
Introduction Lesson: Developing the Pseudocode - Part 1

Teacher says: We have been working on identifying Prime numbers and Composite
numbers. What would you say to someone who asked you what the differences were
between Prime and Composite numbers?

​

Teacher says: We have been making Factor Trees. What would you say to someone
who asked you what are Factor Trees?

​

Note: The pseudocode developed for creating Factor Trees in the previous math
lessons should be available at this time for this coding lesson.

Note: Try to keep past pseudocodes &/or flowcharts available and posted in your
classroom as posters or PDF for on-line referral. They can be used as reference as
well as to show increased efficiency to decompose math algorithms and as examples of
computational thinking.

Remember these two examples are possible pseudocode lists and should not be shown
to your students. They are for you, the teacher, to have some idea of how to proceed.
A mathematical algorithm or a formula is standard but this activity is to capture your
students thinking in their own words. Over time the repetition of decomposition in this
visual format will reveal your students’ thinking as more efficient and the use of more
mathematical terms and the names (and descriptions) of coding blocks.

Here are two examples of what you might have developed over time with your
students:

Early example of
pseudocode (students
beginning to learn to
express their math
thinks when
decomposing an
algorithm)

● Draw lines from
numbers to a bigger
number
● If the number can
have two parts to
multiply together, draw
lines from those
numbers up to that
number

Developing example of pseudocode (students beginning
to learn to express their math thinks when decomposing an
algorithm)

●Get a composite number to make a factor tree
●Remember the number
(*)
●Think of the number as a product of two factors
●Think what two numbers multiplied together have that
product
●How to think of those numbers?
-​ Remember a multiplication fact with the same product

(go directly to #)

● Print those 2 factors,
one at each end of the
line
● If one of those factor
numbers can have two
parts to multiply
together, draw two lines
from that number
● Print those 2 factors

●When no more parts
then factor tree is done

If I can’t think of those numbers, I …
-​ Make arrays of blocks and the number of rows and

columns will be the 2 factors
-​ Multiply two numbers together and if this product is

greater than the product I want, I change the factor(s)
to be less; if this product is less than the product I want
I change the factor(s) to be more

-​ Remember a division fact that has its dividend as the
same number as the product I want

(#)
●Remember the two factors
●Print the two factors underneath the product, the lesser
one to the left, and the other to the right
●Draw lines to each factor as branches (that’s where the
Tree name comes from)
●If a factor is a Prime Number (A whole number greater
than 1 that has only two factors, itself and 1) circle it
●If a factor isn’t a Prime Number, then it is Composite and
has two factors
●Remember this number
●Repeat from (#)
●If both factors are Prime numbers STOP
●List all the prime factors (A factor that is a prime number.)

Why is there no advanced example?

An advanced or “perfect” PseudoCode will be one that you and your students develop
together and work out/debug the problem areas (consider having a second column and
adding the coding blocks that match the actions). It might only be “perfect” after the
coding has been completed and tested out (Data Analysis and Data Representation &
Abstraction) (see Glossary) and you and your students returned to the pseudocode to
make more edits.

Might this advanced “perfect” pseudocode look exactly like an action list a different
class creates?

Probably not, if there are complex mathematical algorithms in the stack. Possibly but
not always, if the coding is a simple stack of a mathematical operation.

Compare the coding for:

-​ What a product might be when multiplying two numbers together and adding the
same number over and over.

-​ Coding can mirror the relationship between addition and multiplication, but which
code is efficient and is one always used over the other?

-​ The answer/output is the same for each stack, but is one method better than the
other?

-​ What about the thinking required to create both stacks?

These are the questions that will make the pseudocode discussions rich and highly
impactful.

Coding to Add Coding to Multiply

3 variables, Repeat block, total 10 blocks 2 variables, multiply Operator block, total
7 blocks

Scratch Wiki Links:

Multiple Operator Block Wiki Article

Add Operator Block Wiki Article

https://en.scratch-wiki.info/wiki/()_*_()_(block)
https://en.scratch-wiki.info/wiki/()_%2B_()_(block)

