
Лекционное задание №1

Задача 7b. Обоснуйте, а потом напишите, алгоритм добавление к числу в
троичной записи тройки.

310 = 103

Примеры:

1)​ 111 + 10 = 121
2)​ 10202 + 10 = 10212
3)​ 120 + 10 = 200
4)​ 222 + 10 = 1002
5)​ 21 + 10 = 101

Как видно из примеров, при прибавлении 3 в троичной записи к числу, мы
оставляем неизменным младший разряд, к следующему после него
прибавляем 1. Как видно из примеров 3-5, если во втором разряде числа 2,
при прибавлении 1 к нему мы получим 3, то есть 10. Таким образом, на место
этого разряда нам следует записать 0, и прибавить 1 к следующему
(старшему) разряду. Повторять такое действие с каждым старшим разрядом
нам следует до тех пор, пока в нем не окажется цифра меньшая 2, или пока не
кончатся разряды (из примеров 4-5).

Сформулируем алгоритм. Пусть мы храним число в виде вектора (массива) 𝑎
цифр, обозначающих разряды числа начиная с младшего.

То есть число мы сохраним в виде массива . 𝑎 = 𝑎
𝑛
𝑎

𝑛−1
... 𝑎

1
𝑎

0
[𝑎

0
, 𝑎

1
, …, 𝑎

𝑛
]

Так как число записано в троичной записи, для каждой цифры . 𝑎
𝑖
∈{0, 1, 2}

k := 1

ПОКА (k < n) И (a[k] == 2):

​ a[k] := 0

​ k := k + 1

ЕСЛИ k >= n:

​ добавить в конец a[k] := 1

ИНАЧЕ:

​ a[k] := a[k] + 1

Инвариант цикла:

Разряды обнулены (изначально были равны 2), и осталось 𝑎[1], ..., 𝑎[𝑘 − 1]
прибавить 1 к разряду с индексом . 𝑘

 — индекс разряда, к которому нужно прибавить 1 𝑘

 — уже обработаны (обнулены из-за переноса) 𝑎[1.. 𝑘 − 1]

 — ещё не изменены 𝑎[𝑘.. 𝑛 − 1]

Пусть A0 — исходное значение числа. После обработки разрядов : 1.. 𝑘 − 1

 𝐴
𝑖
 = 𝐴₀ + 3 − 3𝑘

То есть мы "должны" ещё , что эквивалентно прибавлению 1 к разряду k. 3𝑘

Доказательство корректности:

(по индукции)

База (k = 1): Инвариант выполняется: ничего не изменено, нужно прибавить 3
к числу, начиная с разряда 1.

Шаг индукции: Пусть инвариант верен для k. Если , устанавливаем 𝑎[𝑘] = 2
. Это уменьшает число на , но мы должны были прибавить 𝑎[𝑘] : = 0 2·3𝑘 3𝑘

, значит теперь должны прибавить (перенос) − 2·3𝑘 + 3𝑘 = − 3𝑘 3𝑘+1

, инвариант сохраняется. 𝑘 : = 𝑘 + 1

Цикл завершается когда или : 𝑘 >= 𝑛 𝑎[𝑘] ≠ 2

Если : выполняем , прибавляем недостающие 𝑎[𝑘] < 2 𝑎[𝑘] : = 𝑎[𝑘] + 1 3𝑘

Если : добавляем новый разряд , что эквивалентно + 𝑘 >= 𝑛 𝑎[𝑛] : = 1 3𝑛

Реализация алгоритма на ЯП Python:
def add_three(a: list[int]) -> list[int]:

 n = len(a)

 if n == 1:

 a.append(0)

 n = 2

 k = 1

 while k < n and a[k] == 2:

 a[k] = 0

 k += 1

 if k >= n:

 a.append(1)

 else:

 a[k] = a[k] + 1

 return a

if __name__ == "__main__":

 tests = [

 "111", # Общий случай

 "10202", # Общий случай

 "120", # Один перенос

 "222", # Каскадный перенос

 "21", # Перенос с расширением

 "0", # Минимальное число

 "2", # Однозначное число

]

 all_passed = True

 for input_str in tests:

 a = [int(c) for c in reversed(input_str)]

 add_three(a)

 result = ''.join(map(str, reversed(a)))

 print(f"{input_str} + 10 = {result}")

Результаты тестирования:

Результаты совпали с ожидаемыми. Алгоритм корректен.

