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Purpose 

In today’s digital landscape, the pervasive 
presence of biased content within online articles has 
become an acute societal concern4. The proliferation 
of this biased information across various online 
platforms has granted narrow narratives the power 
to shape perceptions, beliefs, and decisions1. 
Recognizing this, the mission of this project is not 
merely to acknowledge the existence of bias but to 
help combat its influence through an innovative 
approach. The endeavor seeks to address this issue 
by crafting a solution that acts quickly in the 
identification of bias5. Understanding that mitigating 
bias demands a multifaceted strategy anchored in 
data-driven methodologies, the proposed solution 
hinges on the creation and utilization of a 
meticulously curated dataset improved with labeled 
information on diverse articles, revealing their 
inherent biases. The dataset used in this project 
serves as the foundation for this initiative. Central to 
the deployed strategy is the development and 
deployment of a robust multinomial regression 
algorithm. This algorithmic framework in the context 
of this project is designed to predict and classify the 
bias categories of unseen articles with speed. Its 
predictive capabilities, powered by annotated data, 
can help in taking a step in the direction of mitigating 
bias within the online sphere2. By successfully 
classifying articles with speed and accuracy, the 
broader vision of the project is to foster a more 
informed, objective, and equitable digital discourse. 
Through collaborative efforts, the project aspires to 
cultivate a healthier information ecosystem that 
pushes past present limitations and offers more 
credibility to unbiased sources while simultaneously 
offering equity in information for readers.  

Problem Statement and Use Cases  

Problem Statement 

The objective of the project centers on the 
optimization of a multinomial regression model 
(MLRM) tailored for predicting bias in online articles. 
It is hypothesized that although political bias is a 
complex problem, a MLRM will be able to classify a 
satisfiable amount of articles that it is presented with. 
This model operates on a dataset consisting of crucial 
columns: topic, source, bias_score, and 
paragraph_vectors (reflecting article content), each 
numerically encoded and normalized. The 
optimization would include elevating the model's 
efficacy and ensuring dependable predictions when 
confronted with unseen articles. In general, the 
multinomial regression model is known for its ability 
to predict probabilities of group membership across 
multiple classes or categories. In the case of this 
project, it is tuned to recognize and predict the bias 
category of online articles, drawing insights from the 
features inherent in the dataset columns. Across 
multiple iterations, the model provides probability 
estimates to articles such that they are in various bias 
categories, with the goal of reducing error as it trains 
itself. The three categories that this project's model is 
training to predict includes both left, center, and right 
labels, translated into the numerical scores of 0, 1, 
and 2 respectively. Each score showcases the 
dominant bias ingrained within the article based on 
the provided features. Aside from the goal of having a 
high accuracy rate in classifying articles, it is 
important to understand the model’s output and the 
sources of misclassification. 
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Use Cases 

The three use cases outline below showcase the 
model’s applicability and significance: 

1.​ Media Oversight and Fact-Checking: It can be 
leveraged to aid in identifying and rectifying 
biased content for maintaining journalistic 
integrity3. 

2.​ Educational Material Curation: The model can 
be employed to curate unbiased or balanced 
learning resources, fostering critical thinking 
and balanced perspectives among students. 

3.​ Social Media Moderation: It can be used to 
help mitigate the dissemination of biased or 
misleading information3. 

This model, with increased accuracy and 
interpretability, represents a tool across various 
domains that promises a more equitable and 
transparent assessment of bias within online content. 

System Architecture and Requirements 

Database Selection and Cleaning 

The dataset utilized for training and testing 
the model is sourced from a publicly available 
repository on Google Datasets, accessible through the 
Hugging Face platform7. Composed of 13 
comprehensive columns, including important 
attributes such as topic, source, bias, url, title, date, 
authors, content, source_url, and bias_text, this dataset 
stands as a foundation for the analysis to be 
undertaken post training. The project's success 
heavily relied upon pre-labeled data, which this 
repository was able to provide7. Without the 
availability of labeled data, the model would have 
been performing unsupervised learning, which would 
have introduced ambiguity and complexity, 
potentially undermining the analysis. The supervised 
learning approach that was taken ensured a more 
straightforward trajectory in discerning bias 
classifications, particularly in the political spectrum. 
Furthermore, the existence of labeled data allowed 

for rigorous testing, validating the accuracy and 
efficacy of the classification model. The dataset's 
depth lies not only in its pre-labeling but also in the 
diversity of information encapsulated within its 
columns. Being able to leverage the diversity of 
attributes as features during model training enabled 
a more nuanced and comprehensive assessment of 
biases from the model. Such nuance was imperative 
for training a MLRM as generally these types of 
models are not the strongest available to classify 
complex ideas. The dataset's bias distribution 
represents a broad spectrum of the ways in which 
bias can permeate articles. Understanding the 
dataset’s distributions proved instrumental in 
understanding the model's sensitivity to different 
biases. Additionally, examining bias splits by source 
shed light on the inherent biases affiliated with 
specific platforms or publishers, crucial insights that 
guided the understanding of how biases manifest 
across diverse sources. The following is a summary of 
the bias splits within the total dataset and the 
breakdown of biases categorized by their respective 
sources, as shown in diagrams 1 and 2. The Total 
Dataset Bias Splits gives a total of 31% left biased 
articles, 23% center bias articles, and 46% right bias 
articles. From the top 5 sources, the sources can be 
categorized as left for ABC News, center for BBC, right 
for CBN, left for CNN, and center for Reuters.  

​  

Diagram 1 - Number of Articles by Bias Category 
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Diagram 2 - Bias Type by Source 

Upon acquiring the dataset, a series of 
preprocessing measures were undertaken to ensure 
data coherence and relevance to the classification 
objectives. The primary aim was to refine the dataset, 
making it more comprehensible for the model while 
eliminating extraneous or potentially misleading 
attributes. Initially, columns prone to introducing 
noise or misleading the model's learning process, 
such as author, date, time, etc. were removed. This 
curation process aided in reducing the dataset down 
to attributes appropriate to the classification goals. 
As a result, topic, source, bias, title, and content, stood 
as the remaining columns in the dataset for the model 
to train with. After column reduction was complete, 
title and content were transformed by Doc2Vec, a 
powerful vectorization library. The utilization of 
Doc2Vec allowed for the mapping of textual data to 
meaningful numerical representations. The two 
columns were merged before undergoing the 
transformation by Doc2Vec, which empowered the 
model to capture not just word importance but the 
semantic meaning of the entire article including its 
title. Further, from this merged column, prior to 
applying the library, filler words, commonly known as 
stop words, were removed from the content. This 
extraction process aimed to reveal the essence of the 

articles, eliminating linguistic clutter that might 
obscure the model's understanding. This nuanced 
representation resulted in the creation of an output 
array comprising 100 feature values per data sample. 
The utilization of Doc2Vec, which pivoted away from 
simple word importance, enabled the model to grasp 
the intricate nuances and contextual depth embedded 
within each article. This was important as bias cannot 
simply be captured by which words an author may 
have chosen. After the vectorization of the text was 
completed, the source and topic columns underwent 
separate preprocessing. Each column was given its 
own manual vectorization, replacing word values 
with numerical values through mapping. Finally, the 3 
vectorized columns (source, topic, and the merged 
content/title) underwent normalization, ensuring 
uniformity and consistency in scale across the feature 
space, a crucial step preceding model training. Prior 
to introducing this step, the model had significant 
trouble with classifying the articles, likely due to the 
different scales between source/topic and 
content/title. This sequence of preprocessing steps, 
ranging from column curation to semantic 
representation and normalization, resulted in a 
refined dataset optimized for the model's 
comprehension. By leveraging these techniques to 
consolidate information, the preprocessing allowed 
for the model training to result in significantly more 
accurate bias classification than before. 

Design Methods 

To validate fundamental assumptions and 
adapt the approach for handling different types of 
data, existing code derived from Programming 
Assignment 4 was modified for use by the MLRM. 
Unlike the original code that primarily dealt with 
pixel values, the adaptations made with this project 
allowed the model to effectively work with new types 
of data relevant to the project goals of classifying bias. 

 
This adaptation process involved several key 

steps including creating a TrainBiasDataset Class to 

4 



 

accommodate the unique characteristics of the data. 
This dataset is structured to handle the topic, source, 
bias_score, and paragraph_vectors features, as 
opposed to the pixel structure of the original datasets 
in PA4. This adjustment ensures that the model could 
effectively learn from and make predictions on text 
based information. The main changes are seen within 
the initialization function as below, where the data is 
taken out of the CSV and split into test and training 
sets:  
 
class TrainBiasDataset(Dataset): 
  def __init__(self, data_path, classes): 

data = pd.read_csv(data_path) 
classes = range(classes) 
split_data = [] 
self.feature_size = 0 
for ind in data.index: 

p_vectors = data.iloc[ind] 
[[str(i) for i in  
range(100)]].to_numpy() 

X = data.iloc[ind][['topic',  
'source']].to_numpy() 

X = np.concatenate( 
(np.array(X),  
np.array(p_vectors))) 

      if ind == 0: 
self.feature_size =  
len(X) 

y = data.iloc[ind] 
['bias_score'] 

split_data += [(X, y)] 
 
self.xs, self.ys = zip(*split_data) 
 
X_train, X_test, y_train, y_test =  

train_test_split(self.xs,  
self.ys, test_size=0.2,  
random_state=42) 

 
self.xs = X_train 
self.ys = y_train 

 
 

 
The Multinomial Regression Model, originally 

designed for a different context, was updated to 

handle the TrainBiasDataset, which was made to 
handle non-pixel data. These adjustments enabled 
the bias MLRM to effectively process, learn from, and 
make predictions based on the unique characteristics 
of new types of data. Utilizing the original model 
resulted in the following code:  
 
# test both 2 and 3 class bias split 
for n in [2, 3]: 

data_path =  
"normalizedDataWithCenter.csv"  
if n == 3 else  
"normalizedDataNoCenter.csv" 

train_data =  
TrainBiasDataset(data_path= 
data_path, classes=n) 

feature_size =  
train_data.feature_size 

train_model =  
MultiLogisticRegressionModel( 
num_features=feature_size,  
num_classes=n) 

accuracy_sample_frequency = 250 
sample_size = 5000 
train_model.train(train_data,  

sample_size,  
accuracy_sample_frequency) 

accuracies =  
train_model. 
get_training_accuracies() 

train_data.plot_accuracy_curve( 
eval_iters=range(0,  
sample_size,  
accuracy_sample_frequency),     
accuracies=accuracies,  
title= 
'Training Accuracy Curve') 

train_data.plot_confusion_matrix( 
train_model) 
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Results and Analysis 

Results 

Two Class Classification 
The accuracy of 2 class (left and right bias) 

classification gradually increased over the training 
period as follows: Iteration 250, Accuracy: 0.585 → 
Iteration 500, Accuracy: 0.808 → Iteration 750, 
Accuracy: 0.826 → Iteration 1000, Accuracy: 0.829 
→Iteration 2000, Accuracy: 0.835 → Iteration 3000, 
Accuracy: 0.838 → Iteration 4000, Accuracy: 0.836 → 
Iteration 5000, Accuracy: 0.846 → Final Accuracy: 
0.851%  (681 out of 800). This can be visualized with 
the figure below (Diagram 3) and the confusion 
matrix that follows (Diagram 4), which gives insight 
to the models main production challenges.  

 

 

Diagram 3 - Two Class Training Accuracy Curve​
 

 

Diagram 4 - Two Class Confusion Matrix Plot 

 
 
Three Class Classification 

The accuracy of 3 class (left, center, and right 
bias) classification gradually increased over the 
training period as follows: Iteration 250, Accuracy: 
0.234 → Iteration 500, Accuracy: 0.716 → Iteration 
750, Accuracy: 0.761 → Iteration 1000, Accuracy: 
0.784 → Iteration 2000, Accuracy: 0.797 → Iteration 
3000, Accuracy: 0.813 → Iteration 4000, Accuracy: 
0.820 → Iteration 5000, Accuracy: 0.821 → Final 
Accuracy: 0.819%  (852 out of 1040). This can be 
visualized with the figure below (Diagram 5) and the 
confusion matrix that follows (Diagram 6), which 
gives insight to the models main production 
challenges. 

 

Diagram 5 - Three Class Training Accuracy Curve 

 

Diagram 6 - Three Class Confusion Matrix Plot 
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Analysis & Discussion 

The exploration of a multilogistic regression 
model (MLRM) surfaced considerable insights into 
the intricate nature of identifying political bias within 
written articles. Despite considerable progress made 
through a significant learning curve, it became 
evident that MLRM might possess inherent 
limitations in capturing the nuanced intricacies of 
this classification process, a barrier not predicted 
with the hypothesis. Although there was much more 
success after a significant learning curve, there are 
notable missing pieces in the project. One of the key 
limitations stemmed from MLRM's assumption of 
linear decision boundaries between classes. Political 
bias, however, can manifest as a multifaceted 
spectrum rather than adhering to distinctly separable 
linear boundaries. This complexity likely resulted in 
the model creating oversimplified classifications that 
failed to encapsulate the nuanced positions and 
ranges of political bias present in articles.  

Furthermore, MLRMs operate under the 
assumption of feature independence, a premise that 
might not hold true for political bias, which was not 
considered prior to analysis. This lack of feature 
independence could stem from not only language 
nuances and historical references but also contextual 
intricacies and rhetorical devices. Attempting to 
encapsulate these multifaceted aspects within a 
linear model framework would therefore pose 
significant challenges. Because MLRMs might struggle 
to contextualize these elements effectively, the 
training could result in a loss of crucial information 
essential for comprehending political leanings within 
articles. Considering these factors, while MLRM 
served as a valuable baseline model, achieving higher 
accuracies than found in this project would likely 
require more sophisticated approaches. Some 
techniques rooted in natural language processing 
(NLP), including deep learning architectures or 
ensemble methods, could likely better handle the 
complexity and non-linearity present in the data. 
Further NLP methods would likely find more success 
in capturing the subtle contextual cues vital for 

accurately identifying and classifying political bias 
within articles. Despite the model's inherent 
limitations, noteworthy insights emerged from the 
training. Notably, the selection of features such as 
source and topics significantly influenced the model's 
success, resulting in almost 85% accuracy in the 
classification of test data with just a little over 1000 
samples in the dataset. Additionally, the utilization of 
the Doc2Vec library played a pivotal role in the 
model's ability to achieve satisfactory classification 
accuracy. The transformation of text based data into 
semantic representations through this library greatly 
contributed to the model's efficacy compared to other 
vectorization techniques that were tested. Without 
the DocToVec vectors as features, the model failed to 
even hit 50% classification abilities.  

Alongside the difficulties with MLRM and 
complex classification, several challenges and unmet 
expectations hindered the project's progression. The 
scarcity of data that precisely matched the desired 
criteria, specifically, the unavailability of a dataset 
with five categories for classification, imposed 
limitations on the model's complexity and accuracy. It 
is likely however, that although more complex data 
could not be found, that the MLRM would have 
struggled to classify a 5 category political bias, as the 
model's accuracy witnessed a slight decline from only 
2 to 3 categories. Further, the scale of the dataset, 
though larger than manually curated alternatives, 
remained insufficient for practical applications. The 
limited volume of around 1,300 rows potentially 
impacted the model's accuracy due to inadequate 
instances for comprehensive learning. The search for 
a larger dataset proved difficult, consuming 
significant time without yielding the desired scale of 
data. When attempting to supplement the small 
dataset, it was quickly clear that it would not be 
reasonable to continue in the timeframe provided as 
it was extremely difficult to get raw text of articles 
due to paywalls and other cross origin resource 
policies (CORP) that blocked the use of libraries such 
as BeautifulSoup.  
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In future iterations, it would be reasonable to 
retry this implementation with a dataset of larger 
scale, however it may continue to prove difficult to 
find data that matches the project’s requirements. 
Additionally, the initial strategy of employing 
TfidfVectorizer to determine word importance and 
create features did not yield the expected results. 
When researching different NLP word vectorization 
techniques, the TfidfVectorizer library was 
encountered. It was believed that TF-IDF (Term 
Frequency Inverse Document Frequency) would be 
useful in converting the article content data into 
numerical data. While ample time was spent learning 
how to use this tool, the model's accuracy remained 
inadequate, not breaching 50%, and the technique 
proved computationally slow compared to the more 
successful Doc2Vec method, which only encompassed 
100 features for each data point. The model evaluated 
with TfidfVectorizer held over 33,000 features after 
data processing, as it was a combination of word 
importance over all the words in the dataset between 
articles. This realization led to a substantial 
reevaluation of data preprocessing steps and 
significantly extended the preprocessing phase. While 
TfidfVectorizer did create a significant number of 
features, the accuracy remained much too low to 
consider this even a partial success. The accuracy of 3 
class (left, center, and right bias) classification 
gradually increased over the training period with 
TfidfVectorizer as follows: Iteration 200, Accuracy: 
0.23 → Iteration 400, Accuracy: 0.462 → Iteration 
600, Accuracy: 0.461 → Iteration 800, Accuracy: 0.46 
→ Iteration 1000, Accuracy: 0.309 → Final Accuracy: 
0.46%  (598 out of 1300). The resulting confusion 
matrix for the three class classification reported as: 
 

0 [0, 2, 400] 
1 [0, 1, 298] 
2 [0, 2, 597] 

 
After failing with TfidfVectorizer, the NLP 

word embedding technique, Word2Vec, was the next 
feature extraction technique that was implemented. 

Word2Vec is a widely used word embedding 
technique and is a  neural network that learns to 
predict the probability of a word given its context8. 
After spending valuable time converting the article 
content data using Word2Vec, it proved to be  similar 
to TfidfVectorizer, and therefore not beneficial to the 
model’s classification efforts. This library however, 
resulted in the discovery of Doc2Vec, which brought 
forth the realization that political bias might not 
merely be linked to word repetitions within articles. 
Rather, the identification of bias appears to be 
intricately linked to word relations, context, and 
broader linguistic nuances. This observation 
underscores the crucial role of context and word 
relationships in bias identification, deviating from a 
simplistic association with individual word 
occurrences. This is demonstrated between both a 
successful and failed identification by the model on a 
left and right leaning article as follows:  

 
“In the fallout over President Barack Obama 
blaming the intelligence community for the 
rise of the Islamic State, a new report has 
surfaced showing that he attended less than 
half of his daily intel briefings… ‘It's pretty 
well-known that the president hasn’t taken 
in-person intelligence briefings with any 
regularity since the early days of 2009,’ the 
staffer said. ‘He gets them in writing.’ Unless 
someone very senior has been shredding the 
president's daily briefings and telling him that 
the dog ate them, highly accurate predictions 
about (ISIS) have been showing up in the Oval 
Office since before the election.” 
 

The above article was misclassified as a left leaning 
article when it should be correctly classified as a right 
leaning article. As seen in the snippet above, there are 
no mentions to specific right wing policies and it can 
be assumed that the article is classified as right 
leaning because of the author’s shown distaste with 
Obama’s in house practices and attention to detail 
around military briefings. Because there are no 
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concepts mentioned about how military operations 
should be handled or how policy should help inform 
military endeavors, it is clear this is one of the types 
of nuances that cannot be summarized so easily by an 
MLRM. This can be seen in contrast to a left leaning 
article that was properly classified by the MLRM 
below:  

 
“Republican Sen. Jeff Flake told CNN he is 
willing to reverse his opposition to 
expanding background checks for guns ... 
Flake said the only reason he voted no was 
because of his concern that the requirement 
for background checks on internet sales is 
too costly and inconvenient … Manchin and 
gun control advocates need to convince five 
senators to go from ‘no’ to ‘yes’…Some 
Republicans opposed the measure out of 
fear that expanding background checks 
would put the country on a path to a 
national gun registry, but Flake said that is 
not his concern…” 

 
Within this snippet, the author mentions a positive 
stance on gun control and regulations as well as 
background checks, a concept that is strongly and 
solely linked to left wing policies. This makes 
identification a much more clear cut option for the 
model, whereas both left and right leaning articles 
might have positive or negative views on any given 
candidate at different times. Just looking at these two 
short examples, it is clear that bias is extremely 
nuanced and cannot be simply divided into simple 
categories by just vectorized article semantics.  
 

Overall, In future iterations, efforts should 
focus on securing a larger and more diverse dataset 
to facilitate comprehensive model training. Exploring 
more advanced NLP techniques capable of capturing 
nuanced contextual cues and relationships within 
articles could significantly enhance the accuracy and 
robustness of bias identification models. Moreover, 
meticulous consideration of feature selection and 

preprocessing methods remains integral to achieving 
higher accuracies in classifying political bias within 
written content. 

Next Steps 

Dataset 

As touched on before, future efforts would be 
focused on creating a larger and more diverse 
dataset. This would allow for comprehensive model 
training as well as exploring more advanced 
techniques. A potential idea for creating a larger 
dataset would be to web scrape the allsides.com 
website. Allsides.com strives to expose people to 
information and ideas from all sides of the political 
spectrum so they can better understand the world 
and each other6. This would give us a larger and more 
diverse dataset to use on the model. Another 
potential idea to achieve this, would be to utilize an  
API in order to easily obtain the large amounts of 
diverse data on allsides.com. 

User Interface 

A second possibility to expand upon this 
project would be to create a user-friendly interface 
for the general public to use to find the bias score of a 
given article. Using HTML and CSS, a website could be 
created in conjunction with the multinomial 
regression model to input any article and output a 
bias score. The possibilities for this website would be 
endless, as automated comparisons between news 
articles and their bias scores, comparisons between 
different news outlets, and a variety of other statistics 
to exemplify the biases found within articles could be 
created. 
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Summary 

To summarize, the purpose of this project was 
to address the concern of biased content in online 
articles by developing a machine learning model. The 
hypothesis assumed that using a multinomial 
regression model could effectively classify a bias 
score (left, center, or right) within articles found 
online. The algorithm relied on a diverse, 
meticulously created dataset with the MLRM 
operating on features such as topic, source, bias_score, 
and paragraph_vectors. Using techniques such as 
Doc2Vec to vectorize article content data, the MLRM 
was able to classify bias scores within articles with 
85.1% accuracy for two-class (left and right) 
classification and 81.9% accuracy for three-class (left, 
center, or right) classification. Insightful analyses 
include highlighting the significance of feature 
selection, as accuracy skyrocketed when including 
the topic and source in the data. Challenges included 
limitations on specific NLP techniques related to 
word vectorization. In the future, acquiring a larger 
and more diverse dataset while exploring more 
advanced NLP techniques is suggested. Further, 
creating a user-friendly interface for the bias MLRM 
would expand the scope of its impact. Overall, this 
project provides valuable insights to both the bias 
identification within articles as well as multinomial 
regression models and the challenges that come with 
it. 

Advice for Future Students 

To the future students of CS4100, the biggest 
piece of advice would be to give yourself plenty of 
ideas and options when deciding the avenue for this 
project. There is no clear-cut path of the milestones 
within this project; many things are subject to 
change. When this project was initially introduced, 
our first idea was to implement a search algorithm 
within a map of the city of Boston to address the issue 
of traffic flow. We started to do research on this idea 
and looked for datasets, we realized that this idea 

may not be able to come to fruition. There were fairly 
limited datasets and public access available to traffic 
data online, so we soon realized we needed to pivot 
our thought process. Additionally, we agreed that we 
could implement an AI model that would be more 
extensive, and more valuable to our learning than a 
search algorithm. This led us to our next potential 
idea: addressing political bias in news articles with 
multinomial regression. We believed that this would 
give for a better opportunity to explore different tools 
and facets within machine learning and artificial 
intelligence, one that would broaden our knowledge 
beyond the scope of what our search algorithm idea 
could. Even after deciding upon article bias and 
multinomial regression, we were faced with issues 
within creating our dataset. We had to find a way to 
vectorize the article content data. Our first approach 
was to use TfidfVectorizer. This ultimately failed, as 
our model failed to even hit 50% classification 
abilities. Our next approach to vectorize the article 
content data was Word2Vec. This approach also did 
not perform as well as we thought it would. After 
discouragement soon approached us, we tried using 
Doc2Vec, which produced significantly higher results, 
ending up with almost 85% accuracy in the 
classification of test data with just a little over 1000 
samples in the dataset. Given these obstacles, we urge 
you not to get discouraged too early in the process, 
and allow for adaptation as needed. It may be more 
work to scrap your original idea and start with a 
brand new one, but the learning process is more 
valuable than if you succeed on your first shot. 
Overall, take in the roadblocks with open arms and 
you will reach the destination you are looking for. 
Good luck! 
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