

Addressing Political Bias in News Articles with
Multinomial Regression

Artificial Intelligence CS4100

Taylor Stevens and Anjali Tanna
Fall 2023

GitHub Repository

https://github.com/anjali-tanna/cs4100_final_project

Contents

Purpose​ 2
Problem Statement and Use Cases​ 2

Problem Statement​ 2
Use Cases​ 3

System Architecture and Requirements​ 3
Database Selection and Cleaning​ 3
Design Methods​ 4

Results and Analysis​ 6
Results​ 6
Analysis & Discussion​ 7

Next Steps​ 9
Dataset​ 9
User Interface​ 9

Summary​ 10
Advice for Future Students​ 10
References​ 11
Project Repository​ 11

1

Purpose

In today’s digital landscape, the pervasive
presence of biased content within online articles has
become an acute societal concern4. The proliferation
of this biased information across various online
platforms has granted narrow narratives the power
to shape perceptions, beliefs, and decisions1.
Recognizing this, the mission of this project is not
merely to acknowledge the existence of bias but to
help combat its influence through an innovative
approach. The endeavor seeks to address this issue
by crafting a solution that acts quickly in the
identification of bias5. Understanding that mitigating
bias demands a multifaceted strategy anchored in
data-driven methodologies, the proposed solution
hinges on the creation and utilization of a
meticulously curated dataset improved with labeled
information on diverse articles, revealing their
inherent biases. The dataset used in this project
serves as the foundation for this initiative. Central to
the deployed strategy is the development and
deployment of a robust multinomial regression
algorithm. This algorithmic framework in the context
of this project is designed to predict and classify the
bias categories of unseen articles with speed. Its
predictive capabilities, powered by annotated data,
can help in taking a step in the direction of mitigating
bias within the online sphere2. By successfully
classifying articles with speed and accuracy, the
broader vision of the project is to foster a more
informed, objective, and equitable digital discourse.
Through collaborative efforts, the project aspires to
cultivate a healthier information ecosystem that
pushes past present limitations and offers more
credibility to unbiased sources while simultaneously
offering equity in information for readers.

Problem Statement and Use Cases

Problem Statement

The objective of the project centers on the
optimization of a multinomial regression model
(MLRM) tailored for predicting bias in online articles.
It is hypothesized that although political bias is a
complex problem, a MLRM will be able to classify a
satisfiable amount of articles that it is presented with.
This model operates on a dataset consisting of crucial
columns: topic, source, bias_score, and
paragraph_vectors (reflecting article content), each
numerically encoded and normalized. The
optimization would include elevating the model's
efficacy and ensuring dependable predictions when
confronted with unseen articles. In general, the
multinomial regression model is known for its ability
to predict probabilities of group membership across
multiple classes or categories. In the case of this
project, it is tuned to recognize and predict the bias
category of online articles, drawing insights from the
features inherent in the dataset columns. Across
multiple iterations, the model provides probability
estimates to articles such that they are in various bias
categories, with the goal of reducing error as it trains
itself. The three categories that this project's model is
training to predict includes both left, center, and right
labels, translated into the numerical scores of 0, 1,
and 2 respectively. Each score showcases the
dominant bias ingrained within the article based on
the provided features. Aside from the goal of having a
high accuracy rate in classifying articles, it is
important to understand the model’s output and the
sources of misclassification.

2

Use Cases

The three use cases outline below showcase the
model’s applicability and significance:

1.​ Media Oversight and Fact-Checking: It can be
leveraged to aid in identifying and rectifying
biased content for maintaining journalistic
integrity3.

2.​ Educational Material Curation: The model can
be employed to curate unbiased or balanced
learning resources, fostering critical thinking
and balanced perspectives among students.

3.​ Social Media Moderation: It can be used to
help mitigate the dissemination of biased or
misleading information3.

This model, with increased accuracy and
interpretability, represents a tool across various
domains that promises a more equitable and
transparent assessment of bias within online content.

System Architecture and Requirements

Database Selection and Cleaning

The dataset utilized for training and testing
the model is sourced from a publicly available
repository on Google Datasets, accessible through the
Hugging Face platform7. Composed of 13
comprehensive columns, including important
attributes such as topic, source, bias, url, title, date,
authors, content, source_url, and bias_text, this dataset
stands as a foundation for the analysis to be
undertaken post training. The project's success
heavily relied upon pre-labeled data, which this
repository was able to provide7. Without the
availability of labeled data, the model would have
been performing unsupervised learning, which would
have introduced ambiguity and complexity,
potentially undermining the analysis. The supervised
learning approach that was taken ensured a more
straightforward trajectory in discerning bias
classifications, particularly in the political spectrum.
Furthermore, the existence of labeled data allowed

for rigorous testing, validating the accuracy and
efficacy of the classification model. The dataset's
depth lies not only in its pre-labeling but also in the
diversity of information encapsulated within its
columns. Being able to leverage the diversity of
attributes as features during model training enabled
a more nuanced and comprehensive assessment of
biases from the model. Such nuance was imperative
for training a MLRM as generally these types of
models are not the strongest available to classify
complex ideas. The dataset's bias distribution
represents a broad spectrum of the ways in which
bias can permeate articles. Understanding the
dataset’s distributions proved instrumental in
understanding the model's sensitivity to different
biases. Additionally, examining bias splits by source
shed light on the inherent biases affiliated with
specific platforms or publishers, crucial insights that
guided the understanding of how biases manifest
across diverse sources. The following is a summary of
the bias splits within the total dataset and the
breakdown of biases categorized by their respective
sources, as shown in diagrams 1 and 2. The Total
Dataset Bias Splits gives a total of 31% left biased
articles, 23% center bias articles, and 46% right bias
articles. From the top 5 sources, the sources can be
categorized as left for ABC News, center for BBC, right
for CBN, left for CNN, and center for Reuters.

​

Diagram 1 - Number of Articles by Bias Category

3

Diagram 2 - Bias Type by Source

Upon acquiring the dataset, a series of
preprocessing measures were undertaken to ensure
data coherence and relevance to the classification
objectives. The primary aim was to refine the dataset,
making it more comprehensible for the model while
eliminating extraneous or potentially misleading
attributes. Initially, columns prone to introducing
noise or misleading the model's learning process,
such as author, date, time, etc. were removed. This
curation process aided in reducing the dataset down
to attributes appropriate to the classification goals.
As a result, topic, source, bias, title, and content, stood
as the remaining columns in the dataset for the model
to train with. After column reduction was complete,
title and content were transformed by Doc2Vec, a
powerful vectorization library. The utilization of
Doc2Vec allowed for the mapping of textual data to
meaningful numerical representations. The two
columns were merged before undergoing the
transformation by Doc2Vec, which empowered the
model to capture not just word importance but the
semantic meaning of the entire article including its
title. Further, from this merged column, prior to
applying the library, filler words, commonly known as
stop words, were removed from the content. This
extraction process aimed to reveal the essence of the

articles, eliminating linguistic clutter that might
obscure the model's understanding. This nuanced
representation resulted in the creation of an output
array comprising 100 feature values per data sample.
The utilization of Doc2Vec, which pivoted away from
simple word importance, enabled the model to grasp
the intricate nuances and contextual depth embedded
within each article. This was important as bias cannot
simply be captured by which words an author may
have chosen. After the vectorization of the text was
completed, the source and topic columns underwent
separate preprocessing. Each column was given its
own manual vectorization, replacing word values
with numerical values through mapping. Finally, the 3
vectorized columns (source, topic, and the merged
content/title) underwent normalization, ensuring
uniformity and consistency in scale across the feature
space, a crucial step preceding model training. Prior
to introducing this step, the model had significant
trouble with classifying the articles, likely due to the
different scales between source/topic and
content/title. This sequence of preprocessing steps,
ranging from column curation to semantic
representation and normalization, resulted in a
refined dataset optimized for the model's
comprehension. By leveraging these techniques to
consolidate information, the preprocessing allowed
for the model training to result in significantly more
accurate bias classification than before.

Design Methods

To validate fundamental assumptions and
adapt the approach for handling different types of
data, existing code derived from Programming
Assignment 4 was modified for use by the MLRM.
Unlike the original code that primarily dealt with
pixel values, the adaptations made with this project
allowed the model to effectively work with new types
of data relevant to the project goals of classifying bias.

This adaptation process involved several key

steps including creating a TrainBiasDataset Class to

4

accommodate the unique characteristics of the data.
This dataset is structured to handle the topic, source,
bias_score, and paragraph_vectors features, as
opposed to the pixel structure of the original datasets
in PA4. This adjustment ensures that the model could
effectively learn from and make predictions on text
based information. The main changes are seen within
the initialization function as below, where the data is
taken out of the CSV and split into test and training
sets:

class TrainBiasDataset(Dataset):
 def __init__(self, data_path, classes):

data = pd.read_csv(data_path)
classes = range(classes)
split_data = []
self.feature_size = 0
for ind in data.index:

p_vectors = data.iloc[ind]
[[str(i) for i in
range(100)]].to_numpy()

X = data.iloc[ind][['topic',
'source']].to_numpy()

X = np.concatenate(
(np.array(X),
np.array(p_vectors)))

 if ind == 0:
self.feature_size =
len(X)

y = data.iloc[ind]
['bias_score']

split_data += [(X, y)]

self.xs, self.ys = zip(*split_data)

X_train, X_test, y_train, y_test =

train_test_split(self.xs,
self.ys, test_size=0.2,
random_state=42)

self.xs = X_train
self.ys = y_train

The Multinomial Regression Model, originally

designed for a different context, was updated to

handle the TrainBiasDataset, which was made to
handle non-pixel data. These adjustments enabled
the bias MLRM to effectively process, learn from, and
make predictions based on the unique characteristics
of new types of data. Utilizing the original model
resulted in the following code:

test both 2 and 3 class bias split
for n in [2, 3]:

data_path =
"normalizedDataWithCenter.csv"
if n == 3 else
"normalizedDataNoCenter.csv"

train_data =
TrainBiasDataset(data_path=
data_path, classes=n)

feature_size =
train_data.feature_size

train_model =
MultiLogisticRegressionModel(
num_features=feature_size,
num_classes=n)

accuracy_sample_frequency = 250
sample_size = 5000
train_model.train(train_data,

sample_size,
accuracy_sample_frequency)

accuracies =
train_model.
get_training_accuracies()

train_data.plot_accuracy_curve(
eval_iters=range(0,
sample_size,
accuracy_sample_frequency),
accuracies=accuracies,
title=
'Training Accuracy Curve')

train_data.plot_confusion_matrix(
train_model)

5

Results and Analysis

Results

Two Class Classification
The accuracy of 2 class (left and right bias)

classification gradually increased over the training
period as follows: Iteration 250, Accuracy: 0.585 →
Iteration 500, Accuracy: 0.808 → Iteration 750,
Accuracy: 0.826 → Iteration 1000, Accuracy: 0.829
→Iteration 2000, Accuracy: 0.835 → Iteration 3000,
Accuracy: 0.838 → Iteration 4000, Accuracy: 0.836 →
Iteration 5000, Accuracy: 0.846 → Final Accuracy:
0.851% (681 out of 800). This can be visualized with
the figure below (Diagram 3) and the confusion
matrix that follows (Diagram 4), which gives insight
to the models main production challenges.

Diagram 3 - Two Class Training Accuracy Curve​

Diagram 4 - Two Class Confusion Matrix Plot

Three Class Classification

The accuracy of 3 class (left, center, and right
bias) classification gradually increased over the
training period as follows: Iteration 250, Accuracy:
0.234 → Iteration 500, Accuracy: 0.716 → Iteration
750, Accuracy: 0.761 → Iteration 1000, Accuracy:
0.784 → Iteration 2000, Accuracy: 0.797 → Iteration
3000, Accuracy: 0.813 → Iteration 4000, Accuracy:
0.820 → Iteration 5000, Accuracy: 0.821 → Final
Accuracy: 0.819% (852 out of 1040). This can be
visualized with the figure below (Diagram 5) and the
confusion matrix that follows (Diagram 6), which
gives insight to the models main production
challenges.

Diagram 5 - Three Class Training Accuracy Curve

Diagram 6 - Three Class Confusion Matrix Plot

6

Analysis & Discussion

The exploration of a multilogistic regression
model (MLRM) surfaced considerable insights into
the intricate nature of identifying political bias within
written articles. Despite considerable progress made
through a significant learning curve, it became
evident that MLRM might possess inherent
limitations in capturing the nuanced intricacies of
this classification process, a barrier not predicted
with the hypothesis. Although there was much more
success after a significant learning curve, there are
notable missing pieces in the project. One of the key
limitations stemmed from MLRM's assumption of
linear decision boundaries between classes. Political
bias, however, can manifest as a multifaceted
spectrum rather than adhering to distinctly separable
linear boundaries. This complexity likely resulted in
the model creating oversimplified classifications that
failed to encapsulate the nuanced positions and
ranges of political bias present in articles.

Furthermore, MLRMs operate under the
assumption of feature independence, a premise that
might not hold true for political bias, which was not
considered prior to analysis. This lack of feature
independence could stem from not only language
nuances and historical references but also contextual
intricacies and rhetorical devices. Attempting to
encapsulate these multifaceted aspects within a
linear model framework would therefore pose
significant challenges. Because MLRMs might struggle
to contextualize these elements effectively, the
training could result in a loss of crucial information
essential for comprehending political leanings within
articles. Considering these factors, while MLRM
served as a valuable baseline model, achieving higher
accuracies than found in this project would likely
require more sophisticated approaches. Some
techniques rooted in natural language processing
(NLP), including deep learning architectures or
ensemble methods, could likely better handle the
complexity and non-linearity present in the data.
Further NLP methods would likely find more success
in capturing the subtle contextual cues vital for

accurately identifying and classifying political bias
within articles. Despite the model's inherent
limitations, noteworthy insights emerged from the
training. Notably, the selection of features such as
source and topics significantly influenced the model's
success, resulting in almost 85% accuracy in the
classification of test data with just a little over 1000
samples in the dataset. Additionally, the utilization of
the Doc2Vec library played a pivotal role in the
model's ability to achieve satisfactory classification
accuracy. The transformation of text based data into
semantic representations through this library greatly
contributed to the model's efficacy compared to other
vectorization techniques that were tested. Without
the DocToVec vectors as features, the model failed to
even hit 50% classification abilities.

Alongside the difficulties with MLRM and
complex classification, several challenges and unmet
expectations hindered the project's progression. The
scarcity of data that precisely matched the desired
criteria, specifically, the unavailability of a dataset
with five categories for classification, imposed
limitations on the model's complexity and accuracy. It
is likely however, that although more complex data
could not be found, that the MLRM would have
struggled to classify a 5 category political bias, as the
model's accuracy witnessed a slight decline from only
2 to 3 categories. Further, the scale of the dataset,
though larger than manually curated alternatives,
remained insufficient for practical applications. The
limited volume of around 1,300 rows potentially
impacted the model's accuracy due to inadequate
instances for comprehensive learning. The search for
a larger dataset proved difficult, consuming
significant time without yielding the desired scale of
data. When attempting to supplement the small
dataset, it was quickly clear that it would not be
reasonable to continue in the timeframe provided as
it was extremely difficult to get raw text of articles
due to paywalls and other cross origin resource
policies (CORP) that blocked the use of libraries such
as BeautifulSoup.

7

In future iterations, it would be reasonable to
retry this implementation with a dataset of larger
scale, however it may continue to prove difficult to
find data that matches the project’s requirements.
Additionally, the initial strategy of employing
TfidfVectorizer to determine word importance and
create features did not yield the expected results.
When researching different NLP word vectorization
techniques, the TfidfVectorizer library was
encountered. It was believed that TF-IDF (Term
Frequency Inverse Document Frequency) would be
useful in converting the article content data into
numerical data. While ample time was spent learning
how to use this tool, the model's accuracy remained
inadequate, not breaching 50%, and the technique
proved computationally slow compared to the more
successful Doc2Vec method, which only encompassed
100 features for each data point. The model evaluated
with TfidfVectorizer held over 33,000 features after
data processing, as it was a combination of word
importance over all the words in the dataset between
articles. This realization led to a substantial
reevaluation of data preprocessing steps and
significantly extended the preprocessing phase. While
TfidfVectorizer did create a significant number of
features, the accuracy remained much too low to
consider this even a partial success. The accuracy of 3
class (left, center, and right bias) classification
gradually increased over the training period with
TfidfVectorizer as follows: Iteration 200, Accuracy:
0.23 → Iteration 400, Accuracy: 0.462 → Iteration
600, Accuracy: 0.461 → Iteration 800, Accuracy: 0.46
→ Iteration 1000, Accuracy: 0.309 → Final Accuracy:
0.46% (598 out of 1300). The resulting confusion
matrix for the three class classification reported as:

0 [0, 2, 400]
1 [0, 1, 298]
2 [0, 2, 597]

After failing with TfidfVectorizer, the NLP

word embedding technique, Word2Vec, was the next
feature extraction technique that was implemented.

Word2Vec is a widely used word embedding
technique and is a neural network that learns to
predict the probability of a word given its context8.
After spending valuable time converting the article
content data using Word2Vec, it proved to be similar
to TfidfVectorizer, and therefore not beneficial to the
model’s classification efforts. This library however,
resulted in the discovery of Doc2Vec, which brought
forth the realization that political bias might not
merely be linked to word repetitions within articles.
Rather, the identification of bias appears to be
intricately linked to word relations, context, and
broader linguistic nuances. This observation
underscores the crucial role of context and word
relationships in bias identification, deviating from a
simplistic association with individual word
occurrences. This is demonstrated between both a
successful and failed identification by the model on a
left and right leaning article as follows:

“In the fallout over President Barack Obama
blaming the intelligence community for the
rise of the Islamic State, a new report has
surfaced showing that he attended less than
half of his daily intel briefings… ‘It's pretty
well-known that the president hasn’t taken
in-person intelligence briefings with any
regularity since the early days of 2009,’ the
staffer said. ‘He gets them in writing.’ Unless
someone very senior has been shredding the
president's daily briefings and telling him that
the dog ate them, highly accurate predictions
about (ISIS) have been showing up in the Oval
Office since before the election.”

The above article was misclassified as a left leaning
article when it should be correctly classified as a right
leaning article. As seen in the snippet above, there are
no mentions to specific right wing policies and it can
be assumed that the article is classified as right
leaning because of the author’s shown distaste with
Obama’s in house practices and attention to detail
around military briefings. Because there are no

8

concepts mentioned about how military operations
should be handled or how policy should help inform
military endeavors, it is clear this is one of the types
of nuances that cannot be summarized so easily by an
MLRM. This can be seen in contrast to a left leaning
article that was properly classified by the MLRM
below:

“Republican Sen. Jeff Flake told CNN he is
willing to reverse his opposition to
expanding background checks for guns ...
Flake said the only reason he voted no was
because of his concern that the requirement
for background checks on internet sales is
too costly and inconvenient … Manchin and
gun control advocates need to convince five
senators to go from ‘no’ to ‘yes’…Some
Republicans opposed the measure out of
fear that expanding background checks
would put the country on a path to a
national gun registry, but Flake said that is
not his concern…”

Within this snippet, the author mentions a positive
stance on gun control and regulations as well as
background checks, a concept that is strongly and
solely linked to left wing policies. This makes
identification a much more clear cut option for the
model, whereas both left and right leaning articles
might have positive or negative views on any given
candidate at different times. Just looking at these two
short examples, it is clear that bias is extremely
nuanced and cannot be simply divided into simple
categories by just vectorized article semantics.

Overall, In future iterations, efforts should
focus on securing a larger and more diverse dataset
to facilitate comprehensive model training. Exploring
more advanced NLP techniques capable of capturing
nuanced contextual cues and relationships within
articles could significantly enhance the accuracy and
robustness of bias identification models. Moreover,
meticulous consideration of feature selection and

preprocessing methods remains integral to achieving
higher accuracies in classifying political bias within
written content.

Next Steps

Dataset

As touched on before, future efforts would be
focused on creating a larger and more diverse
dataset. This would allow for comprehensive model
training as well as exploring more advanced
techniques. A potential idea for creating a larger
dataset would be to web scrape the allsides.com
website. Allsides.com strives to expose people to
information and ideas from all sides of the political
spectrum so they can better understand the world
and each other6. This would give us a larger and more
diverse dataset to use on the model. Another
potential idea to achieve this, would be to utilize an
API in order to easily obtain the large amounts of
diverse data on allsides.com.

User Interface

A second possibility to expand upon this
project would be to create a user-friendly interface
for the general public to use to find the bias score of a
given article. Using HTML and CSS, a website could be
created in conjunction with the multinomial
regression model to input any article and output a
bias score. The possibilities for this website would be
endless, as automated comparisons between news
articles and their bias scores, comparisons between
different news outlets, and a variety of other statistics
to exemplify the biases found within articles could be
created.

9

Summary

To summarize, the purpose of this project was
to address the concern of biased content in online
articles by developing a machine learning model. The
hypothesis assumed that using a multinomial
regression model could effectively classify a bias
score (left, center, or right) within articles found
online. The algorithm relied on a diverse,
meticulously created dataset with the MLRM
operating on features such as topic, source, bias_score,
and paragraph_vectors. Using techniques such as
Doc2Vec to vectorize article content data, the MLRM
was able to classify bias scores within articles with
85.1% accuracy for two-class (left and right)
classification and 81.9% accuracy for three-class (left,
center, or right) classification. Insightful analyses
include highlighting the significance of feature
selection, as accuracy skyrocketed when including
the topic and source in the data. Challenges included
limitations on specific NLP techniques related to
word vectorization. In the future, acquiring a larger
and more diverse dataset while exploring more
advanced NLP techniques is suggested. Further,
creating a user-friendly interface for the bias MLRM
would expand the scope of its impact. Overall, this
project provides valuable insights to both the bias
identification within articles as well as multinomial
regression models and the challenges that come with
it.

Advice for Future Students

To the future students of CS4100, the biggest
piece of advice would be to give yourself plenty of
ideas and options when deciding the avenue for this
project. There is no clear-cut path of the milestones
within this project; many things are subject to
change. When this project was initially introduced,
our first idea was to implement a search algorithm
within a map of the city of Boston to address the issue
of traffic flow. We started to do research on this idea
and looked for datasets, we realized that this idea

may not be able to come to fruition. There were fairly
limited datasets and public access available to traffic
data online, so we soon realized we needed to pivot
our thought process. Additionally, we agreed that we
could implement an AI model that would be more
extensive, and more valuable to our learning than a
search algorithm. This led us to our next potential
idea: addressing political bias in news articles with
multinomial regression. We believed that this would
give for a better opportunity to explore different tools
and facets within machine learning and artificial
intelligence, one that would broaden our knowledge
beyond the scope of what our search algorithm idea
could. Even after deciding upon article bias and
multinomial regression, we were faced with issues
within creating our dataset. We had to find a way to
vectorize the article content data. Our first approach
was to use TfidfVectorizer. This ultimately failed, as
our model failed to even hit 50% classification
abilities. Our next approach to vectorize the article
content data was Word2Vec. This approach also did
not perform as well as we thought it would. After
discouragement soon approached us, we tried using
Doc2Vec, which produced significantly higher results,
ending up with almost 85% accuracy in the
classification of test data with just a little over 1000
samples in the dataset. Given these obstacles, we urge
you not to get discouraged too early in the process,
and allow for adaptation as needed. It may be more
work to scrap your original idea and start with a
brand new one, but the learning process is more
valuable than if you succeed on your first shot.
Overall, take in the roadblocks with open arms and
you will reach the destination you are looking for.
Good luck!

10

References

1.​ DellaVigna, Stefano, and Ethan Kaplan. “The Fox News Effect: Media Bias and Voting.” The Quarterly Journal
of Economics 122, no. 3 (2007): 1187–1234. https://doi.org/10.1162/qjec.122.3.1187.

2.​ Rodrigo-Ginés, Francisco-Javier, Jorge Carrillo-de-Albornoz, and Laura Plaza. “A Systematic Review on Media
Bias Detection: What Is Media Bias, How It Is Expressed, and How to Detect It.” Expert Systems with
Applications 237 (2024): 121641–. https://doi.org/10.1016/j.eswa.2023.121641.

3.​ Kartikey Pant, Tanvi Dadu, and Radhika Mamidi. 2020. Towards Detection of Subjective Bias using
Contextualized Word Embeddings. In Companion Proceedings of the Web Conference 2020 (WWW ’20
Companion), April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3366424.3382704

4.​ Cremisini, A., Aguilar, D., Finlayson, M.A. (2019). A Challenging Dataset for Bias Detection: The Case of the
Crisis in the Ukraine. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A. (eds) Social, Cultural, and Behavioral
Modeling. SBP-BRiMS 2019. Lecture Notes in Computer Science(), vol 11549. Springer, Cham.
https://doi.org/10.1007/978-3-030-21741-9_18

5.​ Hamborg, Felix, Karsten Donnay, and Bela Gipp. “Automated Identification of Media Bias in News Articles:
An Interdisciplinary Literature Review.” International Journal on Digital Libraries 20, no. 4 (2019):
391–415. https://doi.org/10.1007/s00799-018-0261-y.

6.​ All About AllSides. (2023). AllSides. https://www.allsides.com/about
7.​ Ziems, Caleb. “CJZIEMS/Article-Bias-Prediction · Datasets at Hugging Face.” cjziems/Article-Bias-Prediction

Datasets at Hugging Face. Accessed December 13, 2023.
https://huggingface.co/datasets/cjziems/Article-Bias-Prediction

8.​ Khare, Pratyush. 2023. “Deep Learning for NLP: Word2Vec, Doc2Vec, and Top2Vec Demystified.” Medium,
April 25, 2023.
https://medium.com/mlearning-ai/deep-learning-for-nlp-word2vec-doc2vec-and-top2vec-demystified-38
42b4fad5c9.

Project Repository

The project including all code referenced in this document and the databases mentioned can be found at the link
https://github.com/anjali-tanna/cs4100_final_project on GitHub.

11

https://doi.org/10.1162/qjec.122.3.1187
https://doi.org/10.1016/j.eswa.2023.121641
https://doi.org/10.1145/3366424.3382704
https://doi.org/10.1007/978-3-030-21741-9_18
https://doi.org/10.1007/s00799-018-0261-y
https://www.allsides.com/about
https://huggingface.co/datasets/cjziems/Article-Bias-Prediction
https://medium.com/mlearning-ai/deep-learning-for-nlp-word2vec-doc2vec-and-top2vec-demystified-3842b4fad5c9
https://medium.com/mlearning-ai/deep-learning-for-nlp-word2vec-doc2vec-and-top2vec-demystified-3842b4fad5c9
https://github.com/anjali-tanna/cs4100_final_project

	
	
	
	
	
	Addressing Political Bias in News Articles with Multinomial Regression
	
	
	Purpose
	Problem Statement and Use Cases
	Problem Statement
	
	Use Cases

	System Architecture and Requirements
	Database Selection and Cleaning
	Design Methods

	
	Results and Analysis
	Results
	Analysis & Discussion

	Next Steps
	Dataset
	User Interface

	
	Summary
	Advice for Future Students
	References
	Project Repository

