Introduction Lesson: Developing the Pseudocode - Part 1

Teacher says: We have been working on identifying Prime numbers and Composite
numbers. What would you say to someone who asked you what the differences were
between Prime and Composite numbers?

Teacher says: We have been making Factor Trees. What would you say to someone
who asked you what are Factor Trees?

Note: The pseudocode developed for creating Factor Trees in the previous math
lessons should be available at this time for this coding lesson.

Note: Try to keep past pseudocodes &/or flowcharts available and posted in your
classroom as posters or PDF for on-line referral. They can be used as reference as
well as to show increased efficiency to decompose math algorithms and as examples of
computational thinking.

Remember these two examples are possible pseudocode lists and should not be shown
to your students. They are for you, the teacher, to have some idea of how to proceed.
A mathematical algorithm or a formula is standard but this activity is to capture your
students thinking in their own words. Over time the repetition of decomposition in this
visual format will reveal your students’ thinking as more efficient and the use of more
mathematical terms and the names (and descriptions) of coding blocks.

Here are two examples of what you might have developed over time with your
students:

Early example of Developing example of pseudocode (students beginning
pseudocode (students | to learn to express their math thinks when decomposing an
beginning to learn to algorithm)
express their math
thinks when
decomposing an
algorithm)
eGet a composite number to make a factor tree
e Draw lines from eRemember the number
numbers to a bigger ™)
number e Think of the number as a product of two factors
e |f the number can e Think what two numbers multiplied together have that
have two parts to product
multiply together, draw eHow to think of those numbers?
lines from those - Remember a multiplication fact with the same product
numbers up to that (go directly to #)

number

e Print those 2 factors, If | can’t think of those numbers, I ...

one at each end of the - Make arrays of blocks and the number of rows and

line columns will be the 2 factors

e If one of those factor | - Multiply two numbers together and if this product is
numbers can have two greater than the product | want, | change the factor(s)
parts to multiply to be less; if this product is less than the product | want

together, draw two lines
from that number
e Print those 2 factors

| change the factor(s) to be more
- Remember a division fact that has its dividend as the
same number as the product | want

e¢\When no more parts #)

then factor tree is done | eRemember the two factors

ePrint the two factors underneath the product, the lesser
one to the left, and the other to the right

eDraw lines to each factor as branches (that’'s where the
Tree name comes from)

olf a factor is a Prime Number (A whole number greater
than 1 that has only two factors, itself and 1) circle it

olf a factor isn’t a Prime Number, then it is Composite and
has two factors

eRemember this number

eRepeat from (#)

o|f both factors are Prime numbers STOP

el ist all the prime factors (A factor that is a prime number.)

Why is there no advanced example?

An advanced or “perfect” PseudoCode will be one that you and your students develop
together and work out/debug the problem areas (consider having a second column and
adding the coding blocks that match the actions). It might only be “perfect” after the
coding has been completed and tested out (Data Analysis and Data Representation &
Abstraction) (see Glossary) and you and your students returned to the pseudocode to
make more edits.

Might this advanced “perfect” pseudocode look exactly like an action list a different
class creates?

Probably not, if there are complex mathematical algorithms in the stack. Possibly but
not always, if the coding is a simple stack of a mathematical operation.

Compare the coding for:

- What a product might be when multiplying two numbers together and adding the
same number over and over.

- Coding can mirror the relationship between addition and multiplication, but which
code is efficient and is one always used over the other?

- The answer/output is the same for each stack, but is one method better than the
other?
- What about the thinking required to create both stacks?

These are the questions that will make the pseudocode discussions rich and highly
impactful.

Coding to Add Coding to Multiply

3 variables, Repeat block, total 10 blocks |2 variables, multiply Operator block, total
7 blocks

FactorA = to o
Facior B = I:oo Factor B = tua
Al What's your first number? B=uLE- EEUN WWhat's your first number? BELSGEETS

FactorA » to answer

Al \What's your second number? TR

What's your second number? BELLETED

FactorB = to answer

juin FactorA * Factor B fu'°5|a:=}nd5

change 5Sum » by FaclorA

o o QY s o @ seowes

Scratch Wiki Links:
Multiple Operator Block Wiki Article
Add Operator Block Wiki Article

https://en.scratch-wiki.info/wiki/()_*_()_(block)
https://en.scratch-wiki.info/wiki/()_%2B_()_(block)

