
📊WGSL 2020-03-31
Dean Jackson:Chair
Mehmet Oguz Derin

● Scribe’s Preface: I am new to scribing, and I tend to write using
telegraphic sentences. Please let me know or edit where needed.

::⌨ Scribe

Google Meet:Location
https://webgpu.dev/wgsl:Specification
WGSL Issues:Open Issues
Marked Issues:Meeting Issues

To not be anonymous animals, the doc is shared for writing with the google accounts that are
invited to the meeting. If you can’t edit, let cwallez@google.com or dino@apple.com know. Also,
be sure to be in “Edit” mode and not “Suggest” mode.

break if (“too long”);

● Remove `break if` remains undecided and will be discussed again at the next meeting.
● Discussed implicit storage class on variables. Consensus to have an implicit <function>

storage class for a `var` inside a function. Discussion around have an implicit <private>
for `var` at module scope if not specified. General agreement during the meeting, but
counter points raised by Dzmitry on the bug.

● FAQ discussion was delayed until a future meeting; Goals PR delayed on FAQ
discussion.

● Agreement that implementations would determine the interfaces based on usage in the
code. It would _not_ be explicitly specified in the WGSL file.

Tentative Agenda (click here to jump to the discussion section)

● 🔗 Issue #562 - Add FAQ for direction on shader language
○ (click here to jump to section)

● 🔗 Issue #588 - Update Goals section of spec
○ (click here to jump to section)

● 🔗 Issue #643 - Remove `break if` in favor of `if() {break; }`
○ (click here to jump to section)

● 🔗 Issue #642 - Add `break N` instead of `continue` and `continuing`
○ (click here to jump to section)

● 🔗 Issue #654 - var declaration without storage class: spell out rules, infer Function
storage class inside a function

○ (click here to jump to section)
● 🔗 Issue #644 - Interface matching rules

○ (click here to jump to section)

https://webgpu.dev/wgsl
https://github.com/gpuweb/gpuweb/issues?q=is%3Aissue+is%3Aopen+label%3Awgsl
https://github.com/gpuweb/gpuweb/issues?q=is%3Aissue+is%3Aopen+label%3A%22for+meeting%22+label%3Awgsl
mailto:cwallez@google.com
mailto:dino@apple.com
https://github.com/gpuweb/gpuweb/issues/562
https://github.com/gpuweb/gpuweb/issues/588
https://github.com/gpuweb/gpuweb/issues/643
https://github.com/gpuweb/gpuweb/issues/642
https://github.com/gpuweb/gpuweb/issues/654
https://github.com/gpuweb/gpuweb/issues/644


● 🔗Mail #public-gpu/2020Mar/0024 - Test for round-trippability
○ (click here to jump to section)

● 🔗 Issue #640 - The set of functions which have to be imported seems arbitrary
○ (click here to jump to section)

📋 Attendance

WIP, the list of all the people invited to the meeting. In bold, the people that have been seen in
the meeting:

● Apple
○ Dean Jackson
○ Fil Pizlo
○ Myles C. Maxfield
○ Robin Morisset

● Google
○ Dan Sinclair
○ David Neto
○ Kai Ninomiya
○ Ryan Harrison
○ Sarah Mashayekhi

● Intel
○ Yunchao He
○ Narifumi Iwamoto

● Microsoft
○ Damyan Pepper
○ Rafael Cintron
○ Greg Roth
○ Michael Dougherty
○ Tex Riddell

● Mozilla
○ Dzmitry Malyshau
○ Jeff Gilbert

● Joshua Groves
● Mehmet Oguz Derin
● Timo de Kort
● Lukasz Pasek
● Tyler Larson
● Lukasz Pasek
● Pelle Johnsen
● Matijs Toonen

https://lists.w3.org/Archives/Public/public-gpu/2020Mar/0024.html
https://github.com/gpuweb/gpuweb/issues/578


📑 Prior Cheat Sheet (click here to jump to the discussion
section)
Aggressively summarizes (strictly) only the updates from 2020 03 25 to 2020 03 31.
This cheat sheet was built by the scribe who would hugely appreciate and improve based on feedback, contact usingmehmetoguzderin@mehmetoguzderin.com

Reconsidering the approach and design of this section as it got too explicit and littered to speak
to the eye, the sheet will start to cover all topics again soon.😴😴😴

📐Meta (click here to jump to the discussion section)
●
●
●
●

⚖ Discussion

🔗 Issue #643 - Remove `break if` in favor of `if() {break; }`
● RM: Got a question. About comment with snippet of code. Can DN clarify the meaning?

mailto:mehmetoguzderin@mehmetoguzderin.com
https://github.com/gpuweb/gpuweb/issues/643


● DN: So statement A could only possibly execute on the last iteration. It’s on the way out
of the loop. When oyu look at the control flow graph, statement A not in the cycle for the
loop. I have memories…

● RM: From a uniformatic point of view [. . .]
● DN: That’s why I said this is a C example, single threaded. Yes, if we apply the uniformity

goals then OK, otherwise I’d like to avoid.

● John K’s avatar, referenced in the issue.
● Overview: Robin and David discuss whether the C example in David’s comment is

actually part of the control flow, or whether it matters from a uniformity point of view.
● DN: I would like to guide people to patterns with less divergence. [...]. It will be idiomatic

that way.
● MM: There is no way with `break if` for the A to be in the loop, so, confused.
● DN: There is complexity added by this. If the code can be outside the loop `break if`

forces the code outside the loop
● RM: Should we have `break if` and `break`
● DN: would only have `break if` if had to choose, but can have both
● JG: THis is just about showing the difference between the two. So, a non-trivial compiler

could do the work, but in this case the argument is that it’s valuable to surface that it’s
different

● MM: How does `break if` solve the statement A issue
● DN: Difference between C and GPU languages where uniformity kicks in. Having the

rule that you have to think about the correctness of where things appear. Want to steer
folks away from having to code inside the breaking if condition. There will be ways to
express the cond A case, but should be exceptional

● JG: The Smtt A is about uniformity. Outside the loop it’s always in uniform control flow,
but in the lopo could be non-uniform

● RM: The uniformity depends on conditional of the loop and the branche
● MM: So stmt A can’t be a derivative
● JG: Correct
● RM: Sounds like 2 different arguments. Make it difficult to write code with uniformity

issues. Write what a simple compiler would do. Do you agree these are 2 concerns
● DN: Yes. Tried to avoid translator augment. Tend to not mention those arguments but

they are additive.



● RN: Basic blocks would be easy for the compiler to remove. As long as we have the
ability to add `break` don’t see much condition with keeping `break if` for uniformity
argument. Do we agree `break if` is semantically equivalent to `if() break` just syntactic
sugar

● DN: Yes, sugar for single threaded code
● JG: Somewhat worrying that this is opt-in. `break if` can be in best practice document but

most people will just use `break` as `break if` is exotic. So we have to handle `if() break`
properly

● DJ: Originally suggested to remove, now talking about leaving it in as optional. Robin
suggesting removing as `break` is good enough

● JG: All just entertaining ideas. Is the extra data for the user of `breka if` useful to the user
vs having the compiler handling `if() break`

● MM: Personally, `do x if y` is harder to understand. Don’t want to say having an idiomatic
way to write clear code is a bad idea.

● JG: Doesn’t feel like break if adds that much. Especially if opt-in. On fence of having 2
semantically equivalent things in the language.

● DN: With `break unless` you have rule that `if condition break` has non-uniform control
flow. But not case for `break fi` as uniformity resolves at exit. Having distinct construct
means you don’t have to think much

● JG: Don’t agree
● RN: any case where `if () { A; B; break;}` is different in terms of uniformity?
● DN: Idea `if () break` without braces
● DS: Could we force break to be only statement
● RM: Some cases where you want statements in there, and the break if allows them

avoid it so we want to allow it.
● PJ: This is a new construct so folks won't’ be used to it so a lot of education of shader

writers
● JG: Not that much requirement to do it the right way, would just write `if() {break}` and

assume the compiler is doing the right thing.
● PJ: `break if()` would be unnatural to write
● DN: We are used to what we’re used to and that’s what we’re taught. Turing language is

different ordering,
● PJ: If we allow both most developers will use what they’re used to
● KN: No semantic difference between `if (){break;}` and `break if()` so not much high

mental overhead of checking what’s inside that block. Default assumption is that the
uniformity is dependent on the if. So, don’t think it’s that different. Extra syntax doesn’t
seem necessary to mark it as non-uniform.

● JG Give this some thought and work through other issues?
● MM: Straw poll?
● JG: Need to think about it
● DJ: Will come back to it next week.



🔗 Issue #642 - Add `break N` instead of `continue` and `continuing`

🔗 Issue #654 - var declaration without storage class: spell out rules, infer
Function storage class inside a function

● DN: Artifact of draft being partial. Canonical way of writing variable is var <storage class
> name : type . Because all variables inside a function are function storage class don't’
have to write it. Outside functions default to Private storage class if not provided. Is that
a sensible default and should we record it somewhere.

● JG Sounds reasonable to me
● MM: Reading about private vs function storage class, understand the words but not how

they work together
● DN: Privat and function storage class, each work item gets its own copy. The private si

for module scoped variables so visible to all functions called from that entry point. The
function storage class is scoped to the function in which it is declared. Function storage
class at top of function and visible throughout. Lifetime is for the duration of the function
call. Same helper function called from 2 places in the call stack would have different
Function scoped variables.

● MM: Like static on a variable in C
● DN: Yes. Private is static on the module scope. Function storage class is like alloca. If

you have a function initializer it is re-initialized every time the function is entered.
● MM: But for Private they don’t get re-initialized
● DN: Right, initialized on top level entry point
● MM: So, their initializer can’t depend on state of function
● DN: Correct in shader can only depend on constants
● MM: Is there a rule they can only be declared outside functions if they can only depend

on constants?
DN: Yes if you are declared outside a function you _cannot_ be function storage class.
Private variables must be declared outside any function. Private storage class can only
be outside, Function can only be inside a function.

● MM: That sounds reasonable.
● DM: Not a fan of defaulting to Private. Don’t expect it to be used. Global scope

dominated by input/output. Would rather see all the qualifiers at global scope
● RN: Considering everything inside a function must be function scope, seems like a

no-brainer. No opinion on private.
● DM: Is that true, can we have an input qualifier inside a function? Like a pointer to an

input
● DN: WebGPU Shaders won’t have pointers, and you can’t have an input storage class

inside a function, must be module scoped. The point of view is reasonable, haven’t seen
that many private variables

● MM: Just implementing on metal requires some amount of ??? software
● DN: Would be fine with Dzmitry’s position, just need a rule

https://github.com/gpuweb/gpuweb/issues/642
https://github.com/gpuweb/gpuweb/issues/654


● MM: Dzmitry.. I don’t quite understand your argument. Having input/output more
common, why should the developer have to type extra stuff

● DM: Why make an exception for Private when most things will have qualifiers? Will look
ore uniform if all things have qualifiers

● JG: I intuitively assume that anything at global without qualifiers would be private,
matches model in my head. This is true in GLSL. In favor of defaulting to private and
folks can be explity if they want. Since were already inferring for Function we can infer
for Private as well.

● DM: Different grammar rule.
● DS: No decorations inside functions for vars.
● JG: Private is what I’d expect
● DM: Private not used often, dominated by input/output and uniforms
● JG: Asking people to do more work just to do work seems unnecessary
● MM: Does HLSL have the concept of Private?
● TR: Not that I’m trying to understand. Private scope sounds like static but then in a

function?
DN: Private is like a c static variable file scope

● TR: But not in function?
DN: Not in function

● TR: But has a copy?
● DN: No, for function variables
● TR: So, just like a module static?
● DN: Making clarification every invocation gets its own
● TR: HLSL has htat, static global
● MM: Is it writable?
● TR: Yes, jst like C but thread local
● MM: Are they common?
● TR: Yup, people use them. Sometimes used to store input values so don’t have to push

down to functions. For translating GLSL for instance since they use globals
● MM: Makes sense, that maybe the tie breaker.
● DJ: Leaves consensus leaning towards not requiring Private on Module level variable.

Implicitly private unless specified otherwise. Variables in Function are function scoped
by default.

● DM: Still think it’s an unnecessary complication of the grammar for small benefit. Not a
fan of this idea.

● DJ: Will to accept going against judgement?
● DM: Yes, it’s fine.
● DJ: Resolved.
● DM: Would like to ask group that all arguments are on the github issue. Folks looking at

the discussion will have hard time to determine why the decision was made
● MM: Do you think linking minutes is not sufficient



● DM: minutes are the minimum. And they aren’t necessarily complete. The Rust language
process is that all positions are stated on the github issue and the conference call just
discusses and does not include new ideas.

● JG: Think the minutes are generally sufficient.
● MM: How about arguments are put in the issue afterwards?
● DS: Could we tldr the notes into the issue?
● DJ: Resolution is still we came to agreement
● DN: Trying to summarize high level points
● DS: Asked for clarification on metal with Private scope
● MM: Metal doesn’t have concept, would gather all those global variables and put into

struct and entry point declare one instance of that struct and pass a pointer to the struct
into each function then reads/writes are done through the struct.

🔗 Issue #562 - Add FAQ for direction on shader language
● RM: OK to delay the discussion until next time
● DJ: Next time
● RM: Link : https://github.com/RobinMorisset/gpuweb/tree/wgsl-faq3

🔗 Issue #588 - Update Goals section of spec
● DS: Can we merge it or not?
● MM: I’d like the discussion on FAQ solved first. We’ve been working hard on the FAQ.

Goals should build on them.

🔗 Issue #644 - Interface matching rules
● MM: This needs to be in spec. We don’t have any strong opinion but would like some

spec.
● DM: I think that’s how rules work for valid use in Vulkan. You can have more things

producer than can be consumed, applies to input outputs and render targets too.
● MM: Is there a logic for not zeroing out things that are consumed by a subsequent stage

but not produced.
● DN: This might require some fix up
● DJ: So if something gets consumed that’s not produced that should produce error?
● JG: Yes
● DM: May have one vertex shader used with multiple fragment shaders, which would slow

down pipeline creation
● MM: We can start with it being an error
● DN: Vulkan started with more strict rules but relaxed over time, it settled on something

like this a couple of years ago. I am fine with this because it doesn’t have any
performance implications. When assigning locations . Can sweep away variables if they
aren’t used in the interface. Can have interactions with locations if they’re determined
automatically.

https://github.com/gpuweb/gpuweb/issues/562
https://github.com/RobinMorisset/gpuweb/tree/wgsl-faq3
https://github.com/gpuweb/gpuweb/issues/588
https://github.com/gpuweb/gpuweb/issues/644


● MM: Shaders can get created as mismatch snippets thrown together. Shader author
might not even know what’s being i/o. Zeroing out could help these situations. But still, I
am willing to be OK with the proposal.

● DS: ...Part in webgpu and part in wgsl. WebGPU should specify that in/out must match
between the stages. In WGSL we need to specify that variables used in an entry point
must be initialized to zero

● DJ: Someone want to write the section?
● MM: I can.
● DJ: Assigned to MM
● DM: So this is the text that will say it formally about being explicit or not about i/o

variables
● MM: Does the driver fix this up?
● DN: Not sure where requirement comes from, WebGPU spec only requires some things

to be initialized
● DS: That’s fine, we can make text match requirements.
● DM: Makes sense for outputs. We don’t want to completely inspect the control flow and

prove it up.
● JG: WebGL initializes all the outputs at the beginning of the main function.
● DJ: I think ANGLE also does that. Action on Myles.

🔗Mail #public-gpu/2020Mar/0024 - Test for round-trippability
●
●
●
●

🔗 Issue #640 - The set of functions which have to be imported seems
arbitrary

●
●
●

🗓 Next Week
●
●
●
●

https://lists.w3.org/Archives/Public/public-gpu/2020Mar/0024.html
https://github.com/gpuweb/gpuweb/issues/640

