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This document is part of the V8 Sandbox Project and discusses the design of a new trusted
heap space used to move V8 HeapObjects (i.e. objects managed by the garbage collector) out
of the sandbox and reference them in a memory-safe way. For a general overview of the
sandbox design see the high-level design document.

Background
There are certain (internal) HeapObjects used by V8 that, if manipulated by an attacker, can lead
to memory corruption outside of the V8 sandbox, and thereby allow an attacker to bypass the
sandbox. Examples of such objects include BytecodeArrays or DeoptimizationData,
which would both allow an attacker to corrupt stack memory (and thereby escape from the V8
sandbox) if manipulated. More generally, objects that either contain code (machine code or
interpreted bytecode) or code metadata can frequently cause issues if modified by an attacker.
Throughout this document, such objects will be referred to as “trusted objects” as some part of
V8 (implicitly) trusts that they have not been modified in a malicious way.

Objective
Prevent an attacker from abusing trusted objects to escape from the V8 sandbox.

Design
The basic idea behind this design is to simply move trusted objects out of the V8 sandbox. This
way, attackers cannot directly manipulate these objects as it is assumed that they can only
corrupt memory inside the sandbox.

For that, this design uses two building blocks: (1) a new trusted V8 heap space located outside
of the sandbox and (2) a “trusted pointer” mechanism for safely referencing objects in that
space from within the sandbox. The following diagram summarizes the design:

https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit?usp=sharing
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/heap/spaces.h


Here, a “trusted pointer” is implemented as an index into the trusted pointer table (TPT), which
then contains a full pointer to a HeapObject living in the trusted space. A “protected pointer” on
the other hand is simply a compressed pointer inside trusted space. For these pointers, it can be
assumed that neither the pointer itself, nor the pointed-to object can be manipulated by an
attacker, hence they are “protected”.

This design has a number of advantages:
- No (major) changes to the garbage collector are necessary: the trusted space will be

managed in the same way as the other spaces, just its location in memory will be
different.

- Support for compacting GC is possible without the need to introduce a new remembered
set type for trusted pointers: instead, whenever a trusted object is moved around during
compacting GC, it simply updates the raw pointer to itself through its ‘self’ pointer. This
way, all trusted pointers from inside the sandbox stay valid.

- Type-safe access to trusted objects is possible for example by encoding the 16-bit
instance type into the top bits of the pointer in the trusted pointer table. Alternatively, if
there is only a small number of trusted object types, one could also use a dedicated
pointer table per type.

https://source.chromium.org/chromium/chromium/src/+/main:v8/src/heap/remembered-set.h
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/heap/remembered-set.h
http://v8/src/objects/instance-type.h


- Thread-safe access to trusted objects is possible by using a per-Isolate trusted pointer
table.

In the following, the two building blocks are discussed in more detail.

The Trusted Space
To be able to allocate objects outside of the sandbox, the following changes are necessary:

1. A new pointer compression cage must be allocated outside of the sandbox. Inside this
cage, objects can reference each other through 32-bit compressed pointers. This way,
references between objects in the trusted space, for example from a Code object to its
DeoptimizationData, do not require a pointer table indirection.

2. A new “trusted” heap space, similar to the old space, must be introduced. It will be
necessary to create both a regular trusted space and a large-object trusted space.

3. A pair of trusted spaces must be created inside the new pointer compression cage for
every Isolate, since these objects are directly owned by an Isolate.

4. A trusted read-only space must be created inside the new pointer compression cage so
that trusted read-only objects, such as builtin Code objects and the Map objects for
trusted objects, are supported.

Apart from being located in a different pointer compression cage, the trusted space is otherwise
very similar to the existing spaces and uses the same memory layout and garbage collection
algorithms.

Trusted Pointers
Objects in the trusted space cannot be referenced through direct/raw pointers from within the
sandbox as an attacker could manipulate these pointers and thereby effectively achieve
memory corruption inside the trusted space. Instead, they need to be referenced through a
pointer table indirection that guarantees memory-safe access, similar to the external pointer
table.

When the sandbox is disabled at build time, these references must still function, but do not need
to use a pointer table indirection. As such, we define a “trusted pointer” to be a reference to a
trusted object that is implemented as either a regular tagged pointer when the sandbox is
disabled, or an index into the trusted pointer table (an “indirect pointer”) when the sandbox is
enabled. Indirect pointers are then only available when the sandbox is enabled, while trusted
pointers exist in all build configurations.

Adding support for trusted- and indirect pointers to V8 requires at least the following changes:
1. Adding a new pointer table: the trusted pointer table (TPT). It is essentially the

generalized form of the code pointer table (CPT), containing not just pointers to Code

https://v8.dev/blog/pointer-compression
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objects but instead to any kind of trusted HeapObject. To guarantee type-safe access,
the entries in the table are tagged with the instance type of the pointed-to object.

2. Adding low-level trusted pointer accessor functions (`ReadTrustedPointerField`
and `WriteTrustedPointerField`). These need to be added to at least the C++
runtime code as well as to the code stub assembler (CSA), the optimizing compilers, and
the low-level macro assemblers.

3. Adding a new object visitor method (`VisitIndirectPointer`) which is used by the
garbage collector to mark indirectly-referenced objects as alive. This visitor method is
further used by the snapshot serializer as it needs to be able to serialize these kinds of
references as well.

4. Adding new kinds of write barriers: since trusted objects are still tracked by the garbage
collector, it must, during incremental GC, be informed whenever a field in an object that
was already visited is changed to point to a different object. Write barriers accomplish
this task. Since existing write barriers only know about direct/tagged pointer fields, a
new kind of write barrier for indirect pointer fields needs to be added to the compilers,
assemblers, and to the runtime.

While the read accessor for trusted pointers is fairly straightforward:

TrustedObject
HeapObject::ReadTrustedPointerField(int offset,

InstanceType expected_type) {
#ifdef V8_ENABLE_SANDBOX

uint32_t handle = ReadField<uint32_t>(offset);
Address encoded_ptr =

isolate->trusted_pointer_table().Get(handle);
Address decoded_ptr = encoded_ptr ^ (expected_type << 48);
return HeapObject::cast(Object(decoded_ptr));

#else
return ReadTaggedPointerField<TrustedObject>(offset);

#endif
}

It is not obvious how the write accessors should work. One option is that they simply copy the
‘self’ indirect pointer from the pointed-to object, and that all objects that live in the trusted heap
inherit from the same base class that contains this value at a fixed offset. Then the accessor
would simply be:

void



HeapObject::WriteTrustedPointerField(int offset, TrustedObject value)
{
#ifdef V8_ENABLE_SANDBOX

uint32_t handle =

value.ReadField<uint32_t>(TrustedObject::kSelfIndirectPointerOffset);
WriteField<uint32_t>(offset, handle);

#else
WriteTaggedPointerField<TrustedObject>(offset, value);

#endif
}

Security Implications
Moving trusted objects out of the sandbox does not change the fact that they are security
critical - it just prevents an attacker from directly corrupting them. As such, special care must be
taken when modifying trusted objects, as any accidental memory corruption would likely result
in a sandbox bypass. In general, any code that modifies data inside the trusted space must be
considered sandbox attack surface.

To keep the sandbox attack surface small and manageable, the number of trusted heap objects
should therefore be kept to a minimum, and they should be modified as rarely as possible
(ideally, the objects are read-only after creation). Further, it is likely desirable that JIT-generated
code cannot operate on these objects at all, as JIT-generated code might be influenced by
(attacker-controlled) heap state.

Finally, objects directly accessible by script (such as strings and objects extending
JSReceiver) should never be located in the trusted space as that might allow them to be
corrupted. For example, if an attacker can construct a type confusion between an object in the
trusted space and a “regular” object, this might allow the attacker to corrupt the trusted object.
This property can be enforced to some degree by enforcing that all trusted objects extend a
specific base class (e.g. TrustedObject) that is not compatible with JSReceiver, and so
cannot directly be exposed to script. Furthermore, the fact that these objects live in a separate
pointer compression cage should also make it harder (although not impossible) to accidentally
“leak” them to JavaScript code as they aren’t directly addressable from inside the sandbox.



Alternatives Considered

Reusing the external code space
Instead of creating a new trusted space, it would also be possible to reuse the existing external
code space and allocate the objects there. However, this would conflict with CFI, since the
external code space must be executable (as it contains the JIT-generated machine code), while
the trusted objects should not live in executable memory. While it would be possible to partition
the external code space into an executable and a non-executable region, this might cause
fragmentation of the code space. Further, the code space is supposed to be located close to the
binaries .text section so calls to builtin functions can be short jumps/calls, while this is not
required for trusted objects. As such, it is likely better to create a separate trusted space for
(data) objects.

Turning HeapObjects into regular C++ objects
Instead of creating a trusted heap and moving HeapObjects there, it would also be possible to
convert these HeapObjects to “regular” C++ objects (allocated through malloc in the system
heap). Then they would be treated like other trusted objects and be referenced through the
external pointer table. While this might be relatively easy for “leaf” objects such as the handler
table ByteArray associated with a BytecodeArray, it becomes more difficult for objects
such as Code, which themselves reference other objects. Besides requiring GC awareness for
references between these C++ objects (or alternatively, switching them to manual memory
management), it would also require adjusting the GCs heuristics for memory pressure. As this
approach does not seem to have overall security or performance benefits over a trusted space,
the latter then looks like the better option.

Protecting objects through memory permissions
In theory, it would be possible to protect trusted objects by allocating them in a read-only region
inside the sandbox. However, in practice, this is problematic for a number of reasons:

1. It would require switching the permissions of the read-only region whenever an object is
modified, which is likely too expensive, even with “fast” permission switching such as
Intel PKEYs (which are not yet widely available). If per-process memory permissions are
used, this would also leave the mechanism vulnerable to races as other threads
controlled by an attacker might write into the read-only region while it is writable.

2. There would have to be a separate mechanism to guarantee that an object that is
supposed to live in read-only memory actually does live there. As an example, consider
the case where BytecodeArrays are allocated in read-only memory and are referenced
from a JSFunction object through a regular compressed pointer. In this scenario, an
attacker could simply craft their own fake BytecodeArray inside the regular (writable)



part of the heap, then make the JSFunction point to this object instead, which would
be unsafe.

However, it is possible to keep objects in read-only memory inside the sandbox if the following
conditions are met:

- These objects are never written to after initialization so that memory permissions do not
need to be changed

- These objects are also referenced through indirect pointers from the (writable) heap so
that the attack described above is not possible

This could for example be the case for builtin Code objects which are placed in the read-only
heap.

Making all objects robust against corruption
Instead of moving or protecting objects, these objects could also be redesigned so that they are
robust against manipulation by an attacker. However, in practice this would for example mean
redesigning the interpreter (Ignition) and its bytecode so that corrupted bytecode can never
result in memory corruption outside of the sandbox (in particular, on the stack). Alternatively, it
would require inserting a large number of CHECKs into all code that operates on these objects,
which is both expensive and fragile. As such, this approach is likely not generally applicable.

However, while it is unlikely that all objects can be made robust against manipulation by an
attacker, it might be possible to harden some such objects and thereby avoid having to move
them out into the trusted space.

Note that from a security point of view, it is not always obvious which of the two approaches is
better: if objects are kept inside the sandbox, then the code that reads/consumes them
becomes the attack surface (e.g. the bytecode interpreter). If they are moved out of the
sandbox, then the code that writes/produces to them becomes the attack surface (as it can
potentially be tricked to corrupt the object). As such, this decision likely needs to be made on a
case-by-case basis.


