кислотный остаток кислородсодержащей кислоты, можно определить, какой оксид ей соответствует.

Например, серной кислоте H_2SO_4 , в которой у серы степень окисления равна +6, соответствует оксид серы (VI) $^{+6}_{SO_3}$; азотной кислоте $^{+1+5-2}_{HNO_3}$, в которой у азота степень

окисления равна +5, соответствует оксид азота (V) N_2^{+5} . По формульства

+6-2

По формулам кислот можно также определить и общий заряд, который имеют кислотные остатки. Заряд кислотного остатка всегда отрицателен и равен числу атомов водорода в кислоте. Число атомов водорода в кислоте называют основностью. Для одноосновных кислот, содержащих один атом водорода, например HCl и HNO₃, заряды ионов кислотных остатков, которые они образуют в растворе, равны 1-, т. е. Cl⁻ и NO₃. Для двухосновных кислот, например H_2S0_4 и H_2S , заряды кислотных остатков равны 2-, т. е. SO_4^{2-} и S^{2-}

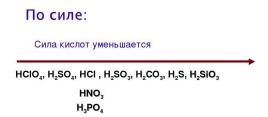
Кислотный остаток, например $(SO_4)^{2-}$, имеет общий заряд 2- и представляет собой сложный ион, который образуется при растворении кислоты в воде. Бинарные бескислородные кислоты HCl и H₂S образуют в водных растворах простые ионы Cl⁻ и S²⁻, а кислородсодержащие кислоты образуют сложные ионы, например NO₃ и SO₄²⁻

общая формула кислот H_nAⁿ

В природе

В природе встречается много кислот: лимонная кислота в лимонах, яблочная кислота в яблоках, щавелевая кислота в листьях щавеля, муравьиная кислота в пчелином яде и жгучих волосках крапивы (рис. 62). Муравьи защищаются от врагов, разбрызгивая едкие капельки, содержащие муравьиную кислоту. При скисании виноградного сока получается уксусная кислота, а при скисании молока — молочная кислота (рис. 63). Она же образуется при квашении капусты и при силосовании кормов для скота. В быту часто применяют лимонную и уксусную кислоты. Употребляемый в пищу уксус — это раствор уксусной кислоты.

Многие кислоты, например серная и соляная, нужны в народном хозяйстве в огромных


Серная кислота Н₂SO₄ — бесцветная жидкость, вязкая, как масло, не имеющая запаха, почти вдвое тяжелее воды. Серная кислота поглощает влагу из воздуха и других газов. Это свойство серной кислоты используют для осущения некоторых газов.

Серная кислота обугливает древесину, кожу, ткани. Если в пробирку с серной кислотой опустить лучинку, то происходит химическая реакция — лучинка обугливается. Теперь понятно, как опасно попадание брызг серной кислоты на кожу человека и одежду.

Угольная и сернистая кислоты — H_2CO_3 и H_2SO_3 — в свободном виде не существуют, так как они разлагаются на воду и соответствующий оксид (газ):

$$H_2CO_3 \longrightarrow CO_2 \uparrow + H_2O$$
,
 $H_2SO_3 \longrightarrow SO_2 \uparrow + H_2O$.

Однажды английский химик Р. Бойль, изучая свойства соляной кислоты, закупленной в Германии у И. Глаубера, случайно пролил ее. Кислота попала на сине-фиолетовые лепестки фиалок. Спустя некоторое время лепестки стали ярко-красными. Это явление удивило Р. Бойля, и он тут же провел серию опытов с разными кислотами и цветкам разных растений. Оказалось, что и васильки, и розы, и цветки некоторых других растений изменяли свою окраску при действии кислот. После некоторых раздумий такие вещества Р. Бойль назвал индикаторами, что в переводе с латинского означало «указатели». Эти вещества затем стали использовать многие химики в опытах для распознавания кислот.

Растворы всех кислот кислые, но распознавать концентрированные кислоты на вкус не решится ни один химик — это опасно. Есть более эффективные и безопасные способы обнаружения кислот. Их так же, как и щёлочи, распознают с помощью индикаторов. Соляная кислота, азотная кислота, уксусная кислота проверяем полосками.

В каждом ряду найдите лишнюю формулу, ответ мотивируйте:

HCI	H₂SO₄	H₃PO₄
H ₂ SO ₃	H₂SiO₃	H₃PO₄

- 1. бескислородная кислота.
- 2. Зх основная кислота.
- 2) Ребята решили укомплектовать свою учебную лабораторию оксидами, основаниями и кислотами. Заказ им прислали по почте в виде двух посылок:

1-я посылка: NaOH, CaO, H₃PO₄, HNO₃, Ca(OH)₂, Cr₂O₃;

2-я посылка: FeO, H₂SO₄, KOH, Fe(OH)₂, P₂O₅, HCl.

Но названия веществ подписать забыли. Помогите ребятам.

3) напишите формулы кислот по заданным остаткам

солью? (оно соленое на вкус).

Соли — это сложные вещества, состоящие из ионов металлов и кислотных остатков.

Как видно из определения, соли по составу похожи на кислоты, только вместо атомов водорода они содержат ионы металла. Поэтому их можно также назвать продуктами замещения атомов водорода в кислоте на ионы металла. Например, всем известная поваренная соль NaCl может быть рассмотрена как продукт замещения водорода в соляной кислоте HCl на ион натрия.

Заряд иона натрия 1+, а заряд иона хлора 1-. Так как соединение электронейтрально, формула поваренной соли Na⁺Cl⁻. Если же надо вывести формулу сульфида алюминия (III), поступают следующим образом.

- 1. Обозначают заряды ионов, из которых состоит соединение: $A1^{3+}S^{2-}$. Заряд иона алюминия 3+, а заряд иона серы можно определить по формуле соответствующей сероводородной кислоты H_2S , он равен 2-.
- 2. Находят наименьшее общее кратное числовых значений зарядов ионов алюминия и серы (3 и 2), оно равно 6.
- 3. Находят индексы, разделив наименьшее общее кратное на величины зарядов, и записывают формулу:

$$Al^{3+}S^{2-} \longrightarrow Al_{2}S_{3}.$$

Аналогично выводят формулы солей кислородсодержащих кислот, имеющих сложные ионы. Выведем, например, формулу кальциевой соли фосфорной кислоты — фосфата кальция. По таблице Менделеева определим заряд иона кальция как элемента главной подгруппы II группы (IIA группы): 2+. По формуле фосфорной кислоты H_3PO_4 определим

заряд иона, образованного кислотным остатком: PO_4^{3-} . Отсюда формула фосфата кальция имеет вид

$$Ca^{2+}(PO_4^{3-}) \longrightarrow Ca_3(PO_4)_2$$

(читают «кальций три, пэ-о-четыре дважды»).

Нетрудно заметить, что при выведении формул солей по зарядам ионов вы должны действовать так же, как при выведении формул бинарных соединений по валентности и по степеням окисления образующих их элементов.

Как посчитать заряд центрального элемента? Объяснить

Как образуют названия солей бескислородных кислот, вы уже рассмотрели, когда знакомились с номенклатурой бинарных соединений: соли HCl называют хлоридами, а соли H_2S — сульфидами.

Например, соли азотной кислоты HNO_3 называют нитратами: KNO_3 — нитрат калия, а соли азотистой кислоты HNO_2 — нитритами: $Ca(NO_2)_2$ — нитрит кальция. Если же металл

проявляет различные степени окисления, то их указывают в скобках римской цифрой, например: $\mathrm{Fe^{2+}SO_3}$ — сульфит железа (II) и $\mathrm{Fe^{3+}(SO_4)_3}$ — сульфат железа (III). Номенклатура солей приведена в таблице

Название и формула кислоты	Формула иона кислотного остатка	Название соли	Формула (пример) KNO ₂		
Азотистая, HNO ₂	NO_2^-	Нитриты			
Азотная, HNO ₃	NO_3^-	Нитраты	Al(NO ₃) ₃		
Хлороводородная (соляная), HCl	Cl-	Хлориды	FeCl ₃		
Сернистая, H ₂ SO ₃	SO ₃ ²⁻	Сульфиты	K ₂ SO ₃		
Серная, H ₂ SO ₄	SO ₄ ²⁻	Сульфаты	Na ₂ SO ₄		
Сероводородная, H ₂ S	S ²⁻	Сульфиды	FeS		
Фосфорная, H ₃ PO ₄	PO ₄ 3-	Фосфаты	Ca ₃ (PO ₄) ₂		
Угольная, H ₂ CO ₃	CO ₃ ²⁻	Карбонаты	CaCO ₃		
Кремниевая, H ₂ SiO ₃	SiO ₃ ²⁻	Силикаты	Na ₂ SiO ₃		

По растворимости в воде соли делят на растворимые (Р), нерастворимые (Н) и малорастворимые (М). Для определения растворимости солей используют таблицу растворимости кислот, оснований и солей в воде.

Наиболее известные соли:

- Для нас соль с детства — нечто соленое. Однако, далеко не все соли солоны. Соленные соли: поваренная соль NaCl, хлорид калия KCl и другие. Но есть горькая соль, или «английская» соль — сульфат магния $MgSO_4$, которую используют как слабительное и успокоительное.

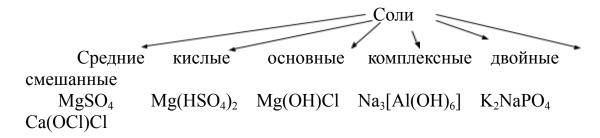
Есть среди солей и сладкие. Например, хлорид бериллия $BeCl_2$, ученые хотели даже дать название «глициний» за вкус. Цианид калия KCN тоже сладкого вкуса. Но стоит ее попробовать, и не успеешь написать даже заметки, сразу умрешь.

- Все вы знаете, что такое мел. А какой он на вкус? Соленый или нет (нет). Мел на вкус не соленый, но тоже относится к классу «соли»

Формулу мела CaCO₃ и называет это вещество – карбонат кальция.

А теперь, давайте познакомимся еще с некоторыми веществами, относящимися к солям. Каждый из нас повседневно сталкивается с такими веществами как СОЛИ.

Например: - в стирке, с помощью порошка, с состав которого входит стиральная (кальцинированная) сода – Na₂CO₃;


- удобрения, которые мы вносим в почву NH_4NO_3 аммиачная селитра; $CaHPO_4$ простой суперфосфат и другие.
- в домашней аптечке ляпис AgNO₃.
- CuSO₄- медный купорос, который добавляют в побелку, применяют против болезней и вредителей растений.
- да и сам наш организм содержит соли, в костях $-Ca_3(PO_4)_2$

Хлорид натрия NaCl — поваренная соль Без этой соли невозможна жизнь растений, животных и человека, так как она обеспечивает важнейшие физиологические процессы в организмах: в крови соль создаёт необходимые условия для существования красных кровяных телец, в мышцах обусловливает способность к возбудимости, в желудке образует соляную кислоту, без которой было бы невозможным переваривание и усвоение пищи. Необходимость соли для жизни была известна со времён глубочайшей древности. Значение соли отражено в многочисленных пословицах, поговорках, обычаях. «Хлеб да соль» — вот одно из пожеланий, которым русские люди с давних пор обменивались друг с другом во время приёма пищи, подчёркивая равноценное с хлебом значение соли. Хлеб и соль стали символом гостеприимства и радушия русской нации.

Говорят: «Чтобы узнать человека, надо с ним пуд соли съесть». Оказывается, ждать не так уж долго: за два года двое съедают пуд соли (16 кг), так как в год каждый человек с пищей потребляет от 3 до 5,5 кг соли.

Карбонат кальция CaCO₃ — нерастворимая в воде соль, из которой многочисленные морские животные (моллюски, раки, простейшие) строят покровы своего тела — раковины (рис. 67) и кораллы Эту же формулу имеет и строительный камень — мрамор, и столь привычный каждому стоящему у доски школьнику мел, который добывают из карьеров или меловых гор

Фосфат кальция $Ca_3(PO_4)_2$, нерастворимый в воде, — это основа минералов фосфоритов и апатитов. Из них производят фосфорные удобрения, без которых было бы невозможно получение высоких урожаев в сельском хозяйстве. Фосфат кальция также входит в состав костей животных

Задания

Дайте названия следующим солям. (Слайд 7)

- Li_2SO_4 -
- FeSO₃ -
- $Ba(NO_3)_2$ -
- Na_2S -
- $Zn_3(PO_4)_2$ –

Запишите формулы следующих солей (Слайд 9)

- Карбоната натрия –
- Сульфата железа (III) –
- Хлорида цинка (II) –
- Иодид алюминия –
- Фосфат меди (II) –

B1	B1
H (NO ₃)	H (NO ₃)
Na (CO ₃)	Na (CO ₃)
H (SO)	H (SO)
H (SO ₄)	H (SO ₄)
H Cl	H Cl
HS	п 5
Mg (NO ₃)	Mg (NO ₃)
Ca Cl	
	Ca Cl H SiO ₃
H SiO ₃	Ma C
Mg S	Mg S
K SO ₄	K SO ₄
B2	B2
Ca Cl	Ca Cl
	H SiO ₃
H SiO ₃	Ma S
Mg S	Mg S
H S Mg (NO ₃)	H S
$Mg (NO_3)$	$Mg (NO_3)$
LK SO.	1 K S().
H (NO ₃)	H (NO ₃)
$N_{2}(CO)$	$N_{2}(CO)$
114 (883)	114 (803)
H (SO ₄)	H (SO ₄)
H Cl	H Cl
B3	B3
K SO ₄	K SO ₄
H (NO.)	H (NO.)
H (NO ₃)	H (NO ₃)
Na (CO ₃)	Na (CO ₃)
H (SO ₄)	H (SO ₄)
H Cl	H Cl
Ca Cl	Ca Cl
TT 0:0	11.0.0
	H SiU ₃
Mg S	Mg S
H S	H S
Mg (NO ₃)	Mg (NO ₃)
B4	B4
Na (CO ₃)	Na (CO ₃)
H (SO ₄)	H (SO ₄)
H Cl	H Cl
Ca Cl	H Cl Ca Cl
H SiO ₃	H SiO ₃
Ma S	M_{α} S
Mg S K SO ₄	Mg S K SO ₄
K SU ₄	K SU ₄

H (NO ₃)	H (NO ₃)
H S	H S
Mg (NO ₃)	Mg (NO ₃)

Определите валентность кислотного остатка HClO₃, H₃PO₄, H₂CrO₄ Определите степень окисления элементов в кислотах H₂MnO₄, HNeO₄, H₃AsO₃

ФОРМУЛЫ	HI	HBr	HCIO,	HCI	H2SO4	HMnO ₄	HNO ₃	H ₂ CrO ₄	H2SO3	H ₃ PO ₄	HF	HNO ₂	CH₃COOH	H ₂ CO ₃	H ₂ S	HCIO	HCN	H2SiO
pKa=-lgKa	-11	-9	-8	-7	-3	-2,3	-1,6	-1	1,8	2,1	3,2	3,4	4,75	6,4	7,2	7,3	9,1	9,7
СИЛА КИСЛОТ СИЛЬНЫЕ						СРЕДНИЕ СЛ					ЛАБЫЕ							
KUCЛОТ HC HC H,S HM HN		HBr HCIO	COLUMN CO				H ₂ SO ₃ H ₃ PO ₄ HF	СЕРНИСТАЯ (ОРТО)ФОСФОРНАЯ ФТОРОВОДОРСДНАЯ (ПЛАВИКОВАЯ) АЗОТИСТАЯ			СН ₃ СООН УКСУСНАЯ Н ₂ СО ₃ УГОЛЬНАЯ Н ₃ S СЕРОВОДОРОД НСЮ ХЛОРНОВАТИС' НСМ ЦИАНОВОДОРО Н ₂ SIO ₃ (МЕТА)КРЕМНИ					СТАЯ РОДНА		

$\mathrm{HNO_3}\!\approx\!\mathrm{HCl}\!\approx\!\mathrm{H_2SO_4}\!>\!\mathrm{H_2SO_3}\!>\!\mathrm{H_3PO_4}\!>\!\mathrm{HF}\!>\!\mathrm{H_2CO_3}\!>\!\mathrm{H_2S}\!>\!\mathrm{H_2SiO_3}$

сильные кислоты кислоты средней силы

слабые кислоты