
Lookup UDF Join in Pinot 
dharakk@uber.com, balci@uber.com, yupeng@uber.com 

This document is shared externally 
 

Motivation 
With ease of Presto-Pinot connector for querying and offline ingestion support, users are looking 
to build an analytical portfolio directly (without a presentation layer) on the Pinot-ecosystem 
which involves a fairly rich data model with a lot of entities and relationships. Because of this 
there are join use-cases emerging. These are currently being worked around via denormalizing 
data but concerns are developing on fast changing data and also increasing scale. 
 
Most of the use cases are fact-to-dim join where the dimension table is a small offline table and 
fact is a realtime or an offline table The use case of join we are addressing in this doc is 
decoration (other use cases can be found here) where we need to decorate the result (before or 
after aggregation) from a dim table by joining on a primary key. An example of such decoration 
is as below: 
 

Table factTable: 

-​ string    uuid 

-​ int       metric 

-​ timestamp event_time 

-​ string    status 

Table dimTable: 

-​ string uuid 

-​ string name  

-​ string country 

 

 

SELECT 
  f.uuid, 
  d.name, 
  d.country, 
  abs(sum(m.metric)) as sum_metric 
FROM 
  factTable f join dimTable d on f.uuid = d.uuid 
WHERE  
  f.event_time > CAST(to_unixtime(date_trunc('day', now())) 
AS BIGINT) 
  AND f.status = 'OPEN'  
GROUP BY 
  1, 
  2, 
  3 
ORDER BY 
  2 

 
 

mailto:dharakk@uber.com
mailto:balci@uber.com
mailto:yupeng@uber.com
https://docs.google.com/document/d/1SFTbmH2Z86_bociZX8WIoVU7YQ4dnvWerguG8e2lszE/edit


Problem Analysis 
In the usual case we would be solving this via broadcast joining approach where we would 
broadcast the dim table to all the servers of the fact table working on the query and add a join 
operation after filter operation in the execution tree (see the alternative approaches figure)  
 
But if we look at the decoration use case without looking at the join query, we see that we are 
simply doing a lookup for a given key value from a data source that is different than the one 
being queried. This lookup can be done before or after aggregation. With this view of the 
problem we can also use UDFs to solve this problem.  
 
For example the above query can be re-written using a UDF lookUp as below: 
 

SELECT 
  f.uuid, 
  lookUp('dimTable', 'name', 'uuid', f.uuid) as name, 
  lookUp('dimTable', 'country', 'uuid', f.uuid) as country, 
  abs(sum(m.metric)) as sum_metric 
FROM 
  factTable f  
WHERE  
  f.event_time > CAST(to_unixtime(date_trunc('day', now())) AS 
BIGINT) 
  AND f.status = 'OPEN'  
GROUP BY 
  1, 
  2, 
  3 
ORDER BY 
  2 

Architecture 

Overview 
As from the Problem Analysis we can see that if we model the problem as a UDF, it can be 
easily implemented in Pinot. For users to still use this functionality as a Join we can add a Join 
pushdown in Presto-Pinot connector and translate the join query to a one with UDF. Example as 
below: 
 

Query in Presto Query to Pinot 

SELECT 
  f.uuid, 
  d.name, 
  d.country, 
  abs(sum(m.metric)) as sum_metric 
FROM 

SELECT 
  f.uuid, 
  lookUp('dimTable', 'name', 'uuid', f.uuid) 
as name, 
  lookUp('dimTable', 'country', 'uuid', 
f.uuid) as country, 



  factTable f join dimTable d on f.uuid = 
d.uuid 
WHERE  
  f.event_time > 
CAST(to_unixtime(date_trunc('day', now())) AS 
BIGINT) 
  AND f.status = 'OPEN'  
GROUP BY 
  1, 
  2, 
  3 
ORDER BY 
  2 

  abs(sum(m.metric)) as sum_metric 
FROM 
  factTable f  
WHERE  
  f.event_time > 
CAST(to_unixtime(date_trunc('day', now())) AS 
BIGINT) 
  AND f.status = 'OPEN'  
GROUP BY 
  1, 
  2, 
  3 
ORDER BY 
  2 

 
The overview of the operator tree for the example mentioned above will be as below: 

 



 
The main aspects of this design are the lookUp transform function and recognizing a dim table 
and making it available locally to make the transform evaluation faster. Other than that there are 
no changes in query planning. More details on both these aspects as below. 

lookUp UDF Signature 
The lookUp UDF signature will be as below: 
 

FieldSpec.DataType lookUp(string dimTableName, string dimColToLookUp, string dimJoinKey1, 
DataType factJoinKeyVal1, string dimJoinKey2, .. ) 

 
 
UDF parameter description: 
 

●​ dimTableName: Name of the dim table to perform the lookup on. dimTable in our 
example 

●​ dimColToLookUp: The column name of the dim table to be retrieved to decorate our 
result. name and country in our example  

●​ dimJoinKey: The column name on which we want to perform the lookup i.e. the join 
column name for dim table. uuid in our case. There can be multiple primary keys and 
corresponding values. 

●​ factJoinKeyVal: The value of the dim table join column for which we will retrieve the 
dimColToLookUp for the scope and invocation.  

●​ return type: Return type of the UDF will be that of the dimColToLookUp column type. IN 
our case string for both the invocations. 

 
The UDF has two parts of implementation, one is shared which involves loading the segments 
from a dim table and then per row execution of looking up the column name. 
 
We can achieve the shared part using a singleton class DimTableManager, which will help us 
load the dim table. This will help us achieve our goals without changing the transform function 
interface. 
 
Here the disadvantage is that we are loading the dim table per segment as the plan tree is 
generated in Pinot for each segment. To improve this we can keep the dim table in an 
in-memory Cache of sorts which gets loaded once and then other segments just read from it. 
 
If the DimTableManager finds necessary info in the cache then it will use it otherwise it will load 
information on it. Life cycle of this cache will be tied to the Query execution lifecycle so that we 
do not have to think about invalidation of the same. 
 
 



Dimension table constraint and assignment 
How we handle the dim table is at the core of this design. For a dim table, the following 
characteristics must be true for this design to work : 
 

1.​ Dim table must be OFFLINE 
2.​ Dim table should be small in size  
3.​ Dim table should be available in all the server hosts 

 
To enforce these requirements, we need a way to mark a table as a dim table. So for that we 
propose a new table config isDimTable to identify a dim table. 
 
Once we mark a table as a dim table, the constraint (1) and (2) are easy to enforce by adding 
validation rules on quota and the table type.  
 
For constraint (3) we propose a new assignment strategy for segments which essentially makes 
the table available on all the hosts. We can base this strategy off of the primitives already 
present for the ReplicaGroupAssignmentStrategy. 
 

DimensionTableManager 

DimTableManager will be implemented as an extension to OfflineTableManager and will host a 
static Map to store instances per table. 
 
Each instance will load its table contents (all segments) into Java heap and will expose a 
‘lookupRowByPrimaryKey’ method for the lookupUdf to fetch data from. In-heap cache will be 
re-built on every ‘addSegment’ call from HelixInstanceManager to make available the latest 
version of the table. 
 

Alternative Design 
 
Alternative for this design is to add Join clause support to Sql and add a new operator for 
Project which can handle a lookup from the dim table. 
 
This is definitely a cleaner approach but this involves the overhead of implementing the planning 
of the join clause and optimizing it into the project operator mentioned above. And after this the 
physical aspects of the implementation are still the same as lookup. 
 
Thus with this approach we are solidifying the physical aspects of a broadcast join first by 
making it available via a UDF. We can add a join pushdown in Presto connector and still use the 
functionality as a Join.  



 
As future work we can also add the Join clause support to Pinot and reuse the lookup 
implementation. 

Limitations 
Following are the limitations of this approach: 
 

●​ Subquery lookup from a fact table can not be done. Lookup has to be a dim-fact one 
●​ There has to be a concept of primary key in the dim table for the lookup to work 
●​ Dim table has to be small in size. 

Presto Connector Changes 
 
We will be using Presto as a syntax sugar for the join operation as the user will use a join clause 
in Presto and we will rewrite the query to use UDF in the Presto-Pinot connector. This work will 
involve mainly two major components: 
 

1.​ Moving JoinNode to SPI framework to allow the new connector pushdown framework to 
push down Join operations as well. 

2.​ Implement a simple join push-down logic where we push the TableScanNode of the dim 
table into the TableScanNode of the fact table. A visual illustration of this is as below: 

 

 



Future Work 
The major shortcoming of this approach is the size restrictions on the dim table because we 
require the dim table to be available on each host. Future work for this will involve lifting this 
restriction by implementing a broadcast join operator, which will enable larger and partitioned 
dim tables and help solve more generic join use cases. 
 
 
Reference: 
Join use cases 
https://docs.google.com/document/d/1SFTbmH2Z86_bociZX8WIoVU7YQ4dnvWerguG8e2lszE/
edit 

https://docs.google.com/document/d/1SFTbmH2Z86_bociZX8WIoVU7YQ4dnvWerguG8e2lszE/edit
https://docs.google.com/document/d/1SFTbmH2Z86_bociZX8WIoVU7YQ4dnvWerguG8e2lszE/edit

	Lookup UDF Join in Pinot 
	Motivation 
	Problem Analysis 
	Architecture 
	Overview 
	lookUp UDF Signature 
	Dimension table constraint and assignment 
	DimensionTableManager 
	Alternative Design 

	Limitations 
	Presto Connector Changes 
	Future Work 

