What is git? What is GitHub?

Git is a version control system. GitHub is a platform for hosting git

repositories. You will have a local copy of the code on your machine

as well as a remote copy on GitHub.

Git & GitHub setup
You should:

- Have git installed locally
- Have a GitHub account

- Be able to connect to GitHub from your machine via SSH

Once you have the above, you can create a repository on GitHub. You

should initialize the repo with a README.

To get a copy of this repo locally, you need to clone it. Open your
terminal and use the git clone command along with the URL of the
remote repository:

git clone git@github.com:username/repo-name.git

The remote URL can be found on the GitHub page for the repo:

Go to file Add file ~

(3 Clone ®

HTTPS SSH GitHub CLI

git@github.com:mtlynch3/a_website.git LI;I

Use a password-protected SSH key.
oM INC 13 open with GitHub Desktop

[Z) Download ZIP

Remember to always use the SSH link when cloning a repo.

https://www.atlassian.com/git/tutorials/what-is-version-control
https://techcrunch.com/2012/07/14/what-exactly-is-github-anyway/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh
https://docs.github.com/en/get-started/quickstart/create-a-repo

Cloning a repository to your local machine will create a folder with
the same name. You should know where in your file system you are
cloning the repo. For example, if you run git clone from your Desktop,

that’s where the folder containing the local repo will be.

Basic git workflow

Once you have a local git repo, you can start making changes. You can
edit existing files, create new files, or delete files. Use any text
editor or IDE (Sublime, Atom, VS Code, etc) to edit your files.

As you are making changes, you should be making commits frequently to

keep track of your progress.

To make a commit, you first need to stage the files you want to
commit:

git add filename

To add multiple files, you can list filenames separated by spaces (git
add filenamel filename2), add all files in the current directory (git

add .), or add all files in the repo that have been modified (git add

-A).

Once you have the relevant files staged for commit, run the following
command:

git commit -m “descriptive message”

You should be committing frequently and providing descriptive commit
messages. As you commit, you are updating the git project history but
this is only reflected locally. To update the remote, we need to push
our commits. If you are pushing from the main branch, you can do:

git push

If you are pushing from a new branch for the first time, you should
set the upstream with the -u flag:

git push -u origin branch-name

After this, you will be able to push commits from the new branch using

only git push. Note: origin is an alias for our remote URL

Branch management
When creating a new feature branch, you should be creating it from the

most updated version of the main branch. First, make sure you are on

the main branch: git checkout main

To make sure your local main branch is the same as the remote you can

run git pull.

Once your local main branch is up to date you can create a feature
branch:

git checkout -b feature-branch

The -b flag tells git to create a new local branch called
feature-branch and switch to that new branch (since you are running
this command from the main branch). To switch back to the main branch
at any time you can do git checkout main. Likewise, once the branch is
created you can switch back to that branch with git checkout

feature-branch.

Make changes to your repository while on the feature branch; you will
stage, commit, and push as reviewed above. When you are done with the
branch and ready to merge the changes into the official project

history (the main branch), you should first open a pull request. An

option to do so will appear on your remote repo once you push the
branch to the remote.

Once the pull request is created you can close it by merging the
feature branch. After the branches are merged you can delete the

feature branch.

At this point, your remote repo is more up-to-date than your local
repo. To update your local repo so that it is the same as your remote,
switch to the main branch and run:

git pull -p

This will update your local main branch so it has the same commit
history as the remote. The -p flag is there to remove (or “prune”) any
“stale” branches you have locally. Stale means the branch has been
deleted on the remote but it still shows up as a remote branch when

running git branch -a.

Even after deleting the feature branch on the remote and doing git
pull with pruning, your local feature branch still exists. To delete
it use the following command:

git branch -d feature-branch

Useful commands
e git diff branchl branch2
o Show differences between branchl and branch2
e git branch -a
o Show all branches, local and remote
e git checkout -t origin/branch-name
o Check out a remote branch locally

e git restore filename

o Undo non-committed changes

e git reset --hard HEAD~1
o Revert repo to previous commit (undo most recent commit)
e git reset --staged filename

o Unstage file (i.e., undo git add filename)
e git remote -v

o Show remote url (origin)
e git log

o View commit history

More detailed info on undoing changes to _a repo

What is HEAD? It is a pointer to the most recent commit on a branch.

Each branch has its own HEAD.

The remote (origin) HEAD is usually pointing to the most recent commit
of the main branch, as that is the default branch. This tells git what

version of the project to use when cloning a repo.

git show HEAD
This command will display the commit ID that HEAD is currently
pointing to (usually the most recent commit of the current
branch), the commit message of this commit, and the changes that

were implemented by this commit.

Questions from class:
Can you have multiple remote repos? Yes.
Are there other kinds of git workflows? Yes.

In this course, we will only be using feature branch workflow which

uses one central remote repository.

https://opensource.com/article/18/6/git-reset-revert-rebase-commands
https://jigarius.com/blog/multiple-git-remote-repositories
https://www.atlassian.com/git/tutorials/comparing-workflows

