Formative assessment: cosmology #### Name: Table 1: List of constants | Wien's law constant | | 2.9 x 10 ⁻³ m K | |---------------------------|-------|---| | Stephan-Boltzman constant | σ | 5.67 x 10 ⁻⁸ W m ⁻² K ⁻⁴ | | Luminosity of the Sun | L₀ | 3.8 x 10 ²⁶ W | | 1 Astronomical unit | Au | 1.50 x 10 ¹¹ m | | 1 Parsec | Рс | 3.1 x 10 ¹⁶ m | | 1 lightyear | ly | 9.46 x 10 ¹⁵ m | | Speed of light | С | 3.00 x 10 ⁸ m s ⁻¹ | | Planck's constant | h | 6.63 × 10 ⁻³⁴ J s | | Hubble's constant | H_0 | 70 km s ⁻¹ MPc ⁻¹
70,000 m s ⁻¹ MPc ⁻¹ | Table 2: List of prefixes | Prefix | Abbreviation | Value | |--------|--------------|------------------| | Mega | M | 10 ⁶ | | Kilo | К | 10 ³ | | milli | m | 10 ⁻³ | | micro | μ | 10 ⁻⁶ | | nano | n | 10 ⁻⁹ | ### **Equations:** E=hf $$\lambda_{max}T = 2.9 \times 10^{-3}$$ $$c=\lambda f$$ $$L=\sigma A T^4$$ $$z = \frac{\Delta \lambda}{\lambda} \simeq \frac{v}{c}$$ $$V = H_o d$$ $$b = \frac{L}{4\pi d^2}$$ ## Description questions | Provide a brief explanation in your own words. | |---| 2. Explain how astronomers use the concept of cosmological redshift to study distant galaxies. What information does the redshift of light from a galaxy provide about its motion and distance? | | | | | | | | | | | | | 1. What is cosmological redshift, and how does it relate to the expansion of the universe? | 3. | The formula | for cosmolog | ical redshift | (z) is | given | by | |----|-------------|--------------|---------------|--------|-------|----| | | | | | | | | $$z = \frac{\lambda_{observed} - \lambda_{emitted}}{\lambda_{emitted}}$$ What do each of these variables represent, and how does this formula help us calculate redshift? How is the formula abve the same as the formula given on the first page? | | |
 |
 |
 | |--|---------------|------|------|------| | | |
 |
 |
 | | | | | | | | | |
 |
 |
 | | | |
 |
 |
 | | | |
 |
 |
 | | | | | | | | | |
 |
 |
 | | | | | | | | 4. Describe H
universe. How
Hubble's Law | v does the re | | | ing | | universe. How | v does the re | | | ing | | universe. How | v does the re | | | ing | | universe. How | v does the re | | | ing | | universe. How | v does the re | | | ing | | universe. How | v does the re | | | ing | | universe. How | v does the re | | | ing | | universe. How | v does the re | | | ing | |
 | |------|------|------|------|------|------|------|------|------|------|------|------|--| |
 | 5. If we could see individual stars in a distant galaxy would they all have the same measured redshift? Justify your answer. # Mathematical questions | 1. Given the ol
wavelength is | | am galaxy is | ooo mii, an | the emitted | | |-----------------------------------|------|--------------|--------------|-------------|--| | | | | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | |
 |
 | | | | | | | | | | | | 2. If the redshi
wavelength is | | | , and the em | itted | | | | | | , and the em | itted | | | | | | , and the em | itted | | | | | | , and the em | itted | | | | | | , and the em | itted | | | | | | , and the em | itted | | | | | | , and the em | itted | | | a) If both (waveletb) What can be a second and a second and a second and a second and a | s, A and B, have
lalaxies emit lig
ligths of light fro
an you infer abo | ht with a wa
om galaxies <i>i</i> | velength of
A and B. | 600 nm, cor | npare the o | bserved | |--|--|---|--|-------------|-------------|--------------------------| | a) If both (waveleb) What c | alaxies emit lig | ht with a wa
om galaxies <i>i</i> | velength of
A and B. | 600 nm, cor | npare the o | bserved | | a) If both (
waveled
b) What ca | palaxies emit lig
ngths of light fro
an you infer abo | ht with a wa
om galaxies <i>i</i> | velength of
A and B.
on and dista | 600 nm, cor | npare the o | bserved
ased on their | | a) If both (
wavele
b) What c
redshift | palaxies emit lig
ngths of light fro
an you infer abo | tht with a wa
om galaxies a
out the motio | velength of
A and B.
on and distar | 600 nm, cor | npare the o | bserved
ased on their | | a) If both (
wavele
b) What c
redshift | palaxies emit lig
ngths of light fro
an you infer abo
values? | tht with a wa
om galaxies a
out the motio | velength of
A and B.
on and distar | 600 nm, cor | npare the o | bserved
ased on their | | a) If both (
wavele
b) What c
redshift | palaxies emit lig
ngths of light fro
an you infer abo
values? | tht with a wa
om galaxies a
out the motio | velength of
A and B.
on and distar | 600 nm, cor | npare the o | bserved
ased on their | | a) If both (wavele b) What c redshift | palaxies emit lig
ngths of light fro
an you infer abo
values? | tht with a wa
om galaxies a
out the motio | velength of
A and B.
on and distar | 600 nm, cor | npare the o | bserved
ased on their | 3. Suppose a galaxy is observed with a redshift of $\mathbf{z} = 0.03$. If the emitted wavelength is 700