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4.1​CLOUD COMPUTING AND SERVICE MODELS 
Over the past two decades, the world economy has rapidly moved from manufacturing to more 

service-oriented. In 2010, 80 percent of the U.S. economy was driven by the service industry, leaving 
only 15 percent in manufacturing and 5 percent in agriculture and other areas. Cloud computing 
benefits the service industry most and advances business computing with a new paradigm. In 2009, 
the global cloud service marketplace reached $17.4 billion. IDC predicted in 2010 that the 
cloudbased economy may increase to $44.2 billion by 2013. Developers of innovative cloud 
applications no longer acquire large capital equipment in advance. They just rent the resources from 
some large data centers that have been automated for this purpose. 

In this and the next two chapters, we will study the cloud platform architecture, service models, 
and programming environments. Users can access and deploy cloud applications from anywhere 
inthe world at very competitive costs. Virtualized cloud platforms are often built on top of large data 
centers. With that in mind, we examine first the server cluster in a data center and its interconnection 
issues. In other words, clouds aim to power the next generation of data centers by architecting them 
as virtual resources over automated hardware, databases, user interfaces, and application 
environments. In this sense, clouds grow out of the desire to build better data centers through 
automated resource provisioning. 

 
4.1.1​Public, Private, and Hybrid Clouds 

The concept of cloud computing has evolved from cluster, grid, and utility computing. 
Cluster and grid computing leverage the use of many computers in parallel to solve problems of any 
size. Utility and Software as a Service (SaaS) provide computing resources as a service with the 
notion of pay per use. Cloud computing leverages dynamic resources to deliver large numbers of 
services to end users. Cloud computing is a high-throughput computing (HTC) paradigm whereby the 
infrastructure pro-vides the services through a large data center or server farms. The cloud computing 
model enables users to share access to resources from anywhere at any time through their connected 
devices. 

 
Recall the introduction in Chapter 1 in which we said that the cloud will free users to focus 

on user application development and create business value by outsourcing job execution to cloud 
providers. In this scenario, the computations (programs) are sent to where the data is located, rather 
than copying the data to millions of desktops as in the traditional approach. Cloud computing avoids 
large data movement, resulting in much better network bandwidth utilization. Furthermore, machine 
virtualization has enhanced resource utilization, increased application flexibility, and reduced the 
total cost of using virtualized data-center resources. 

The cloud offers significant benefit to IT companies by freeing them from the low-level task of 
setting up the hardware (servers) and managing the system software. Cloud computing applies a 
virtual platform with elastic resources put together by on-demand provisioning of hardware, software, 
and data sets, dynamically. The main idea is to move desktop computing to a service-oriented plat- 
form using server clusters and huge databases at data centers. Cloud computing leverages its low cost 
and simplicity to both providers and users. According to Ian Foster [25], cloud computing intends to 
leverage multitasking to achieve higher throughput by serving many heterogeneous applications, 
large or small, simultaneously. 

4.1.1.1​Centralized versus Distributed Computing 
Some people argue that cloud computing is centralized computing at data centers. Others claim that 

cloud computing is the practice of distributed parallel computing over data-center resources. These 
represent two opposite views of cloud computing. All computations in cloud applications are distributed to 

 



servers in a data center. These are mainly virtual machines (VMs) in virtual clusters created out of data- 
center resources. In this sense, cloud platforms are systems distributed through virtualization. 

As Figure 4.1 shows, both public clouds and private clouds are developed in the Internet. As many 
clouds are generated by commercial providers or by enterprises in a distributed manner, they will be 
interconnected over the Internet to achieve scalable and efficient computing services. Commercial cloud 
providers such as Amazon, Google, and Microsoft created their platforms to be distributed geographically. 
This distribution is partially attributed to fault tolerance, response latency reduction, and even legal 
reasons. Intranet-based private clouds are linked to public clouds to get additional resources. Nevertheless, 
users in Europe may not feel comfortable using clouds in the United States, and vice versa, until extensive 
service-level agreements (SLAs) are developed between the two user communities. 

4.1.1.2​Public Clouds 
A public cloud is built over the Internet and can be accessed by any user who has paid for 

the service. Public clouds are owned by service providers and are accessible through a subscription. 
The callout box in top of Figure 4.1 shows the architecture of a typical public cloud. Many public 
clouds are available, including Google App Engine (GAE), Amazon Web Services (AWS), Microsoft 
Azure, IBM Blue Cloud, and Salesforce.com’s Force.com. The providers of the aforementioned 
clouds are commercial providers that offer a publicly accessible remote interface for creating and 
managing VM instances within their proprietary infrastructure. A public cloud delivers a selected set 
of business processes. The application and infrastructure services are offered on a flexible price-per- 
use basis. 

4.1.1.3​Private Clouds 
A private cloud is built within the domain of an intranet owned by a single organization. 

Therefore, it is client owned and managed, and its access is limited to the owning clients and their 
partners. Its deployment was not meant to sell capacity over the Internet through publicly accessible 
interfaces. Private clouds give local users a flexible and agile private infrastructure to run service 
workloads within their administrative domains. A private cloud is supposed to deliver more efficient 
and convenient cloud services. It may impact the cloud standardization, while retaining greater 
customization and organizational control. 

 
4.1.1.4​Hybrid Clouds 

A hybrid cloud is built with both public and private clouds, as shown at the lower-left corner 
of Figure 4.1. Private clouds can also support a hybrid cloud model by supplementing local 
infrastructure with computing capacity from an external public cloud. For example, the Research 
Compute Cloud (RC2) is a private cloud, built by IBM, that interconnects the computing and IT 
resources at eight IBM Research Centers scattered throughout the United States, Europe, and Asia. A 
hybrid cloud provides access to clients, the partner network, and third parties. In summary, public 
clouds promote standardization, preserve capital investment, and offer application flexibility. Private 
clouds attempt to achieve customization and offer higher efficiency, resiliency, security, and privacy. 
Hybrid clouds operate in the middle, with many compromises in terms of resource sharing. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.1: Public, private, and hybrid clouds illustrated by functional architecture and connectivity 
of representative clouds available by 2011. 

 
4.1.1.5​Data-Center Networking Structure 

The core of a cloud is the server cluster (or VM cluster). Cluster nodes are used as compute nodes. 
A few control nodes are used to manage and monitor cloud activities. The scheduling of user jobs 
requires that you assign work to virtual clusters created for users. The gateway nodes provide the 
access points of the service from the outside world. These gateway nodes can be also used for 
security control of the entire cloud platform. In physical clusters and traditional grids, users expect 
static demand of resources. Clouds are designed to handle fluctuating workloads, and thus demand 
variable resources dynamically. Private clouds will satisfy this demand if properly designed and 
managed. 

Data centers and supercomputers have some similarities as well as fundamental differences. We 
discussed supercomputers in Chapter 2. In the case of data centers, scaling is a fundamental 
requirement. Data-center server clusters are typically built with large number of servers, ranging from 
thousands to millions of servers (nodes). For example, Microsoft has a data center in the Chicago 
area that has 100,000 eight-core servers, housed in 50 containers. In supercomputers, a separate data 
farm is used, while a data center uses disks on server nodes plus memory cache and databases. 

Data centers and supercomputers also differ in networking requirements, as illustrated in Figure 
4.2. Supercomputers use custom-designed high-bandwidth networks such as fat trees or 3D torus 
networks (which we discussed in Chapter 2). Data-center networks are mostly IP-based commodity 
networks, such as the 10 Gbps Ethernet network, which is optimized for Internet access. Figure 4.2 
shows a multilayer structure for accessing the Internet. The server racks are at the bottom Layer 2, 
and they are connected through fast switches (S) as the hardware core. The data center is connected 
to the Internet at Layer 3 with many access routers (ARs) and border routers (BRs). 

 
FIGURE 4.2:Standard data-center networking for the cloud to access the Internet. 

 



An example of a private cloud is the one the U.S. National Aeronautics and Space Administration 
(NASA) is building to enable researchers to run climate models on remote systems it provides. This 
can save users the capital expense of HPC machines at local sites. Furthermore, NASA can build the 
complex weather models around its data centers, which is more cost-effective. Another good example 
is the cloud built by the European Council for Nuclear Research (CERN). This is a very big private 
cloud designed to distribute data, applications, and computing resources to thou-sands of scientists 
around the world. 

These cloud models demand different levels of performance, data protection, and security 
enforcement. In this case, different SLAs may be applied to satisfy both providers and paid users. 
Cloud computing exploits many existing technologies. For example, grid computing is the backbone 
of cloud computing in that the grid has the same goals of resource sharing with better utilization of 
research facilities. Grids are more focused on delivering storage and computing resources while cloud 
computing aims to achieve economies of scale with abstracted services and resources. 
4.1.1.6​Cloud Development Trends 

Although most clouds built in 2010 are large public clouds, the authors believe private clouds will 
grow much faster than public clouds in the future. Private clouds are easier to secure and more 
trustworthy within a company or organization. Once private clouds become mature and better 
secured, they could be open or converted to public clouds. Therefore, the boundary between public 
and private clouds could be blurred in the future. Most likely, most future clouds will be hybrid in 
nature. 

For example, an e-mail application can run in the service-access nodes and provide the user 
interface for outside users; the application can get the service from the internal cloud computing ser- 
vices (e.g., the e-mail storage service). There are also some service nodes designed to support the 
proper functioning of cloud computing clusters. These nodes are called runtime supporting service 
nodes. For example, there might be distributed locking services for supporting specific applications. 
Finally, it is possible that there will be some independent service nodes. Those nodes would provide 
independent services for other nodes in the cluster. For example, a news service needs geographical 
information under service-access nodes. 

With cost-effective performance as the key concept of clouds, we will consider the public cloud in 
this chapter, unless otherwise specified. Many executable application codes are much smaller than the 
web-scale data sets they process. Cloud computing avoids large data movement during execution. 
This will result in less traffic on the Internet and better network utilization. Clouds also alleviate the 
petascale I/O problem. Cloud performance and its Quality of Service (QoS) are yet to be proven in 
more real-life applications. We will model the performance of cloud computing in Chapter 9, along 
with data protection, security measures, service availability, fault tolerance, and operating cost. 

 
4.1.2​Cloud Ecosystem and Enabling Technologies 

Cloud computing platforms differ from conventional computing platforms in many aspects. In this 
section, we will identify their differences in computing paradigms and cost models applied. The 
traditional computing model is specified below by the process on the left, which involves buying the 
hardware, acquiring the necessary system software, installing the system, testing the configuration, 
and executing the application code and management of resources. What is even worse is that this 
cycle repeats itself in about every 18 months, meaning the machine we bought becomes obsolete 
every 18 months. 

The cloud computing paradigm is shown on the right. This computing model follows a pay-as- 
you-go model. Therefore the cost is significantly reduced, because we simply rent computer 
resources without buying the computer in advance. All hardware and software resources are leased 
from the cloud provider without capital investment on the part of the users. Only the execution phase 
costs some money. The experts at IBM have estimated that an 80 percent to 95 percent saving results 
from cloud computing compared with the conventional computing paradigm. This is very much 

 



desired, especially for small businesses, which requires limited computing power and thus avoids the 
purchase of expensive computers or servers repeatedly every few years. 

 
For example, IBM has estimated that the worldwide cloud service market may reach $126 billion 

by 2012, including components, infrastructure services, and business services. Internet clouds work 
as service factories built around multiple data centers. To formalize the above cloud computing 
model, we characterize the cloud cost model, the cloud ecosystems, and enabling technologies. These 
topics help our readers understand the motivations behind cloud computing. The intention is to 
remove the barriers of cloud computing. 

 
Classical Computing 

(Repeat the following cycle every 18 months) Buy 

and own 
Hardware, system software, applications to meet peak 
needs 

Install, configure, test, verify, evaluate, manage 

- - - - 
Use 

- - - - 
Pay $$$$$ (High cost) 

Cloud Computing 
(Pay as you go per each service provided) 

Subscribe 

- - - - 
 

Use (Save about 80-95% of the total cost) 

- - - - 

(Finally) 
$ - Pay for what 

you use based 

on the QoS 

 

4.1.2.1​Cloud Design Objectives 
Despite the controversy surrounding the replacement of desktop or desk side computing by 

centralized computing and storage services at data centers or big IT companies, the cloud computing 
com-munity has reached some consensus on what has to be done to make cloud computing 
universally acceptable. The following list highlights six design objectives for cloud computing: 

●​ Shifting computing from desktops to data centers Computer processing, storage, and software 
delivery is shifted away from desktops and local servers and toward data centers over the Internet. 

●​ Service provisioning and cloud economics Providers supply cloud services by signing SLAs 
with consumers and end users. The services must be efficient in terms of computing, storage, and 
power consumption. Pricing is based on a pay-as-you-go policy. 

●​ Scalability in performance The cloud platforms and software and infrastructure services must be 
able to scale in performance as the number of users increases. 

●​ Data privacy protection Can you trust data centers to handle your private data and records? This 
concern must be addressed to make clouds successful as trusted services. 

●​ High quality of cloud services The QoS of cloud computing must be standardized to make 
clouds interoperable among multiple providers. 

●​ New standards and interfaces This refers to solving the data lock-in problem associated with 
data centers or cloud providers. Universally accepted APIs and access protocols are needed to 
provide high portability and flexibility of virtualized applications. 

 
4.1.2.2​Cost Model 

In traditional IT computing, users must acquire their own computer and peripheral 
equipment as capital expenses. In addition, they have to face operational expenditures in operating 
and maintaining the computer systems, including personnel and service costs. Figure 4.3(a) shows the 
addition of variable operational costs on top of fixed capital investments in traditional IT. Note that 
the fixed cost is the main cost, and that it could be reduced slightly as the number of user’s increases. 
However, the operational costs may increase sharply with a larger number of users. Therefore, the 

 



total cost escalates quickly with massive numbers of users. On the other hand, cloud computing 

 



applies a pay-per-use business model, in which user jobs are outsourced to data centers. To use the 
cloud, one has no up-front cost in hardware acquisitions. Only variable costs are experienced by 
cloud users, as demonstrated in Figure 4.3(b). 

 
FIGURE 4.3 : Computing economics between traditional IT users and cloud users. 

 
Overall, cloud computing will reduce computing costs significantly for both small users and large 

enterprises. Computing economics does show a big gap between traditional IT users and cloud users. 
The savings in acquiring expensive computers up front releases a lot of burden for startup companies. 
The fact that cloud users only pay for operational expenses and do not have to invest in permanent 
equipment is especially attractive to massive numbers of small users. This is a major driving force for 
cloud computing to become appealing to most enterprises and heavy computer users. In fact, any IT 
users whose capital expenses are under more pressure than their operational expenses should consider 
sending their overflow work to utility computing or cloud service providers. 
4.1.2.3​Cloud Ecosystems 

With the emergence of various Internet clouds, an ecosystem of providers, users, and technologies 
has appeared. This ecosystem has evolved around public clouds. Strong interest is growing in open 
source cloud computing tools that let organizations build their own IaaS clouds using their internal 
infrastructures. Private and hybrid clouds are not exclusive, since public clouds are involved in both 
cloud types. A private/hybrid cloud allows remote access to its resources over the Internet using 
remote web service interfaces such as that used in Amazon EC2. 

An ecosystem was suggested by Sotomayor, et al.(Figure 4.4) for building private clouds. They 
suggested four levels of ecosystem development in a private cloud. At the user end, consumers 
demand a flexible platform. At the cloud management level, the cloud manager provides virtualized 
resources over an IaaS platform. At the virtual infrastructure (VI) management level, the manager 
allocates VMs over multiple server clusters. Finally, at the VM management level, the VM managers 
handle VMs installed on individual host machines. An ecosystem of cloud tools attempts to span both 
cloud management and VI management. Integrating these two layers is complicated by the lack of 
open and standard interfaces between them. 

 
An increasing number of startup companies are now basing their IT strategies on cloud resources, 

spending little or no capital to manage their own IT infrastructures. We desire a flexible and open 
architecture that enables organizations to build private/hybrid clouds. 

 
These tools support dynamic placement and VM management on a pool of physical resources, 

automatic load balancing, server consolidation, and dynamic infrastructure resizing and partitioning. In 
addition to public clouds such as Amazon EC2, Eucalyptus and Globus Nimbus are open source tools for 
virtualization of cloud infrastructure. To access these cloud management tools, one can use the Amazon 
EC2WS, Nimbus WSRF, and ElasticHost REST cloud interfaces. For VI management, OpenNebula and 
VMware vSphere can be used to manage all VM generation including Xen, KVM, and VMware tools. 

 



 

 
 

FIGURE 4.4: Cloud ecosystem for building private clouds: (a) Consumers demand a flexible platform; 
(b) Cloud manager provides virtualized resources over an IaaS platform; (c) VI manager allocates VMs; 

(d) VM managers handle VMs installed on servers. 
 
 

4.1.2.4​Surge of Private Clouds 
In general, private clouds leverage existing IT infrastructure and personnel within an enterprise or 

government organization. Both public and private clouds handle workloads dynamically. However, 
public clouds should be designed to handle workloads without communication dependency. Both 
types of clouds distribute data and VM resources. However, private clouds can balance workloads to 
exploit IT resources more efficiently within the same intranet. Private clouds can also provide pre- 
production testing and enforce data privacy and security policies more effectively. In a public cloud, 
the surge workload is often offloaded. The major advantage of public clouds lies in the avoidance of 
capital expenses by users in IT investments in hardware, software, and personnel. 

Most companies start with virtualization of their computing machines to lower the operating costs. 
Companies such as Microsoft, Oracle, and SAP may want to establish policy-driven management of 
their computing resources, mainly to improve QoS to their employees and customers. By integrating 
virtualized data centers and company IT resources, they offer IT as a service to improve the agility of 
their company operations. This approach avoids replacement of a large number of servers every 18 
months. As a result, these companies can upgrade their IT efficiency significantly. 

 
4.1.3​Infrastructure-as-a-Service (IaaS) 

Cloud computing delivers infrastructure, platform, and software (application) as services, which 
are made available as subscription-based services in a pay-as-you-go model to consumers. The 
services provided over the cloud can be generally categorized into three different service models: 
namely IaaS, Platform as a Service (PaaS), and Software as a Service (SaaS). These form the three 
pillars on top of which cloud computing solutions are delivered to end users. All three models allow 
users to access services over the Internet, relying entirely on the infrastructures of cloud service 
providers. 

 



These models are offered based on various SLAs between providers and users. In a broad sense, 
the SLA for cloud computing is addressed in terms of service availability, performance, and data 
protection and security. Figure 4.5 illustrates three cloud models at different service levels of the 
cloud. SaaS is applied at the application end using special interfaces by users or clients. At the PaaS 
layer, the cloud platform must perform billing services and handle job queuing, launching, and 
monitoring services. At the bottom layer of the IaaS services, databases, compute instances, the file 
system, and storage must be provisioned to satisfy user demands. 

 
4.1.3.1​Infrastructure as a Service 

This model allows users to use virtualized IT resources for computing, storage, and 
networking. In short, the service is performed by rented cloud infrastructure. The user can deploy and 
run his applications over his chosen OS environment. The user does not manage or control the 
underlying cloud infrastructure, but has control over the OS, storage, deployed applications, and 
possibly select networking components. This IaaS model encompasses storage as a service, compute 
instances as a service, and communication as a service. 

 
FIGURE 4.5:   The IaaS, PaaS, and SaaS cloud service models at different service levels. 

 

The Virtual Private Cloud (VPC) in Example 4.1 shows how to provide Amazon EC2 
clusters and S3 storage to multiple users. Many startup cloud providers have appeared in recent years. 
GoGrid, FlexiScale, and Aneka are good examples. Table 4.1 summarizes the IaaS offerings by five 
public cloud providers. Interested readers can visit the companies’ web sites for updated information. 

 
Example 4.1 Amazon VPC for Multiple Tenants 
A user can use a private facility for basic computations. When he must meet a specific workload require- 

ment, he can use the Amazon VPC to provide additional EC2 instances or more storage (S3) to handle 

urgent applications. Figure 4.6 shows VPC which is essentially a private cloud designed to address the 

privacy concerns of public clouds that hamper their application when sensitive data and software are 

involved. 

Amazon EC2 provides the following services: resources from multiple data centers globally distributed, 

CL1, web services (SOAP and Query), web-based console user interfaces, access to VM instances via 

SSH and Windows, 99.5 percent available agreements, per-hour pricing, Linux and Windows OSes, 
and automatic scaling and load balancing. We will illustrate the use of EC2 in more detail in Chapter 
6. VPC allows the user to isolate provisioned AWS processors, memory, and storage from 
interference by other users. Both auto-scaling and elastic load balancing services can support related 
demands. Auto-scaling enables users to automatically scale their VM instance capacity up or down. 
With auto- scaling, one can ensure that a sufficient number of Amazon EC2 instances are provisioned 
to meet desired performance. Or one can scale down the VM instance capacity to reduce costs, 

 



when the workload is reduced. 

 



 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.6: Amazon VPC (virtual private cloud). 

 



 
4.1.4​Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) 

In this section, we will introduce the PaaS and SaaS models for cloud computing. SaaS is often 
built on top of the PaaS, which is in turn built on top of the IaaS. 

 

4.1.4.1​Platform as a Service (PaaS) 
To be able to develop, deploy, and manage the execution of applications using provisioned 

resources demands a cloud platform with the proper software environment. Such a platform includes 
operating system and runtime library support. This has triggered the creation of the PaaS model to 
enable users to develop and deploy their user applications. Table 4.2 highlights cloud platform 
services offered by five PaaS services. 

 

 



 

The platform cloud is an integrated computer system consisting of both hardware and software 
infrastructure. The user application can be developed on this virtualized cloud platform using some 
programming languages and software tools supported by the provider (e.g., Java, Python, .NET). The user 
does not manage the underlying cloud infrastructure. The cloud provider supports user application 
development and testing on a well-defined service platform. This PaaS model enables a collaborated 
software development platform for users from different parts of the world. This model also encourages 
third parties to provide software management, integration, and service monitoring solutions. 

 
Example 4.2 Google App Engine for PaaS Applications 

As web applications are running on Google’s server clusters, they share the same capability with 
many other users. The applications have features such as automatic scaling and load balancing 
which are very convenient while building web applications. The distributed scheduler mechanism can 
also schedule tasks for triggering events at specified times and regular intervals. Figure 4.7 shows 
the operational model for GAE. To develop applications using GAE, a development environment must 
be provided. 

Google provides a fully featured local development environment that simulates GAE on the 
developer’s computer. All the functions and application logic can be implemented locally which is 
quite similar to traditional software development. The coding and debugging stages can be 
performed locally as well. After these steps are finished, the SDK provided provides a tool for 
uploading the user’s application to Google’s infrastructure where the applications are actually 
deployed. Many additional third-party capabilities, including software management, integration, and 
service monitoring solutions, are also provided. 

 
 

 



FIGURE 4.7: Google App Engine platform for PaaS operations. 
  

 

 



4.1.4.2​Software as a Service (SaaS) 
This refers to browser-initiated application software over thousands of cloud customers. Services 

and tools offered by PaaS are utilized in construction of applications and management of their 
deployment on resources offered by IaaS providers. The SaaS model provides software applications 
as a service. As a result, on the customer side, there is no upfront investment in servers or software 
licensing. On the provider side, costs are kept rather low, compared with conventional hosting of user 
applications. Customer data is stored in the cloud that is either vendor proprietary or publicly hosted 
to support PaaS and IaaS. 

The best examples of SaaS services include Google Gmail and docs, Microsoft SharePoint, and 
the CRM software from Salesforce.com. They are all very successful in promoting their own busi- 
ness or are used by thousands of small businesses in their day-to-day operations. Providers such as 
Google and Microsoft offer integrated IaaS and PaaS services, whereas others such as Amazon and 
GoGrid offer pure IaaS services and expect third-party PaaS providers such as Manjrasoft to offer 
application development and deployment services on top of their infrastructure services. To identify 
important cloud applications in enterprises, the success stories of three real-life cloud applications are 
presented in Example 4.3 for HTC, news media, and business transactions. The benefits of using 
cloud services are evident in these SaaS applications. 

 
Example 4.3 Three Success Stories on SaaS Applications 

​​ To discover new drugs through DNA sequence analysis, Eli Lily Company has used Amazon’s 

AWS platform with provisioned server and storage clusters to conduct high-performance 
biological sequence analysis without using an expensive supercomputer. The benefit of this IaaS 
application is reduced drug deployment time with much lower costs. 

​​ The New York Times has applied Amazon’s EC2 and S3 services to retrieve useful pictorial 

information quickly from millions of archival articles and newspapers. The New York Times has 
significantly reduced the time and cost in getting the job done. 

​​ Pitney Bowes, an e-commerce company, offers clients the opportunity to perform B2B 

transactions using the Microsoft Azure platform, along with .NET and SQL services. These 
offerings have significantly increased the company’s client base. 

4.1.4.3​Mashup of Cloud Services 
At the time of this writing, public clouds are in use by a growing number of users. Due to the lack 

of trust in leaking sensitive data in the business world, more and more enterprises, organizations, and 
communities are developing private clouds that demand deep customization. An enterprise cloud is 
used by multiple users within an organization. Each user may build some strategic applications on the 
cloud, and demands customized partitioning of the data, logic, and database in the metadata 
representation. More private clouds may appear in the future. 

Based on a 2010 Google search survey, interest in grid computing is declining rapidly. Cloud 
mashups have resulted from the need to use multiple clouds simultaneously or in sequence. For 
example, an industrial supply chain may involve the use of different cloud resources or services at 
different stages of the chain. Some public repository provides thousands of service APIs and mash- 
ups for web commerce services. Popular APIs are provided by Google Maps, Twitter, YouTube, 
Amazon eCommerce, Salesforce.com, etc. 

 
4.2​DATA-CENTER DESIGN AND INTERCONNECTION NETWORKS 

​  

A data center is often built with a large number of servers through a huge interconnection 
network. In this section, we will study the design of large-scale data centers and small modular data 

 



centers that can be housed in a 40-ft truck container. Then we will take a look at interconnection of 
modular data centers and their management issues and solutions. 

 



4.2.1​Warehouse-Scale Data-Center Design 
Dennis Gannon claims: “The cloud is built on massive datacenters”. Figure 4.8 shows a data 

center that is as large as a shopping mall (11 times the size of a football field) under one roof. Such a 
data center can house 400,000 to 1 million servers. The data centers are built economics of scale— 
meaning lower unit cost for larger data centers. A small data center could have 1,000 servers. The 
larger the data center, the lower the operational cost. The approximate monthly cost to operate a huge 
400-server data center is estimated by network cost $13/Mbps; storage cost $0.4/GB; and 
administration costs. These unit costs are greater than those of a 1,000-server data center. The 
network cost to operate a small data center is about seven times greater and the storage cost is 5.7 
times greater. Microsoft has about 100 data centers, large or small, which are distributed around the 
globe. 

 
4.2.1.1​Data-Center Construction Requirements 

Most data centers are built with commercially available components. An off-the-shelf server 
consists of a number of processor sockets, each with a multicore CPU and its internal cache 
hierarchy, local shared and coherent DRAM, and a number of directly attached disk drives. The 
DRAM and disk resources within the rack are accessible through first-level rack switches and all 
resources in all Consider a data center built with 2,000 servers, each with 8 GB of DRAM and four 1 
TB disk drives. Each group of 40 servers is connected through a 1Gbps link to a rack-level switch 
that has an additional eight 1 Gbps ports used for connecting the rack to the cluster-level switch. 

 

FIGURE 4.8: A huge data center that is 11 times the size of a football field, housing 400,000 to 1 million 
servers. 

It was estimated that the bandwidth available from local disks is 200 MB/s, whereas the band-width 
from off-rack disks is 25 MB/s via shared rack uplinks. The total disk storage in the cluster is almost 10 
million times larger than local DRAM. A large application must deal with large discrepancies in latency, 
bandwidth, and capacity. In a very large-scale data center, components are relatively cheaper. The 
components used in data centers are very different from those in building supercomputer systems. 

With a scale of thousands of servers, concurrent failure, either hardware failure or software 
failure, of 1 percent of nodes is common. Many failures can happen in hardware; for example, CPU 
failure, disk I/O failure, and network failure. It is even quite possible that the whole data center does 
not work in the case of a power crash. Also, some failures are brought on by software. The service 
and data should not be lost in a failure situation. Reliability can be achieved by redundant hardware. 
The software must keep multiple copies of data in different locations and keep the data accessible 
while facing hardware or software errors. 

 



4.2.1.2​Cooling System of a Data-Center Room 
Figure 4.9 shows the layout and cooling facility of a warehouse in a data center. The data-center 

room has raised floors for hiding cables, power lines, and cooling supplies. The cooling system is 
somewhat simpler than the power system. The raised floor has a steel grid resting on stanchions about 
2–4 ft above the concrete floor. The under-floor area is often used to route power cables to racks, but 
its primary use is to distribute cool air to the server rack. The CRAC (computer room air 
conditioning) unit pressurizes the raised floor plenum by blowing cold air into the plenum. 

 
The cold air escapes from the plenum through perforated tiles that are placed in front of server 

racks. Racks are arranged in long aisles that alternate between cold aisles and hot aisles to avoid 
mixing hot and cold air. The hot air produced by the servers circulates back to the intakes of the 
CRAC units that cool it and then exhaust the cool air into the raised floor plenum again. Typically, 
the incoming coolant is at 12–14°C and the warm coolant returns to a chiller. Newer data centers 
often insert a cooling tower to pre-cool the condenser water loop fluid. Water-based free cooling uses 
cooling towers to dissipate heat. The cooling towers use a separate cooling loop in which water 
absorbs the coolant’s heat in a heat exchanger. 

 
 

FIGURE 4.9: The cooling system in a raised-floor data center with hot-cold air circulation supporting water 
heat exchange facilities. 

4.2.2​Data-Center Interconnection Networks 
A critical core design of a data center is the interconnection network among all servers in the 

data-center cluster. This network design must meet five special requirements: low latency, high 
bandwidth, low cost, message-passing interface (MPI) communication support, and fault tolerance. 
The design of an inter-server network must satisfy both point-to-point and collective communication 
patterns among all server nodes. Specific design considerations are given in the following sections. 

 
4.2.2.1​Application Traffic Support 

The network topology should support all MPI communication patterns. Both point-to-point 
and collective MPI communications must be supported. The network should have high bisection 
bandwidth to meet this requirement. For example, one-to-many communications are used for 
supporting distributed file access. One can use one or a few servers as metadata master servers which 
need to communicate with slave server nodes in the cluster. To support the MapReduce programming 
paradigm, the network must be designed to perform the map and reduce functions at a high speed. In 
other words, the underlying network structure should support various network traffic patterns 
demanded by user applications. 

 



4.2.2.2​Network Expandability 
The interconnection network should be expandable. With thousands or even hundreds of 

thousands of server nodes, the cluster network interconnection should be allowed to expand once 
more servers are added to the data center. The network topology should be restructured while facing 
such expected growth in the future. Also, the network should be designed to support load balancing 
and data movement among the servers. None of the links should become a bottleneck that slows 
down application performance. The topology of the interconnection should avoid such bottlenecks. 

The fat-tree and crossbar networks studied in could be implemented with low-cost Ethernet 
switches. However, the design could be very challenging when the number of servers increases 
sharply. The most critical issue regarding expandability is support of modular network growth for 
building data-center containers, as discussed in Section 4.2.3. One single data-center container 
contains hundreds of servers and is considered to be the building block of large-scale data centers. 
The network interconnection among many containers will be explained in Section 4.2.4. Cluster 
networks need to be designed for data-center containers. Cable connections are then needed among 
multiple data-center containers. 

Data centers are not built by piling up servers in multiple racks today. Instead, data-center owners buy 
server containers while each container contains several hundred or even thousands of server nodes. The 
owners can just plug in the power supply, outside connection link, and cooling water, and the whole system 
will just work. This is quite efficient and reduces the cost of purchasing and maintaining servers. One 
approach is to establish the connection backbone first and then extend the backbone links to reach the end 
servers. One can also connect multiple containers through external switching and cabling. 
4.2.2.3​Fault Tolerance and Graceful Degradation 

The interconnection network should provide some mechanism to tolerate link or switch failures. 
In addition, multiple paths should be established between any two server nodes in a data center. Fault 
tolerance of servers is achieved by replicating data and computing among redundant servers. Similar 
redundancy technology should apply to the network structure. Both software and hardware network 
redundancy apply to cope with potential failures. One the software side, the software layer should be 
aware of network failures. Packet forwarding should avoid using broken links. The network support 
software drivers should handle this transparently without affecting cloud operations. 

In case of failures, the network structure should degrade gracefully amid limited node failures. 
Hot-swappable components are desired. There should be no critical paths or critical points which may 
become a single point of failure that pulls down the entire system. Most design innovations are in the 
topology structure of the network. The network structure is often divided into two layers. The lower 
layer is close to the end servers, and the upper layer establishes the backbone connections among the 
server groups or sub-clusters. This hierarchical interconnection approach appeals to building data 
centers with modular containers. 
4.2.2.4​Switch-centric Data-Center Design 
At the time of this writing, there are two approaches to building data-center-scale networks: One is switch- 
centric and the other is server-centric. In a switch-centric network, the switches are used to connect the 
server nodes. The switch-centric design does not affect the server side. No modifications to the servers are 
needed. The server-centric design does modify the operating system running on the servers. Special drivers 
are designed for relaying the traffic. Switches still have to be organized to achieve the connections. 
Example 4.4 A Fat-Tree Interconnection Network for Data Centers 

Figure 4.10 shows a fat-tree switch network design for data-center construction. The fat-tree topology is 
applied to interconnect the server nodes. The topology is organized into two layers. Server nodes are in the 
bottom layer, and edge switches are used to connect the nodes in the bottom layer. The upper layer aggregates 
the lower-layer edge switches. A group of aggregation switches, edge switches, and their leaf nodes form a pod. 
Core switches provide paths among different pods. The fat-tree structure provides multiple paths between any 
two server nodes. This provides fault-tolerant capability with an alternate path in case of some isolated link 
failures. 

 



The failure of an aggregation switch and core switch will not affect the connectivity of the whole ne-work. 
The failure of any edge switch can only affect a small number of end server nodes. The extra switches in a pod 
provide higher bandwidth to support cloud applications in massive data movement. The building blocks used are 
the low-cost Ethernet switches. This reduces the cost quite a bit. The routing table provides extra routing paths in 
case of failure. The routing algorithms are built inside the switches. The end server nodes in the data center are 
not affected during a switch failure, as long as the alternate routing path does not fail at the same time. 

 

 
Figure 4.10: A fat-tree interconnection topology for scalable data-center construction. 

 

4.2.3​Modular Data Center in Shipping Containers 
A modern data center is structured as a shipyard of server clusters housed in truck-towed 

containers. Figure 4.11 shows the housing of multiple sever racks in a truck-towed container in the 
SGI ICE Cube modular data center. Inside the container, hundreds of blade servers are housed in 
racks surrounding the container walls. An array of fans forces the heated air generated by the server 
racks to go through a heat exchanger, which cools the air for the next rack (detail in callout) on a 
continuous loop. The SGI ICE Cube container can house 46,080 processing cores or 30 PB of storage 
per container. 

Large-scale data center built with modular containers appear as a big shipping yard of container 
trucks. This container-based data center was motivated by demand for lower power consumption, 
higher computer density, and mobility to relocate data centers to better locations with lower 
electricity costs, better cooling water supplies, and cheaper housing for maintenance engineers. 
Sophisticated cooling technology enables up to 80% reduction in cooling costs compared with 
traditional warehouse data centers. Both chilled air circulation and cold water are flowing through the 
heat exchange pipes to keep the server racks cool and easy to repair. 

 
Data centers usually are built at a site where leases and utilities for electricity are cheaper, and 

cooling is more efficient. Both warehouse-scale and modular data centers in containers are needed. In 
fact, the modular truck containers can be used to put together a large-scale data center like a container 
shipping yard. In addition to location selection and power savings in data-center operations, one must 
consider data integrity, server monitoring, and security management in data centers. These problems 
are easier to handle if the data center is centralized in a single large building. 

 



4.2.3.1​Container Data-Center Construction 
The data-center module is housed in a truck-towable container. The modular container design 

includes the network, computer, storage, and cooling gear. One needs to increase cooling efficiency by 
varying the water and airflow with better airflow management. Another concern is to meet seasonal load 
requirements. The construction of a container-based data center may start with one system (server), then 
move to a rack system design, and finally to a container system. This staged development may take 
different amounts of time and demand increasing costs. Building a rack of 40 servers’ may take half a day. 
Extending this to a whole container system with multiple racks for 1,000 servers requires the layout 
of the floor space with power, networking, cooling, and complete testing. 

FIGURE 4.11: A modular data center built in a truck-towed ICE Cube container, that can be cooled by 
chilled air circulation with cold-water heat exchanges. 

 
The container must be designed to be weatherproof and easy to transport. Modular data-center 

construction and testing may take a few days to complete if all components are available and power 
and water supplies are handy. The modular data-center approach supports many cloud service 
applications. For example, the health care industry will benefit by installing a data center at all clinic 
sites. However, how to exchange information with the central database and maintain periodic 
consistency becomes a rather challenging design issue in a hierarchically structured data center. The 
security of collocation cloud services may involve multiple data centers. 

 
4.2.4​Interconnection of Modular Data Centers 
Container-based data-center modules are meant for construction of even larger data centers using a 
farm of container modules. Some proposed designs of container modules are presented in this 
section. Their interconnections are shown for building scalable data centers. The following example 
is a server-centric design of the data-center module. 
Example 4.5 A Server-Centric Network for a Modular Data Center 

Guo, et al. have developed a server-centric BCube network (Figure 4.12) for interconnecting modular 
data centers. The servers are represented by circles, and switches by rectangles. The BCube provides a 
layered structure. The bottom layer contains all the server nodes and they form Level 0. Level 1 switches 

form the top layer of BCube0. BCube is a recursively constructed structure. The BCube0 consists of n 

servers connecting to an n-port switch. The BCubek (k ≥ 1) is structured from n BCubek−1 with nk n-port 

switches. The example of BCube1 is illustrated in Figure 4.12, where the connection rule is that the i-th 

server in the j-th BCube0 connects to the j-th port of the i-th Level 1 switch. The servers in the BCube have 
multiple ports attached. This allows extra devices to be used in the server. 

The BCube provides multiple paths between any two nodes. Multiple paths provide extra 
bandwidth to support communication patterns in different cloud applications. The BCube provides a 
kernel module in the server OS to perform routing operations. The kernel module supports packet 
forwarding while the incoming packets are not destined to the current node. Such modification of the 
kernel will not influence the upper layer applications. Thus, the cloud application can still run on top 

 



of the BCube network structure without any modification. 

 



 

 
 

FIGURE 4.12: BCube, a high-performance, server-centric network for building modular data centers. 

4.2.4.1​Inter-Module Connection Networks 
The BCube is commonly used inside a server container. The containers are considered the 

building blocks for data centers. Thus, despite the design of the inner container network, one needs 
another level of networking among multiple containers. In Figure 4.13, Wu, et al. have proposed a 
net-work topology for intercontainer connection using the aforementioned BCube network as 
building blocks. The proposed network was named MDCube (for Modularized Datacenter Cube). 
This net-work connects multiple BCube containers by using high-speed switches in the BCube. 
Similarly, the MDCube is constructed by shuffling networks with multiple containers. Figure 4.13 
shows how 2D MDCube is constructed from nine BCube1 containers. 

The architecture builds a virtual hypercube at the container level, in addition to the cube structure 
inside the container (BCube). With the server container built with the BCube network, the MDCube 
is used to build a large-scale data center for supporting cloud application communication patterns. 
Readers are referred to the article at for detailed implementation and simulation results of this 
interconnection network over multiple modular data centers built in containers. In fact, there are 
many other ways to use MDCube to build the network. Essentially, this network architecture builds a 
virtual hypercube at the container level, in addition to the cube structure inside the container 
(BCube). With the server container built with the BCube network, the MDCube is used to build a 
large-scale data center for supporting cloud application communication patterns. 

 
4.2.5​Data-Center Management Issues 

Here are basic requirements for managing the resources of a data center. These suggestions have 
resulted from the design and operational experiences of many data centers in the IT and service 
industries. 

​​ Making common users happy The data center should be designed to provide quality service to 
the majority of users for at least 30 years. 

​​ Controlled information flow Information flow should be streamlined. Sustained services and 
high availability (HA) are the primary goals. 

​​ Multiuser manageability The system must be managed to support all functions of a data center, 
including traffic flow, database updating, and server maintenance. 

​​ Scalability to prepare for database growth The system should allow growth as workload 
increases. The storage, processing, I/O, power, and cooling subsystems should be scalable. 

 



​​ Reliability in virtualized infrastructure Failover, fault tolerance, and VM live migration should 
be integrated to enable recovery of critical applications from failures or disasters. 

 



​​ Low cost to both users and providers the cost to users and providers of the cloud system built 
over the data centers should be reduced, including all operational costs. 

​​ Security enforcement and data protection Data privacy and security defense mechanisms must 
be deployed to protect the data center against network attacks and system interrupts and to 
maintain data integrity from user abuses or network attacks. 

​​ Green information technology Saving power consumption and upgrading energy efficiency are 
in high demand when designing and operating current and future data centers. 

 
FIGURE 4.13: A 2D MDCube constructed from nine BCube containers. 

 

4.2.5.1​Marketplaces in Cloud Computing Services 
Container-based data-center implementation can be done more efficiently with factory 

racking, stacking, and packing. One should avoid layers of packaging at the customer site. However, 
the data centers are still custom-crafted rather than prefab units. The modular approach is more 
space-efficient with power densities in excess of 1250 W/sq ft. Rooftop or parking lot installation is 
acceptable. One should leave sufficient redundancy to allow upgrades over time. 
4.3​ARCHITECTURAL DESIGN OF COMPUTE AND STORAGE CLOUDS 

This section presents basic cloud design principles. We start with basic cloud architecture to 
process massive amounts of data with a high degree of parallelism. Then we study virtualization 
support, resource provisioning, infrastructure management, and performance modeling. 
4.3.1​A Generic Cloud Architecture Design 

An Internet cloud is envisioned as a public cluster of servers provisioned on demand to 
perform collective web services or distributed applications using data-center resources. In this 
section, we will discuss cloud design objectives and then present a basic cloud architecture design. 

 
4.3.1.1​Cloud Platform Design Goals 

 



Scalability, virtualization, efficiency, and reliability are four major  design goals of  a cloud 
computing platform. Clouds support Web 2.0 applications. Cloud management receives the user 

 



request, finds the correct resources, and then calls the provisioning services which invoke the 
resources in the cloud. The cloud management software needs to support both physical and virtual 
machines. Security in shared resources and shared access of data centers also pose another design 
challenge. 

The platform needs to establish a very large-scale HPC infrastructure. The hardware and software 
systems are combined to make it easy and efficient to operate. System scalability can benefit from 
cluster architecture. If one service takes a lot of processing power, storage capacity, or network 
traffic, it is simple to add more servers and bandwidth. System reliability can benefit from this 
architecture. Data can be put into multiple locations. For example, user e-mail can be put in three 
disks which expand to different geographically separate data centers. In such a situation, even if one 
of the data centers crashes, the user data is still accessible. The scale of the cloud architecture can be 
easily expanded by adding more servers and enlarging the network connectivity accordingly. 

 
4.3.1.2​Enabling Technologies for Clouds 

The key driving forces behind cloud computing is the ubiquity of broadband and wireless 
networking, falling storage costs, and progressive improvements in Internet computing software. 
Cloud users are able to demand more capacity at peak demand, reduce costs, experiment with new 
services, and remove unneeded capacity, whereas service providers can increase system utilization 
via multiplexing, virtualization, and dynamic resource provisioning. Clouds are enabled by the 
progress in hardware, software, and networking technologies summarized in Table 4.3. 

 
 

These technologies play instrumental roles in making cloud computing a reality. Most of these 
technologies are mature today to meet increasing demand. In the hardware area, the rapid progress in 
multicore CPUs, memory chips, and disk arrays has made it possible to build faster data centers with 
huge amounts of storage space. Resource virtualization enables rapid cloud deployment and disaster 
recovery. Service-oriented architecture (SOA) also plays a vital role. 

 
Progress in providing SaaS, Web 2.0 standards and Internet performance have all contributed to 

the emergence of cloud services. Today’s clouds are designed to serve a large number of tenants over 
massive volumes of data. The availability of large-scale, distributed storage systems is the foundation 
of today’s data centers. Of course, cloud computing is greatly benefitted by the progress made in 
license management and automatic billing techniques in recent years. 

 



4.3.1.3​A Generic Cloud Architecture 
Figure 4.14 shows security-aware cloud architecture. The Internet cloud is envisioned as a 

massive cluster of servers. These servers are provisioned on demand to perform collective web 
services or distributed applications using data-center resources. The cloud platform is formed 
dynamically by provisioning or deprovisioning servers, software, and database resources. Servers in 
the cloud can be physical machines or VMs. User interfaces are applied to request services. The 
provisioning tool carves out the cloud system to deliver the requested service. 

In addition to building the server cluster, the cloud platform demands distributed storage and 
accompanying services. The cloud computing resources are built into the data centers, which are 
typically owned and operated by a third-party provider. Consumers do not need to know the under- 
lying technologies. In a cloud, software becomes a service. The cloud demands a high degree of trust 
of massive amounts of data retrieved from large data centers. We need to build a framework to 
process large-scale data stored in the storage system. This demands a distributed file system over the 
database system. Other cloud resources are added into a cloud platform, including storage area 
networks (SANs), database systems, firewalls, and security devices. Web service providers offer 
special APIs that enable developers to exploit Internet clouds. Monitoring and metering units are used 
to track the usage and performance of provisioned resources. 

The software infrastructure of a cloud platform must handle all resource management and do most of 
the maintenance automatically. Software must detect the status of each node server joining and leaving, 
and perform relevant tasks accordingly. Cloud computing providers, such as Google and Microsoft, have 
built a large number of data centers all over the world. Each data center may have thousands of servers. 
The location of the data center is chosen to reduce power and cooling costs. Thus, the data centers are 
often built around hydroelectric power. The cloud physical platform builder is more concerned about the 
performance/price ratio and reliability issues than shear speed performance. 

In general, private clouds are easier to manage, and public clouds are easier to access. The trends 
in cloud development are that more and more clouds will be hybrid. This is because many cloud 
applications must go beyond the boundary of an intranet. One must learn how to create a private 
cloud and how to interact with public clouds in the open Internet. Security becomes a critical issue in 
safeguarding the operation of all cloud types. 

 

 
FIGURE 4.14: A security-aware cloud platform built with a virtual cluster of VMs, storage, and 
networking resources over the data-center servers operated by providers. 

 



4.3.2​Layered Cloud Architectural Development 
The architecture of a cloud is developed at three layers: infrastructure, platform, and application, 

as demonstrated in Figure 4.15. These three development layers are implemented with virtualization 
and standardization of hardware and software resources provisioned in the cloud. The services to 
public, private, and hybrid clouds are conveyed to users through networking support over the Inter- 
net and intranets involved. It is clear that the infrastructure layer is deployed first to support IaaS 
services. This infrastructure layer serves as the foundation for building the platform layer of the cloud 
for supporting PaaS services. In turn, the platform layer is a foundation for implementing the 
application layer for SaaS applications. Different types of cloud services demand application of these 
resources separately. 

The infrastructure layer is built with virtualized compute, storage, and network resources. The 
abstraction of these hardware resources is meant to provide the flexibility demanded by users. 
Internally, virtualization realizes automated provisioning of resources and optimizes the infrastructure 
management process. The platform layer is for general-purpose and repeated usage of the collection 
of software resources. This layer provides users with an environment to develop their applications, to 
test operation flows, and to monitor execution results and performance. The platform should be able 
to assure users that they have scalability, dependability, and security protection. In a way, the 
virtualized cloud platform serves as a “system middleware” between the infrastructure and 
application layers of the cloud. 

FIGURE 4.15: Layered architectural development of the cloud platform for IaaS, PaaS, and SaaS 
applications over the Internet. 

The application layer is formed with a collection of all needed software modules for SaaS 
applications. Service applications in this layer include daily office management work, such as 
information retrieval, document processing, and calendar and authentication services. The application 
layer is also heavily used by enterprises in business marketing and sales, consumer relation-ship 
management (CRM), financial transactions, and supply chain management. It should be noted that 
not all cloud services are restricted to a single layer. Many applications may apply resources at mixed 
layers. After all, the three layers are built from the bottom up with a dependence relationship. 

 



For example, Amazon EC2 provides not only virtualized CPU resources to users, but also 
management of these provisioned resources. Services at the application layer demand more work 
from providers. The best example of this is the Salesforce.com CRM service, in which the provider 
supplies not only the hardware at the bottom layer and the software at the top layer, but also the 
platform and software tools for user application development and monitoring. 

 
4.3.2.1​Market-Oriented Cloud Architecture 
As consumers rely on cloud providers to meet more of their computing needs, they will require a 
specific level of QoS to be maintained by their providers, in order to meet their objectives and sustain 
their operations. Cloud providers consider and meet the different QoS parameters of each individual 
consumer as negotiated in specific SLAs. To achieve this, the providers cannot deploy traditional 
system-centric resource management architecture. Instead, market-oriented resource management is 
necessary to regulate the supply and demand of cloud resources to achieve market equilibrium 
between supply and demand. 

The designer needs to provide feedback on economic incentives for both consumers and 
providers. The purpose is to promote QoS-based resource allocation mechanisms. In addition, clients 
can benefit from the potential cost reduction of providers, which could lead to a more competitive 
market, and thus lower prices. Figure 4.16 shows the high-level architecture for supporting market- 
oriented resource allocation in a cloud computing environment. This cloud is basically built with the 
following entities: 

Users or brokers acting on user’s behalf submit service requests from anywhere in the world to the 
data center and cloud to be processed. The SLA resource allocator acts as the interface between the 
data center/cloud service provider and external users/brokers. It requires the interaction of the 
following mechanisms to support SLA-oriented resource management. When a service request is first 
submitted the service request examiner interprets the submitted request for QoS requirements before 
determining whether to accept or reject the request. 

The request examiner ensures that there is no overloading of resources whereby many service 
requests cannot be fulfilled successfully due to limited resources. It also needs the latest status 
information regarding resource availability (from the VM Monitor mechanism) and workload 
processing (from the Service Request Monitor mechanism) in order to make resource allocation 
decisions effectively. Then it assigns requests to VMs and determines resource entitlements for 
allocated VMs. 

The Pricing mechanism decides how service requests are charged. For instance, requests can be 
charged based on submission time (peak/off-peak), pricing rates (fixed/changing), or availability of 
resources (supply/demand). Pricing serves as a basis for managing the supply and demand of 
computing resources within the data center and facilitates in prioritizing resource allocations 
effectively. The Accounting mechanism maintains the actual usage of resources by requests so that 
the final cost can be computed and charged to users. In addition, the maintained historical usage 
information can be utilized by the Ser-vice Request Examiner and Admission Control mechanism to 
improve resource allocation decisions. 

The VM Monitor mechanism keeps track of the availability of VMs and their resource 
entitlements. The Dispatcher mechanism starts the execution of accepted service requests on 
allocated VMs. The Service Request Monitor mechanism keeps track of the execution progress of 
service requests. Multiple VMs can be started and stopped on demand on a single physical machine 
to meet accepted service requests, hence providing maximum flexibility to configure various 
partitions of resources on the same physical machine to different specific requirements of service 
requests. In addition, multiple VMs can concurrently run applications based on different operating 
system environments on a single physical machine since the VMs are isolated from one another on 
the same physical machine. 

 



 

 
 

FIGURE 4.16: Market-oriented cloud architecture to expand/shrink leasing of resources with variation 
in QoS/demand from users. 

 

4.3.2.2​Quality of Service Factors 
The data center comprises multiple computing servers that provide resources to meet service 

demands. In the case of a cloud as a commercial offering to enable crucial business operations of 
companies, there are critical QoS parameters to consider in a service request, such as time, cost, 
reliability, and trust/security. In particular, QoS requirements cannot be static and may change over 
time due to continuing changes in business operations and operating environments. In short, there 
should be greater importance on customers since they pay to access services in clouds. In addition, the 
state of the art in cloud computing has no or limited support for dynamic negotiation of SLAs between 
participants and mechanisms for automatic allocation of resources to multiple competing requests. 
Negotiation mechanisms are needed to respond to alternate offers protocol for establishing SLAs. 

Commercial cloud offerings must be able to support customer-driven service management based 
on customer profiles and requested service requirements. Commercial clouds define computational 
risk management tactics to identify, assess, and manage risks involved in the execution of 
applications with regard to service requirements and customer needs. The cloud also derives 
appropriate market-based resource management strategies that encompass both customer-driven 
service management and computational risk management to sustain SLA-oriented resource 
allocation. The system incorporates autonomic resource management models that effectively self- 
manage changes in service requirements to satisfy both new service demands and existing service 
obligations, and leverage VM technology to dynamically assign resource shares according to service 
requirements. 
4.3.3​Virtualization Support and Disaster Recovery 

One very distinguishing feature of cloud computing infrastructure is the use of system 
virtualization and the modification to provisioning tools. Virtualizations of servers on a shared cluster 
can consolidate web services. As the VMs are the containers of cloud services, the provisioning tools 
will first find the corresponding physical machines and deploy the VMs to those nodes before 
scheduling the service to run on the virtual nodes. 

In addition, in cloud computing, virtualization also means the resources and fundamental 
infrastructure are virtualized. The user will not care about the computing resources that are used for 
pro-viding the services. Cloud users do not need to know and have no way to discover physical 
resources that are involved while processing a service request. Also, application developers do not 
care about some infrastructure issues such as scalability and fault tolerance (i.e., they are virtualized). 
Application developers focus on service logic. Figure 4.17 shows the infrastructure needed to 
virtualize the servers in a data center for implementing specific cloud applications. 

 



4.3.3.1​Hardware Virtualization 
In many cloud computing systems, virtualization software is used to virtualize the hardware. System 

virtualization software is a special kind of software which simulates the execution of hardware and runs 
even unmodified operating systems. Cloud computing systems use virtualization software as the running 
environment for legacy software such as old operating systems and unusual applications. Virtualization 
software is also used as the platform for developing new cloud applications that enable developers to use 
any operating systems and programming environments they like. The development environment and 
deployment environment can now be the same, which eliminates some runtime problems. 

Some cloud computing providers have used virtualization technology to provide this service for 
developers. As mentioned before, system virtualization software is considered the hardware analog 
mechanism to run an unmodified operating system, usually on bare hardware directly, on top of 
software. Table 4.4 lists some of the system virtualization software in wide use at the time of this 
writing. Currently, the VMs installed on a cloud computing platform are mainly used for hosting 
third-party programs. VMs provide flexible runtime services to free users from worrying about the 
system environment. 

 
FIGURE 4.17: Virtualized servers, storage, and network for cloud platform construction. 

 

 
Using VMs in a cloud computing platform ensures extreme flexibility for users. As the computing 

resources are shared by many users, a method is required to maximize the users’ privileges and still 
keep them separated safely. Traditional sharing of cluster resources depends on the user and group 
mechanism on a system. Such sharing is not flexible. Users cannot customize the system for their 
special purposes. Operating systems cannot be changed. The separation is not complete. 

 



 

 
FIGURE 4.18: Recovery overhead of a conventional disaster recovery scheme, compared with that 

required to recover from live migration of VMs. 
 

An environment that meets one user’s requirements often cannot satisfy another user. 
Virtualization allows users to have full privileges while keeping them separate. 

Users have full access to their own VMs, which are completely separate from other users’ VMs. 
Multiple VMs can be mounted on the same physical server. Different VMs may run with different 
OSes. We also need to establish the virtual disk storage and virtual networks needed by the VMs. The 
virtualized resources form a resource pool. The virtualization is carried out by special servers 
dedicated to generating the virtualized resource pool. The virtualized infrastructure (black box in the 
middle) is built with many virtualizing integration managers. These managers handle loads, 
resources, security, data, and provisioning functions. Figure 4.18 shows two VM platforms. Each 
platform carries out a virtual solution to a user job. All cloud services are managed in the boxes at the 
top. 

 
4.3.3.2​Virtualization Support in Public Clouds 

Armbrust, et al. have assessed in Table 4.4 three public clouds in the context of virtualization 
support: AWS, Microsoft Azure, and GAE. AWS provides extreme flexibility (VMs) for users to 
execute their own applications. GAE provides limited application-level virtualization for users to 
build applications only based on the services that are created by Google. Microsoft provides 
programming-level virtualization (.NET virtualization) for users to build their applications. 

 
The VMware tools apply to workstations, servers, and virtual infrastructure. The Microsoft tools 

are used on PCs and some special servers. The XenEnterprise tool applies only to Xen-based servers. 
Everyone is interested in the cloud; the entire IT industry is moving toward the vision of the cloud. 
Virtualization leads to HA, disaster recovery, dynamic load leveling, and rich provisioning support. 
Both cloud computing and utility computing leverage the benefits of virtualization to provide a 
scalable and autonomous computing environment. 

 



4.3.3.3​Storage Virtualization for Green Data Centers 
IT power consumption in the United States has more than doubled to 3 percent of the total 

energy consumed in the country. The large number of data centers in the country has contributed to 
this energy crisis to a great extent. More than half of the companies in the Fortune 500 are actively 
implementing new corporate energy policies. Recent surveys from both IDC and Gartner confirm the 
fact that virtualization had a great impact on cost reduction from reduced power consumption in 
physical computing systems. This alarming situation has made the IT industry become more energy- 
aware. With little evolution of alternate energy resources, there is an imminent need to con-serve 
power in all computers. Virtualization and server consolidation have already proven handy in this 
aspect. Green data centers and benefits of storage virtualization are considered to further strengthen 
the synergy of green computing. 
4.3.3.4​Virtualization for IaaS 

VM technology has increased in ubiquity. This has enabled users to create customized 
environments atop physical infrastructure for cloud computing. Use of VMs in clouds has the 
following distinct benefits: (1) System administrators consolidate workloads of underutilized servers 
in fewer servers; 

VMs have the ability to run legacy code without interfering with other APIs; (3) VMs can be used 
to improve security through creation of sandboxes for running applications with questionable 
reliability; And (4) virtualized cloud platforms can apply performance isolation, letting providers 
offer some guarantees and better QoS to customer applications. 
4.3.3.5​VM Cloning for Disaster Recovery 

VM technology requires an advanced disaster recovery scheme. One scheme is to recover one 
physical machine by another physical machine. The second scheme is to recover one VM by another 
VM. As shown in the top timeline of Figure 4.18, traditional disaster recovery from one physical 
machine to another is rather slow, complex, and expensive. Total recovery time is attributed to the 
hardware configuration, installing and configuring the OS, installing the backup agents, and the long 
time to restart the physical machine. To recover a VM platform, the installation and configuration 
times for the OS and backup agents are eliminated. Therefore, we end up with a much shorter disaster 
recovery time, about 40 percent of that to recover the physical machines. Virtualization aids in fast 
disaster recovery by VM encapsulation. 

 
The cloning of VMs offers an effective solution. The idea is to make a clone VM on a remote 

server for every running VM on a local server. Among all the clone VMs, only one needs to be 
active. The remote VM should be in a suspended mode. A cloud control center should be able to 
activate this clone VM in case of failure of the original VM, taking a snapshot of the VM to enable 
live migration in a minimal amount of time. The migrated VM can run on a shared Internet 
connection. Only updated data and modified states are sent to the suspended VM to update its state. 
The Recovery Property Objective (RPO) and Recovery Time Objective (RTO) are affected by the 
number of snapshots taken. Security of the VMs should be enforced during live migration of VMs. 
4.3.4​Architectural Design Challenges 
In this section, we will identify six open challenges in cloud architecture development. Armbrust, et 
al. has observed some of these topics as both obstacles and opportunities. Plausible solutions to meet 
these challenges are discussed shortly. 

 
4.3.4.1​Challenge 1—Service Availability and Data Lock-in Problem 

The management of a cloud service by a single company is often the source of single points of 
failure. To achieve HA, one can consider using multiple cloud providers. Even if a company has 
multiple data centers located in different geographic regions, it may have common software 

 



infrastructure and accounting systems. Therefore, using multiple cloud providers may provide more 
protection from failures. Another availability obstacle is distributed denial of service (DDoS) attacks. 
Criminals threaten to cut off the incomes of SaaS providers by making their services unavailable. 
Some utility computing services offer SaaS providers the opportunity to defend against DDoS attacks 
by using quick scale-ups. 

Software stacks have improved interoperability among different cloud platforms, but the APIs 
itself are still proprietary. Thus, customers cannot easily extract their data and programs from one site 
to run on another. The obvious solution is to standardize the APIs so that a SaaS developer can 
deploy services and data across multiple cloud providers. This will rescue the loss of all data due to 
the failure of a single company. In addition to mitigating data lock-in concerns, standardization of 
APIs enables a new usage model in which the same software infrastructure can be used in both public 
and private clouds. Such an option could enable “surge computing,” in which the public cloud is used 
to capture the extra tasks that cannot be easily run in the data center of a private cloud. 
4.3.4.2​Challenge 2—Data Privacy and Security Concerns 

Current cloud offerings are essentially public (rather than private) networks, exposing the system 
to more attacks. Many obstacles can be overcome immediately with well-understood technologies 
such as encrypted storage, virtual LANs, and network middle boxes (e.g., firewalls, packet filters). 
For example, you could encrypt your data before placing it in a cloud. Many nations have laws 
requiring SaaS providers to keep customer data and copyrighted material within national boundaries. 

Traditional network attacks include buffer overflows, DoS attacks, spyware, malware, rootkits, 
Trojan horses, and worms. In a cloud environment, newer attacks may result from hypervisor mal- ware, 
guest hopping and hijacking, or VM rootkits. Another type of attack is the man-in-the-middle attack for 
VM migrations. In general, passive attacks steal sensitive data or passwords. Active attacks may 
manipulate kernel data structures which will cause major damage to cloud servers. 
4.3.4.3​Challenge 3—Unpredictable Performance and Bottlenecks 

Multiple VMs can share CPUs and main memory in cloud computing, but I/O sharing is 
problematic. For example, to run 75 EC2 instances with the STREAM benchmark requires a mean 
bandwidth of 1,355 MB/second. However, for each of the 75 EC2 instances to write 1 GB files to the 
local disk requires a mean disk write bandwidth of only 55 MB/second. This demonstrates the 
problem of I/O interference between VMs. One solution is to improve I/O architectures and operating 
systems to efficiently virtualize interrupts and I/O channels. 

Internet applications continue to become more data-intensive. If we assume applications to be 
“pulled apart” across the boundaries of clouds, this may complicate data placement and transport. 
Cloud users and providers have to think about the implications of placement and traffic at every level 
of the system, if they want to minimize costs. This kind of reasoning can be seen in Amazon’s 
development of its new CloudFront service. Therefore, data transfer bottlenecks must be removed, 
bottleneck links must be widened, and weak servers should be removed. 
4.3.4.4​Challenge 4—Distributed Storage and Widespread Software Bugs 

The database is always growing in cloud applications. The opportunity is to create a storage 
system that will not only meet this growth, but also combine it with the cloud advantage of scaling 
arbitrarily up and down on demand. This demands the design of efficient distributed SANs. Data 
centers must meet programmers’ expectations in terms of scalability, data durability, and HA. Data 
consistence checking in SAN-connected data centers is a major challenge in cloud computing. 

Large-scale distributed bugs cannot be reproduced, so the debugging must occur at a scale in the 
production data centers. No data center will provide such a convenience. One solution may be a 
reliance on using VMs in cloud computing. The level of virtualization may make it possible to 
capture valuable information in ways that are impossible without using VMs. Debugging over 
simulators is another approach to attacking the problem, if the simulator is well designed. 

 



4.3.4.5​Challenge 5—Cloud Scalability, Interoperability, and Standardization 
The pay-as-you-go model applies to storage and network bandwidth; both are counted in terms of 

the number of bytes used. Computation is different depending on virtualization level. GAE 
automatically scales in response to load increases and decreases; users are charged by the cycles used. 
AWS charges by the hour for the number of VM instances used, even if the machine is idle. The 
opportunity here is to scale quickly up and down in response to load variation, in order to save 
money, but without violating SLAs. 

Open Virtualization Format (OVF) describes an open, secure, portable, efficient, and extensible 
format for the packaging and distribution of VMs. It also defines a format for distributing software to 
be deployed in VMs. This VM format does not rely on the use of a specific host platform, 
virtualization platform, or guest operating system. The approach is to address virtual platform- 
agnostic packaging with certification and integrity of packaged software. The package supports 
virtual appliances to span more than one VM. 

OVF also defines a transport mechanism for VM templates, and can apply to different 
virtualization platforms with different levels of virtualization. In terms of cloud standardization, we 
suggest the ability for virtual appliances to run on any virtual platform. We also need to enable VMs 
to run on heterogeneous hardware platform hypervisors. This requires hypervisor-agnostic VMs. We 
also need to realize cross-platform live migration between x86 Intel and AMD technologies and 
support legacy hardware for load balancing. All this issue is wide open for further research. 

 
4.3.4.6​Challenge 6—Software Licensing and Reputation Sharing 

Many cloud computing providers originally relied on open source software because the licensing 
model for commercial software is not ideal for utility computing. The primary opportunity is either 
for open source to remain popular or simply for commercial software companies to change their 
licensing structure to better fit cloud computing. One can consider using both pay-for-use and bulk- 
use licensing schemes to widen the business coverage. 

One customer’s bad behavior can affect the reputation of the entire cloud. For instance, black- 
listing of EC2 IP addresses by spam-prevention services may limit smooth VM installation. An 
opportunity would be to create reputation-guarding services similar to the “trusted e-mail” services 
currently offered (for a fee) to services hosted on smaller ISPs. Another legal issue concerns the 
transfer of legal liability. Cloud providers want legal liability to remain with the customer, and vice 
versa. This problem must be solved at the SLA level. We will study reputation systems for protecting 
data centers in the next section. 
4.4​PUBLIC CLOUD PLATFORMS: GAE, AWS, AND AZURE 

In this section, we will review the system architectures of four commercially available cloud 
platforms. These case studies will prepare readers for subsequent sections and chapters. 
4.4.1​Public Clouds and Service Offerings 

Cloud services are demanded by computing and IT administrators, software vendors, and end 
users. Figure 4.19 introduces five levels of cloud players. At the top level, individual users and 
organizational users demand very different services. The application providers at the SaaS level serve 
mainly individual users. Most business organizations are serviced by IaaS and PaaS providers. The 
infra-structure services (IaaS) provide compute, storage, and communication resources to both 
applications and organizational users. The cloud environment is defined by the PaaS or platform 
providers. Note that the platform providers support both infrastructure services and organizational 
users directly. 

Cloud services rely on new advances in machine virtualization, SOA, grid infrastructure 
management, and power efficiency. Consumers purchase such services in the form of IaaS, PaaS, or 

 



SaaS as described earlier. Also, many cloud entrepreneurs are selling value-added utility services to 
massive numbers of users. The cloud industry leverages the growing demand by many enterprises 
and business users to outsource their computing and storage jobs to professional providers. The 
provider service charges are often much lower than the cost for users to replace their obsolete servers 
frequently. Table 4.5 summarizes the profiles of five major cloud providers by 2010 standards. 

 
FIGURE 4.19: Roles of individual and organizational users and their interaction with cloud 

providers under various cloud service models. 

Amazon pioneered the IaaS business in supporting e-commerce and cloud applications by 
millions of customers simultaneously. The elasticity in the Amazon cloud comes from the flexibi-lity 
provided by the hardware and software services. EC2 provides an environment for running virtual 
servers on demand. S3 provides unlimited online storage space. Both EC2 and S3 are sup-ported in 
the AWS platform. Microsoft offers the Azure platform for cloud applications. It has also supported 
the .NET service, dynamic CRM, Hotmail, and SQL applications. Salsforce.com offers extensive 
SaaS applications for online CRM applications using its Force.com platforms. 

 
As Table 4.5 shows, all IaaS, PaaS, and SaaS models allow users to access services over the 

Internet, relying entirely on the infrastructures of the cloud service providers. These models are 
offered based on various SLAs between the providers and the users. SLAs are more common in 
network services as they account for the QoS characteristics of network services. For cloud 

 



computing services, it is difficult to find a reasonable precedent for negotiating an SLA. In a broader 
sense, the SLAs for cloud computing address service availability, data integrity, privacy, and security 
protection. Blank spaces in the table refer to unknown or underdeveloped features. 
4.4.2​Google App Engine (GAE) 

Google has the world’s largest search engine facilities. The company has extensive 
experience in massive data processing that has led to new insights into data-center design and novel 
programming models that scale to incredible sizes. The Google platform is based on its search engine 
expertise, but as discussed earlier with MapReduce, this infrastructure is applicable to many other 
areas. Google has hundreds of data centers and has installed more than 460,000 servers worldwide. 
For example, 200 Google data centers are used at one time for a number of cloud applications. Data 
items are stored in text, images, and video and are replicated to tolerate faults or failures. Here we 
discuss Google’s App Engine (GAE) which offers a PaaS platform supporting various cloud and web 
applications. 
4.4.2.1​Google Cloud Infrastructure 

Google has pioneered cloud development by leveraging the large number of data centers it 
operates. For example, Google pioneered cloud services in Gmail, Google Docs, and Google Earth, 
among other applications. These applications can support a large number of users simultaneously 
with HA. Notable technology achievements include the Google File System (GFS), MapReduce, 
BigTable, and Chubby. In 2008, Google announced the GAE web application platform which is 
becoming a common platform for many small cloud service providers. This platform specializes in 
supporting scalable (elastic) web applications. GAE enables users to run their applications on a large 
number of data centers associated with Google’s search engine operations. 
4.4.2.2​GAE Architecture 
Figure 4.20 shows the major building blocks of the Google cloud platform which has been used to 
deliver the cloud services highlighted earlier. GFS is used for storing large amounts of data. 
MapReduce is for use in application program development. Chubby is used for distributed 
application lock services. BigTable offers a storage service for accessing structured data. 
These technologies are described in more detail in Chapter 8. Users can interact with Google 
applications via the web interface provided by each application. Third-party application providers can 
use GAE to build cloud applications for providing services. The applications all run in data centers 
under tight management by Google engineers. Inside each data center, there are thousands of servers 
forming different clusters. 

Google is one of the larger cloud application providers; although its fundamental service pro- 
gram is private and outside people cannot use the Google infrastructure to build their own service. 
The building blocks of Google’s cloud computing application include the Google File System for 
storing large amounts of data, the MapReduce programming framework for application developers, 
Chubby for distributed application lock services, and BigTable as a storage service for accessing 
structural or semi-structural data. With these building blocks, Google has built many cloud 
applications. Figure 4.20 shows the overall architecture of the Google cloud infrastructure. A typical 
cluster configuration can run the Google File System, MapReduce jobs, and BigTable servers for 
structure data. Extra services such as Chubby for distributed locks can also run in the clusters. 

GAE runs the user program on Google’s infrastructure. As it is a platform running third-party 
programs, application developers now do not need to worry about the maintenance of servers. GAE 
can be thought of as the combination of several software components. The frontend is an application 
framework which is similar to other web application frameworks such as ASP, J2EE, and JSP. At the 
time of this writing, GAE supports Python and Java programming environments. The applications 
can run similar to web application containers. The frontend can be used as the dynamic web serving 
infrastructure which can provide the full support of common technologies. 

 



 

 
FIGURE 4.20: Google cloud platform and major building blocks, the blocks shown are large clusters of low- 

cost servers. 

4.4.2.3​Functional Modules of GAE 
The GAE platform comprises the following five major components. The GAE is not an 

infrastructure platform, but rather an application development platform for users. We describe the 
component functionalities separately. 

 
●​ The datastore offers object-oriented, distributed, structured data storage services based on 

BigTable techniques. The datastore secures data management operations. 
●​ The application runtime environment offers a platform for scalable web programming and 

execution. It supports two development languages: Python and Java. 
●​ The software development kit (SDK) is used for local application development. The SDK 

allows users to execute test runs of local applications and upload application code. 
●​ The administration console is used for easy management of user application 

development cycles, instead of for physical resource management. 
●​ The GAE web service infrastructure provides special interfaces to guarantee flexible use and 

management of storage and network resources by GAE. 

Google offers essentially free GAE services to all Gmail account owners. You can register for a 
GAE account or use your Gmail account name to sign up for the service. The service is free within a 
quota. If you exceed the quota, the page instructs you on how to pay for the service. Then you 
download the SDK and read the Python or Java guide to get started. Note that GAE only accepts 
Python, Ruby, and Java programming languages. The platform does not provide any IaaS services, 
unlike Amazon, which offers Iaas and PaaS. This model allows the user to deploy user-built 
applications on top of the cloud infrastructure that are built using the programming languages and 
soft-ware tools supported by the provider (e.g., Java, Python). Azure does this similarly for .NET. 
The user does not manage the underlying cloud infrastructure. The cloud provider facilitates support 
of application development, testing, and operation support on a well-defined service platform. 

 
4.4.2.4​GAE Applications 

Well-known GAE applications include the Google Search Engine, Google Docs, Google Earth, 
and Gmail. These applications can support large numbers of users simultaneously. Users can interact 
with Google applications via the web interface provided by each application. Third-party application 
providers can use GAE to build cloud applications for providing services. The applications are all run 

 



in the Google data centers. Inside each data center, there might be thousands of server nodes to form 
different clusters. (See the previous section.) Each cluster can run multipurpose servers. 

GAE supports many web applications. One is a storage service to store application-specific data in 
the Google infrastructure. The data can be persistently stored in the backend storage server while still 
providing the facility for queries, sorting, and even transactions similar to traditional database 
systems. GAE also provides Google-specific services, such as the Gmail account service (which is 
the login service, that is, applications can use the Gmail account directly). This can eliminate the 
tedious work of building customized user management components in web applications. Thus, web 
applications built on top of GAE can use the APIs authenticating users and sending e-mail using 
Google accounts. 
4.4.3​Amazon Web Services (AWS) 
VMs can be used to share computing resources both flexibly and safely. Amazon has been a leader in 
providing public cloud services (http://aws.amazon.com/). Amazon applies the IaaS model in pro- 
viding its services. Figure 4.21 shows the AWS architecture. EC2 provides the virtualized platforms 
to the host VMs where the cloud application can run. S3 (Simple Storage Service) provides the 
object-oriented storage service for users. EBS (Elastic Block Service) provides the block storage 
interface which can be used to support traditional applications. SQS stands for Simple Queue Service, 
and its job is to ensure a reliable message service between two processes. The message can be kept 
reliably even when the receiver processes are not running. Users can access their objects through 
SOAP with either browsers or other client programs which support the SOAP standard. 

Table 4.6 summarizes the service offerings by AWS in 12 application tracks. Details of EC2, S3, 
and EBS are available in Chapter 6 where we discuss programming examples. Amazon offers 
queuing and notification services (SQS and SNS), which are implemented in the AWS cloud. Note 
brokering systems run very efficiently in clouds and offer a striking model for controlling sensors and 
providing office support of smartphones and tablets. Different from Google, Amazon provides a more 
flexible cloud computing platform for developers to build cloud applications. 

Small and medium-size companies can put their business on the Amazon cloud platform. Using 
the AWS plat-form, they can service large numbers of Internet users and make profits through those 
paid services. 

 

FIGURE 4.21: Amazon cloud computing infrastructure (Key services are identified here; many more are 
listed in Table 4.6). 

 

 

http://aws.amazon.com/)


ELB automatically distributes incoming application traffic across multiple Amazon EC2 instances 
and allows user to avoid non-operating nodes and to equalize load on functioning images. Both auto- 
scaling and ELB are enabled by CloudWatch which monitors running instances. CloudWatch is a web 
service that provides monitoring for AWS cloud resources, starting with Amazon EC2. It pro- vides 
customers with visibility into resource utilization, operational performance, and overall demand 
patterns, including metrics such as CPU utilization, disk reads and writes, and network traffic. 

 
Amazon (like Azure) offers a Relational Database Service (RDS) with a messaging interface to be 

covered in Section 4.1. The Elastic MapReduce capability is equivalent to Hadoop running on the 
basic EC2 offering. AWS Import/Export allows one to ship large volumes of data to and from EC2 by 
shipping physical disks; it is well known that this is often the highest bandwidth connection between 
geographically distant systems. Amazon CloudFront implements a content distribution network. 
Amazon DevPay is a simple-to-use online billing and account management service that makes it easy 
for businesses to sell applications that are built into or run on top of AWS. 

 
FPS provides developers of commercial systems on AWS with a convenient way to charge 

Amazon’s customers that use such services built on AWS. Customers can pay using the same login 
credentials, shipping address, and payment information they already have on file with Amazon. The 
FWS allows merchants to access Amazon’s fulfillment capabilities through a simple web service 
interface. Merchants can send order information to Amazon to fulfill customer orders on their behalf. 
In July 2010, Amazon offered MPI clusters and cluster compute instances. The AWS cluster compute 
instances use hardware-assisted virtualization instead of the para-virtualization used by other instance 
types and requires booting from the EBS. Users are freed to create a new AMI as needed. 

 
 

4.4.4​Microsoft Windows Azure 
In 2008, Microsoft launched a Windows Azure platform to meet the challenges in cloud 

computing. This platform is built over Microsoft data centers. Figure 4.22 shows the overall 
architecture of Microsoft’s cloud platform. The platform is divided into three major component 
platforms. Windows Azure offers a cloud platform built on Windows OS and based on Microsoft 
virtualization technology. Applications are installed on VMs deployed on the data-center servers. 
Azure manages all servers, storage, and network resources of the data center. On top of the 
infrastructure are the various services for building different cloud applications. Cloud-level services 
provided by the Azure platform are introduced below. 

 



●​ Live service Users can visit Microsoft Live applications and apply the data involved 
across multiple machines concurrently. 

●​ .NET service This package supports application development on local hosts and execution on 
cloud machines. 

●​ SQL Azure This function makes it easier for users to visit and use the relational database 
associated with the SQL server in the cloud. 

●​ SharePoint service This provides a scalable and manageable platform for users to develop 
their special business applications in upgraded web services. 

●​ Dynamic CRM service This provides software developers a business platform in managing CRM 
applications in financing, marketing, and sales and promotions. 

 

All these cloud services in Azure can interact with traditional Microsoft software applications, 
such as Windows Live, Office Live, Exchange online, SharePoint online, and dynamic CRM online. 
The Azure platform applies the standard web communication protocols SOAP and REST. The Azure 
service applications allow users to integrate the cloud application with other platforms or third-party 
clouds. You can download the Azure development kit to run a local version of Azure. The powerful 
SDK allows Azure application to be developed and debugged on the Windows hosts. 

 
FIGURE 4.22: Microsoft Windows Azure platform for cloud computing. 

4.5​INTER-CLOUD RESOURCE MANAGEMENT 
This section characterizes the various cloud service models and their extensions. The cloud 

service trends are outlined. Cloud resource management and intercloud resource exchange schemes 
are reviewed. 
4.5.1​Extended Cloud Computing Services 

Figure 4.23 shows six layers of cloud services, ranging from hardware, network, and collocation 
to infrastructure, platform, and software applications. We already introduced the top three service 
layers as SaaS, PaaS, and IaaS, respectively. The cloud platform provides PaaS, which sits on top of 
the IaaS infrastructure. The top layer offers SaaS. These must be implemented on the cloud plat- 
forms provided. Although the three basic models are dissimilar in usage, as shown in Table 4.7, they 
are built one on top of another. The implication is that one cannot launch SaaS applications with a 
cloud platform. The cloud platform cannot be built if compute and storage infrastructures are not 
there. 

 



The bottom three layers are more related to physical requirements. The bottommost layer provides 
Hardware as a Service (HaaS). The next layer is for interconnecting all the hardware components, 
and is simply called Network as a Service (NaaS). Virtual LANs fall within the scope of NaaS. The 
next layer up offers Location as a Service (LaaS), which provides a collocation service to house, 
power, and secure all the physical hardware and network resources. Some authors say this layer 
provides Security as a Service (“SaaS”). The cloud infrastructure layer can be further subdi-vided as 
Data as a Service (DaaS) and Communication as a Service (CaaS) in addition to compute and storage 
in IaaS. 
We will examine commercial trends in cloud services in subsequent sections. Here we will mainly cover 
the top three layers with some success stories of cloud computing. As shown in Table 4.7, cloud players 
are divided into three classes: (1) cloud service providers and IT administrators, (2) soft-ware developers 
or vendors, and (3) end users or business users. These cloud players vary in their roles under the IaaS, 
PaaS, and SaaS models. The table entries distinguish the three cloud models as viewed by different 
players. From the software vendors’ perspective, application performance on a given cloud platform is 
most important. From the providers’ perspective, cloud infrastructure performance is the primary 
concern. From the end users’ perspective, the quality of services, including security, is the most 
important. 

 
Figure 4.23 : A stack of six layers of cloud services and their provides 

 

 

4.5.1.1​Cloud Service Tasks and Trends 
Cloud services are introduced in five layers. The top layer is for SaaS applications, as further 
subdivided into the five application areas in Figure 4.23, mostly for business applications. For 
example, CRM is heavily practiced in business promotion, direct sales, and marketing services. CRM 
offered the first SaaS on the cloud successfully. The approach is to widen market coverage by 
investigating customer behaviors and revealing opportunities by statistical analysis. SaaS tools also 
apply to distributed collaboration, and financial and human resources management. These cloud 
services have been growing rapidly in recent years. 

 



PaaS is provided by Google, Salesforce.com, and Facebook, among others. IaaS is provided by 
Amazon, Windows Azure, and RackRack, among others. Collocation services require multiple cloud 
providers to work together to support supply chains in manufacturing. Network cloud services 
provide communications such as those by AT&T, Qwest, and AboveNet. Details can be found in 
Clou’s introductory book on business clouds. The vertical cloud services in Figure 4.25 refer to a 
sequence of cloud services that are mutually supportive. Often, cloud mashup is practiced in vertical 
cloud applications. 
4.5.1.2​Software Stack for Cloud Computing 

Despite the various types of nodes in the cloud computing cluster, the overall software stacks are 
built from scratch to meet rigorous goals (see Table 4.7). Developers have to consider how to design 
the system to meet critical requirements such as high throughput, HA, and fault tolerance. Even the 
operating system might be modified to meet the special requirement of cloud data processing. Based 
on the observations of some typical cloud computing instances, such as Google, Microsoft, and 
Yahoo!, the overall software stack structure of cloud computing software can be viewed as layers. 
Each layer has its own purpose and provides the interface for the upper layers just as the traditional 
software stack does. However, the lower layers are not completely transparent to the upper layers. 

 
The platform for running cloud computing services can be either physical servers or virtual 

servers. By using VMs, the platform can be flexible, that is, the running services are not bound to 
specific hardware platforms. This brings flexibility to cloud computing platforms. The software layer 
on top of the platform is the layer for storing massive amounts of data. This layer acts like the file 
system in a traditional single machine. Other layers running on top of the file system are the layers 
for executing cloud computing applications. They include the database storage system, program-ming 
for large-scale clusters, and data query language support. The next layers are the components in the 
software stack. 
4.5.1.3​Runtime Support Services 

As in a cluster environment, there are also some runtime supporting services in the cloud 
computing environment. Cluster monitoring is used to collect the runtime status of the entire cluster. 
One of the most important facilities is the cluster job management system introduced in Chapter 2. 
The scheduler queues the tasks submitted to the whole cluster and assigns the tasks to the processing 
nodes according to node availability. The distributed scheduler for the cloud application has special 
characteristics that can support cloud applications, such as scheduling the programs written in 
MapReduce style. The runtime support system keeps the cloud cluster working properly with high 
efficiency. 

 
Runtime support is software needed in browser-initiated applications applied by thousands of 

cloud customers. The SaaS model provides the software applications as a service, rather than letting 
users purchase the software. As a result, on the customer side, there is no upfront investment in ser- 
vers or software licensing. On the provider side, costs are rather low, compared with conventional 
hosting of user applications. The customer data is stored in the cloud that is either vendor proprietary 
or a publicly hosted cloud supporting PaaS and IaaS. 

 
4.5.2​Resource Provisioning and Platform Deployment 

The emergence of computing clouds suggests fundamental changes in software and 
hardware architecture. Cloud architecture puts more emphasis on the number of processor cores or 
VM instances. Parallelism is exploited at the cluster node level. In this section, we will discuss 
techniques to provision computer resources or VMs. Then we will talk about storage allocation 
schemes to interconnect distributed computing infrastructures by harnessing the VMs dynamically. 

 



4.5.2.1​Provisioning of Compute Resources (VMs) 
Providers supply cloud services by signing SLAs with end users. The SLAs must commit 

sufficient resources such as CPU, memory, and bandwidth that the user can use for a preset period. 
Under provisioning of resources will lead to broken SLAs and penalties. Over provisioning of 
resources will lead to resource underutilization, and consequently, a decrease in revenue for the 
provider. Deploying an autonomous system to efficiently provision resources to users is a challenging 
problem. The difficulty comes from the unpredictability of consumer demand, software and hardware 
failures, heterogeneity of services, power management, and conflicts in signed SLAs between 
consumers and service providers. 

Efficient VM provisioning depends on the cloud architecture and management of cloud 
infrastructures. Resource provisioning schemes also demand fast discovery of services and data in 
cloud computing infrastructures. In a virtualized cluster of servers, this demands efficient installation 
of VMs, live VM migration, and fast recovery from failures. To deploy VMs, users treat them as 
physical hosts with customized operating systems for specific applications. For example, Amazon’s 
EC2 uses Xen as the virtual machine monitor (VMM). The same VMM is used in IBM’s Blue Cloud. 

In the EC2 platform, some predefined VM templates are also provided. Users can choose different 
kinds of VMs from the templates. IBM’s Blue Cloud does not provide any VM templates. In general, any 
type of VM can run on top of Xen. Microsoft also applies virtualization in its Azure cloud platform. The 
provider should offer resource-economic services. Power-efficient schemes for caching, query pro-cessing, 
and thermal management are mandatory due to increasing energy waste by heat dissipation from data 
centers. Public or private clouds promise to streamline the on-demand provisioning of soft-ware, hardware, 
and data as a service, achieving economies of scale in IT deployment and operation. 
4.5.2.2​Resource Provisioning Methods 

Figure 4.24 shows three cases of static cloud resource provisioning policies. In case (a), over 
provisioning with the peak load causes heavy resource waste (shaded area). In case (b), under 
provisioning (along the capacity line) of resources results in losses by both user and provider in that 
paid demand by the users (the shaded area above the capacity) is not served and wasted resources still 
exist for those demanded areas below the provisioned capacity. In case (c), the constant provisioning 
of resources with fixed capacity to a declining user demand could result in even worse resource 
waste. The user may give up the service by canceling the demand, resulting in reduced revenue for 
the provider. Both the user and provider may be losers in resource provisioning without elasticity. 

Three resource-provisioning methods are presented in the following sections. The demand-driven 
method provides static resources and has been used in grid computing for many years. The event- 
driven method is based on predicted workload by time. The popularity-driven method is based on 
Internet traffic monitored. We characterize these resource provisioning methods as follows (see 
Figure 4.25). 

 
FIGURE 4.24: Three cases of cloud resource provisioning without elasticity: (a) heavy waste due to over 

provisioning,(b) under provisioning and (c) under- and then over provisioning. 

 



4.5.2.3​Demand-Driven Resource Provisioning 
This method adds or removes computing instances based on the current utilization level of the 

allocated resources. The demand-driven method automatically allocates two Xeon processors for the 
user application, when the user was using one Xeon processor more than 60 percent of the time for an 
extended period. In general, when a resource has surpassed a threshold for a certain amount of time, 
the scheme increases that resource based on demand. When a resource is below a threshold for a 
certain amount of time, that resource could be decreased accordingly. Amazon implements such an 
auto-scale feature in its EC2 platform. This method is easy to implement. The scheme does not work 
out right if the workload changes abruptly. 

The x-axis in Figure 4.25 is the time scale in milliseconds. In the beginning, heavy fluctuations of 
CPU load are encountered. All three methods have demanded a few VM instances initially. 
Gradually, the utilization rate becomes more stabilized with a maximum of 20 VMs (100 percent 
utilization) provided for demand-driven provisioning in Figure 4.25(a). However, the event-driven 
method reaches a stable peak of 17 VMs toward the end of the event and drops quickly in Figure 
4.25(b). The popularity provisioning shown in Figure 4.25(c) leads to a similar fluctuation with peak 
VM utilization in the middle of the plot. 
4.5.2.4​Event-Driven Resource Provisioning 

This scheme adds or removes machine instances based on a specific time event. The scheme 
works better for seasonal or predicted events such as Christmastime in the West and the Lunar New 
Year in the East. During these events, the number of users grows before the event period and then 
decreases during the event period. This scheme anticipates peak traffic before it happens. The method 
results in a minimal loss of QoS, if the event is predicted correctly. Otherwise, wasted resources are 
even greater due to events that do not follow a fixed pattern. 
4.5.2.5​Popularity-Driven Resource Provisioning 

In this method, the Internet searches for popularity of certain applications and creates the 
instances by popularity demand. The scheme anticipates increased traffic with popularity. Again, the 
scheme has a minimal loss of QoS, if the predicted popularity is correct. Resources may be wasted if 
traffic does not occur as expected. In Figure 4.25(c), EC2 performance by CPU utilization rate (the 
dark curve with the percentage scale shown on the left) is plotted against the number of VMs 
provisioned (the light curves with scale shown on the right, with a maximum of 20 VMs 
provisioned). 
4.5.2.6​Dynamic Resource Deployment 

The cloud uses VMs as building blocks to create an execution environment across multiple 
resource sites. The InterGrid-managed infrastructure was developed by a Melbourne University 
group. Dynamic resource deployment can be implemented to achieve scalability in performance. The 
Inter-Grid is a Java-implemented software system that lets users create execution cloud environments 
on top of all participating grid resources. Peering arrangements established between gateways enable 
the allocation of resources from multiple grids to establish the execution environment. In Figure 4.26, 
a scenario is illustrated by which an inter-grid gateway (IGG) allocates resources from a local cluster 
to deploy applications in three steps: (1) requesting the VMs, (2) enacting the leases, and (3) 
deploying the VMs as requested. Under peak demand, this IGG interacts with another IGG that can 
allocate resources from a cloud computing provider. 

A grid has predefined peering arrangements with other grids, which the IGG manages. Through 
multiple IGGs, the system coordinates the use of InterGrid resources. An IGG is aware of the peering 
terms with other grids, selects suitable grids that can provide the required resources, and replies to 
requests from other IGGs. Request redirection policies determine which peering grid InterGrid selects 
to process a request and a price for which that grid will perform the task. An IGG can also allocate 

 



resources from a cloud provider. The cloud system creates a virtual environment to help users deploy 
their applications. These applications use the distributed grid resources. 

The InterGrid allocates and provides a distributed virtual environment (DVE). This is a virtual 
cluster of VMs that runs isolated from other virtual clusters. A component called the DVE manager 
performs resource allocation and management on behalf of specific user applications. The core 
component of the IGG is a scheduler for implementing provisioning policies and peering with other 
gateways. The communication component provides an asynchronous message-passing mechanism. 
Received messages are handled in parallel by a thread pool. 

 
FIGURE 4.25: EC2 performance results on the AWS EC2 platform, collected from experiments at the 

University of Southern California using three resource provisioning methods. 

 

FIGURE 4.26: Cloud resource deployment using an IGG (intergrid gateway) to allocate the VMs from 
a Local cluster to interact with the IGG of a public cloud provider. 

 



4.5.2.7​Provisioning of Storage Resources 
The data storage layer is built on top of the physical or virtual servers. As the cloud computing 

applications often provide service to users, it is unavoidable that the data is stored in the clusters of 
the cloud provider. The service can be accessed anywhere in the world. One example is e-mail 
systems. A typical large e-mail system might have millions of users and each user can have thousands 
of e-mails and consume multiple gigabytes of disk space. Another example is a web searching 
application. In storage technologies, hard disk drives may be augmented with solid-state drives in the 
future. This will provide reliable and high-performance data storage. The biggest barriers to adopting 
flash memory in data centers have been price, capacity, and, to some extent, a lack of sophisticated 
query-processing techniques. However, this is about to change as the I/O bandwidth of solid-state 
drives becomes too impressive to ignore. 

A distributed file system is very important for storing large-scale data. However, other forms of 
data storage also exist. Some data does not need the namespace of a tree structure file system, and 
instead, databases are built with stored data files. In cloud computing, another form of data storage is 
(Key, Value) pairs. Amazon S3 service uses SOAP to access the objects stored in the cloud. Table 4.8 
outlines three cloud storage services provided by Google, Hadoop, and Amazon. 

Many cloud computing companies have developed large-scale data storage systems to keep huge 
amount of data collected every day. For example, Google’s GFS stores web data and some other data, 
such as geographic data for Google Earth. A similar system from the open source community is the 
Hadoop Distributed File System (HDFS) for Apache. Hadoop is the open source implementation of 
Google’s cloud computing infrastructure. Similar systems include Microsoft’s Cosmos file system for 
the cloud. 

Despite the fact that the storage service or distributed file system can be accessed directly, similar 
to traditional databases, cloud computing does provide some forms of structure or semistructure 
database processing capability. For example, applications might want to process the information 
contained in a web page. Web pages are an example of semistructural data in HTML format. If some 
forms of database capability can be used, application developers will construct their application logic 
more easily. Another reason to build a database-like service in cloud computing is that it will be quite 
convenient for traditional application developers to code for the cloud platform. Databases are quite 
common as the underlying storage device for many applications. 

Thus, such developers can think in the same way they do for traditional software development. 
Hence, in cloud computing, it is necessary to build databases like large-scale systems based on data 
storage or distributed file systems. The scale of such a database might be quite large for processing 
huge amounts of data. The main purpose is to store the data in structural or semi-structural ways so 
that application developers can use it easily and build their applications rapidly. Traditional data- 
bases will meet the performance bottleneck while the system is expanded to a larger scale. How-ever, 
some real applications do not need such strong consistency. The scale of such databases can be quite 
large. Typical cloud databases include BigTable from Google, SimpleDB from Amazon, and the SQL 
service from Microsoft Azure. 

 

 



4.5.3​Virtual Machine Creation and Management 
In this section, we will consider several issues for cloud infrastructure management. First, 

we will consider the resource management of independent service jobs. Then we will consider how to 
exe-cute third-party cloud applications. Cloud-loading experiments are used by a Melbourne research 
group on the French Grid’5000 system. This experimental setting illustrates VM creation and 
management. This case study example reveals major VM management issues and suggests some 
plausible solutions for workload-balanced execution. Figure 4.27 shows the interactions among VM 
managers for cloud creation and management. The managers provide a public API for users to submit 
and control the VMs. 

 
 

FIGURE 4.27: Interactions among VM managers for cloud creation and management; the manager 
provides a public API for users to submit and control the VMs. 

 

 

4.5.3.1​Independent Service Management 
Independent services request facilities to execute many unrelated tasks. Commonly, the APIs provided are 
some web services that the developer can use conveniently. In Amazon cloud computing infrastructure, 
SQS is constructed for providing a reliable communication service between different providers. Even the 
endpoint does not run while another entity has posted a message in SQS. By using independent service 
providers, the cloud applications can run different services at the same time. Some other services are used 
for providing data other than the compute or storage services. 

 
4.5.3.2​Running Third-Party Applications 

Cloud platforms have to provide support for building applications that are constructed by third- 
party application providers or programmers. As current web applications are often provided by using 
Web 2.0 forms (interactive applications with Ajax), the programming interfaces are different from the 
traditional programming interfaces such as functions in runtime libraries. The APIs are often in the 
form of services. Web service application engines are often used by programmers for building 
applications. The web browsers are the user interface for end users. 

In addition to gateway applications, the cloud computing platform provides the extra capabilities 
of accessing backend services or underlying data. As examples, GAE and Microsoft Azure apply 
their own cloud APIs to get special cloud services. The WebSphere application engine is deployed by 
IBM for Blue Cloud. It can be used to develop any kind of web application written in Java. In EC2, 
users can use any kind of application engine that can run in VM instances. 

 



4.5.3.3​Virtual Machine Manager 
The VM manager is the link between the gateway and resources. The gateway doesn’t share 

physi-cal resources directly, but relies on virtualization technology for abstracting them. Hence, the 
actual resources it uses are VMs. The manager manage VMs deployed on a set of physical resources. 
The VM manager implementation is generic so that it can connect with different VIEs. Typically, 
VIEs can create and stop VMs on a physical cluster. The Melbourne group has developed managers 
for OpenNebula, Amazon EC2, and French Grid’5000. The manager using the OpenNebula OS 
(www .opennebula.org) to deploy VMs on local clusters. 

OpenNebula runs as a daemon service on a master node, so the VMM works as a remote user. 
Users submit VMs on physical machines using different kinds of hypervisors, such as Xen (www 
.xen.org), which enables the running of several operating systems on the same host concurrently. The 
VMM also manages VM deployment on grids and IaaS providers. The InterGrid supports Amazon 
EC2. The connector is a wrapper for the command-line tool Amazon provides. The VM manager for 
Grid’5000 is also a wrapper for its command-line tools. To deploy a VM, the manager needs to use its 
template. 
4.5.3.4​Virtual Machine Templates 

A VM template is analogous to a computer’s configuration and contains a description for a VM 
with the following static information: 

●​ The number of cores or processors to be assigned to the VM 
●​ The amount of memory the VM requires 
●​ The kernel used to boot the VM’s operating system 
●​ The disk image containing the VM’s file system 
●​ The price per hour of using a VM 

The gateway administrator provides the VM template information when the infrastructure is set 
up. The administrator can update, add, and delete templates at any time. In addition, each gateway in 
the InterGrid network must agree on the templates to provide the same configuration on each site. To 
deploy an instance of a given VM, the VMM generates a descriptor from the template. This 
descriptor contains the same fields as the template and additional information related to a specific 
VM instance. Typically the additional information includes: 

●​ The disk image that contains the VM’s file system 
●​ The address of the physical machine hosting the VM 
●​ The VM’s network configuration 
●​ The required information for deployment on an IaaS provider 

Before starting an instance, the scheduler gives the network configuration and the host’s address; 
it then allocates MAC and IP addresses for that instance. The template specifies the disk image field. 
To deploy several instances of the same VM template in parallel, each instance uses a tempor-ary 
copy of the disk image. Hence, the descriptor contains the path to the copied disk image. The 
descriptor’s fields are different for deploying a VM on an IaaS provider. Network information is not 
needed, because Amazon EC2 automatically assigns a public IP to the instances. The IGG works with 
a repository of VM templates, called the VM template directory. 

 
4.5.3.5​Distributed VM Management 

Figure 4.30 illustrates the interactions between InterGrid’s components. A distributed VM 
manager makes requests for VMs and queries their status. This manager requests VMs from the 
gateway on behalf of the user application. The manager obtains the list of requested VMs from the 
gateway. This list contains a tuple of public IP/private IP addresses for each VM with Secure Shell 

 



(SSH) tunnels. Users must specify which VM template they want to use and the number of VM 
instances needed, the deadline, the wall time, and the address for an alternative gateway. 

The local gateway tries to obtain resources from the underlying VIEs. When this is impossible, the 
local gateway starts a negotiation with any remote gateways to fulfill the request. When a gateway 
schedules the VMs, it sends the VM access information to the requester gateway. Finally, the man-ager 
configures the VM, sets up SSH tunnels, and executes the tasks on the VM. Under the peering policy, each 
gateway’s scheduler uses conservative backfilling to schedule requests. When the scheduler can’t start a 
request immediately using local resources, a redirection algorithm will be initiated. 

 
Example 4.6 Experiments on an InterGrid Test Bed over the Grid’5000 

The Melbourne group conducted two experiments to evaluate the InterGrid architecture. The 
first one evaluates the performance of allocation decisions by measuring how the IGG manages load 
via peering arrangements. The second considers its effectiveness in deploying a bag-of-tasks 
application. The experiment was conducted on the French experimental grid platform Grid’5000. 
Grid’5000 comprises 4,792 processor cores on nine grid sites across France. Each gateway 
represents one Grid’5000 site, as shown in Figure 4.28. 

 
 

FIGURE 4.28 The InterGrid test bed over the French Grid’5000 located in nine cities across France. 

To prevent the gateways from interfering with real Grid’5000 users, emulated VM managers were 
implemented to instantiate fictitious VMs. The number of emulated hosts is limited by the core 
number at each site. A balanced workload was configured among the sites. The maximum number of 
VMs requested does not exceed the number of cores in any site. The load characteristics are shown 
in Figure 4.29 under a four-gateway scenario. The teal bars indicate each grid site’s load. 

The magenta bars show the load when gateways redirect requests to one another. The green bars 
correspond to the amount of load each gateway accepts from other gateways. The brown bars 
represent the amount of load that is redirected. The results show that the loading policy can balance 
the load across the nine sites. Rennes, a site with a heavy load, benefits from peering with other 
gateways as the gateway redirects a great share of its load to other sites. 

4.5.4​Global Exchange of Cloud Resources 
In order to support a large number of application service consumers from around the world, 

cloud infrastructure providers (i.e., IaaS providers) have established data centers in multiple 
geographical locations to provide redundancy and ensure reliability in case of site failures. For 
example, Amazon has data centers in the United States (e.g., one on the East Coast and another on 
the West Coast) and Europe. However, currently Amazon expects its cloud customers (i.e., SaaS 
providers) to express a preference regarding where they want their application services to be hosted. 

 



Amazon does not provide seamless/automatic mechanisms for scaling its hosted services across multiple 
geographically distributed data centers. 

 
FIGURE 4.29: Cloud loading results at four gateways at resource sites in the Grid’5000 system. 

 
This approach has many shortcomings. First, it is difficult for cloud customers to determine in 

advance the best location for hosting their services as they may not know the origin of consumers of 
their services. Second, SaaS providers may not be able to meet the QoS expectations of their ser-vice 
consumers originating from multiple geographical locations. This necessitates building mechan-isms 
for seamless federation of data centers of a cloud provider or providers supporting dynamic scaling of 
applications across multiple domains in order to meet QoS targets of cloud customers. Figure 4.30 
shows the high-level components of the Melbourne group’s proposed InterCloud architecture. 

 
In addition, no single cloud infrastructure provider will be able to establish its data centers at all 

possible locations throughout the world. As a result, cloud application service (SaaS) providers will 
have difficulty in meeting QoS expectations for all their consumers. Hence, they would like to make 
use of services of multiple cloud infrastructure service providers who can provide better support for 
their specific consumer needs. This kind of requirement often arises in enterprises with global 
operations and applications such as Internet services, media hosting, and Web 2.0 applications. This 
necessitates federation of cloud infrastructure service providers for seamless provisioning of services 
across different cloud providers. To realize this, the Cloudbus Project at the University of Melbourne 
has proposed InterCloud architecture sup-porting brokering and exchange of cloud resources for 
scaling applications across multiple clouds. 

 
By realizing InterCloud architectural principles in mechanisms in their offering, cloud providers 

will be able to dynamically expand or resize their provisioning capability based on sudden spikes in 
workload demands by leasing available computational and storage capabilities from other cloud 
service providers; operate as part of a market-driven resource leasing federation, where application 
service providers such as Salesforce.com host their services based on negotiated SLA contracts 
driven by competitive market prices; and deliver on-demand, reliable, cost-effective, and QoS-aware 
services based on virtualization technologies while ensuring high QoS standards and minimizing 
service costs. They need to be able to utilize market based utility models as the basis for provisioning 
of virtualized software services and federated hardware infrastructure among users with 
heterogeneous applications. 

 



 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.30: Inter-cloud exchange of cloud resources through brokering. 

 



They consist of client brokering and coordinator services that support utility-driven federation of 
clouds: application scheduling, resource allocation, and migration of workloads. The architecture 
cohesively couples the administratively and topologically distributed storage and compute 
capabilities of clouds as part of a single resource leasing abstraction. The system will ease the cross- 
domain capability integration for on-demand, flexible, energy-efficient, and reliable access to the 
infrastructure based on virtualization technology. 

The Cloud Exchange (CEx) acts as a market maker for bringing together service producers and 
consumers. It aggregates the infrastructure demands from application brokers and evaluates them 
against the available supply currently published by the cloud coordinators. It supports trading of 
cloud services based on competitive economic models such as commodity markets and auctions. CEx 
allows participants to locate providers and consumers with fitting offers. Such markets enable 
services to be commoditized, and thus will pave the way for creation of dynamic market 
infrastructure for trading based on SLAs. An SLA specifies the details of the service to be provided 
in terms of metrics agreed upon by all parties, and incentives and penalties for meeting and violating 
the expectations, respectively. The availability of a banking system within the market ensures that 
financial transactions pertaining to SLAs between participants are carried out in a secure and 
dependable environment. 

4.6 CLOUD SECURITY AND TRUST MANAGEMENT 
Lacking trust between service providers and cloud users has hindered the universal acceptance of 

cloud computing as a service on demand. In the past, trust models have been developed to protect 
mainly e-commerce and online shopping provided by eBay and Amazon. For web and cloud services, 
trust and security become even more demanding, because leaving user applications completely to the 
cloud providers has faced strong resistance by most PC and server users. Cloud platforms become 
worrisome to some users for lack of privacy protection, security assurance, and copyright protection. 
Trust is a social problem, not a pure technical issue. However, the social problem can be solved with 
a technical approach. 

Common sense dictates that technology can enhance trust, justice, reputation, credit, and 
assurance in Internet applications. As a virtual environment, the cloud poses new security threats that 
are more difficult to contain than traditional client and server configurations. To solve these trust 
problems, a new data-protection model is presented in this section. In many cases, one can extend the 
trust models for P2P networks and grid systems to protect clouds and data centers. 

 

 



4.6.1​Cloud Security Defense Strategies 
A healthy cloud ecosystem is desired to free users from abuses, violence, cheating, hacking, 

viruses, rumors, pornography, spam, and privacy and copyright violations. The security demands of 
three cloud service models, IaaS, PaaS, and SaaS, are described in this section. These security models 
are based on various SLAs between providers and users. 
4.6.1.1​Basic Cloud Security 

Three basic cloud security enforcements are expected. First, facility security in data centers 
demands on-site security year round. Biometric readers, CCTV (close-circuit TV), motion detection, 
and man traps are often deployed. Also, network security demands fault-tolerant external firewalls, 
intrusion detection systems (IDSes), and third-party vulnerability assessment. Finally, platform 
security demands SSL and data decryption, strict password policies, and system trust certification. 
Figure 4.31 shows the mapping of cloud models, where special security measures are deployed at 
various cloud operating levels. 

Servers in the cloud can be physical machines or VMs. User interfaces are applied to request 
services. The provisioning tool carves out the systems from the cloud to satisfy the requested ser- 
vice. A security-aware cloud architecture demands security enforcement. Malware-based attacks such 
as network worms, viruses, and DDoS attacks exploit system vulnerabilities. These attacks 
compromise system functionality or provide intruders unauthorized access to critical information. 

Thus, security defenses are needed to protect all cluster servers and data centers. Here are some 
cloud components that demand special security protection: 

●​ Protection of servers from malicious software attacks such as worms, viruses, and malware 
●​ Protection of hypervisors or VM monitors from software-based attacks and vulnerabilities 
●​ Protection of VMs and monitors from service disruption and DoS attacks 
●​ Protection of data and information from theft, corruption, and natural disasters 
●​ Providing authenticated and authorized access to critical data and services 

 

FIGURE 4.31: Cloud service models on the left (a) and corresponding security measures on the right (b); 
the IaaS is at the innermost level, PaaS is at the middle level, and SaaS is at the outermost level, 

including all hardware, software, datasets, and networking resources. 

 



4.6.1.2​Security Challenges in VMs 
As we discussed earlier in this chapter, traditional network attacks include buffer overflows, DoS 

attacks, spyware, malware, rootkits, Trojan horses, and worms. In a cloud environment, newer attacks may 
result from hypervisor malware, guest hopping and hijacking, or VM rootkits. Another type of attack is the 
man-in-the-middle attack for VM migrations. In general, passive attacks steal sensitive data or passwords. 
Active attacks may manipulate kernel data structures which will cause major damage to cloud servers. An 
IDS can be a NIDS or a HIDS. Program shepherding can be applied to control and verify code execution. 
Other defense technologies include using the RIO dynamic optimization infra-structure, or VMware’s 
vSafe and vShield tools, security compliance for hypervisors, and Intel vPro technology. Others apply a 
hardened OS environment or use isolated execution and sandboxing. 
4.6.1.3​Cloud Defense Methods 

Virtualization enhances cloud security. But VMs add an additional layer of software that 
could become a single point of failure. With virtualization, a single physical machine can be divided 
or partitioned into multiple VMs (e.g., server consolidation). This provides each VM with better 
security isolation and each partition is protected from DoS attacks by other partitions. Security 
attacks in one VM are isolated and contained from affecting the other VMs. Table 4.9 lists eight 
protection schemes to secure public clouds and data centers. VM failures do not propagate to other 
VMs. The hypervisor provides visibility of the guest OS, with complete guest isolation. Fault 
containment and failure isolation of VMs provide a more secure and robust environment. Malicious 
intrusions may destroy valuable hosts, networks, and storage resources. Internet anomalies found in 
routers, gate-ways, and distributed hosts may stop cloud services. Trust negotiation is often done at 
the SLA level. Public Key Infrastructure (PKI) services could be augmented with data-center 
reputation sys-tems. Worm and DDoS attacks must be contained. It is harder to establish security in 
the cloud because all data and software are shared by default. 

 
4.6.1.4​Defense with Virtualization 

The VM is decoupled from the physical hardware. The entire VM can be represented as a 
software component and can be regarded as binary or digital data. The VM can be saved, cloned, 
encrypted, moved, or restored with ease. VMs enable HA and faster disaster recovery. Live migration 
of VMs was suggested by many researchers for building distributed intrusion detection systems 
(DIDSes). Multiple IDS VMs can be deployed at various resource sites including data centers. DIDS 
design demands trust negation among PKI domains. Security policy conflicts must be resolved at 
design time and updated periodically. 

 



4.6.1.5​Privacy and Copyright Protection 
The user gets a predictable configuration before actual system integration. Yahoo!’s Pipes is a good 

example of a lightweight cloud platform. With shared files and data sets, privacy, security, and copy-right 
data could be compromised in a cloud computing environment. Users desire to work in a software 
environment that provides many useful tools to build cloud applications over large data sets. Google’s 
platform essentially applies in-house software to protect resources. The Amazon EC2 applies HMEC and 
X.509 certificates in securing resources. It is necessary to protect browser-initiated application software in 
the cloud environment. Here are several security features desired in a secure cloud: 

●​ Dynamic web services with full support from secure web technologies 
●​ Established trust between users and providers through SLAs and reputation systems 
●​ Effective user identity management and data-access management 
●​ Single sign-on and single sign-off to reduce security enforcement overhead 
●​ Auditing and copyright compliance through proactive enforcement 
●​ Shifting of control of data operations from the client environment to cloud providers 
●​ Protection of sensitive and regulated information in a shared environment 
Example 4.7 Cloud Security Safeguarded by Gateway and Firewalls 
Figure 4.32 shows a security defense system for a typical private cloud environment. The gateway is 
fully secured to protect access to commercial clouds that are wide open to the general public. The 
firewall provides an external shield. The gateway secures the application server, message queue, 
database, web service client, and browser with HTTP, JMS, SQL, XML, and SSL security protocols, 
etc. The defense scheme is needed to protect user data from server attacks. A user’s private data 
must not be leaked to other users without permission. 

 
FIGURE 4.32: The typical security structure coordinated by a secured gateway plus external firewalls 

to safeguard the access of public or private clouds. 

4.6.2​Distributed Intrusion/Anomaly Detection 
Data security is the weakest link in all cloud models. We need new cloud security standards to 

apply common API tools to cope with the data lock-in problem and network attacks or abuses. The 
IaaS model represented by Amazon is most sensitive to external attacks. Role-based interface tools 
alleviate the complexity of the provisioning system. For example, IBM’s Blue Cloud provisions 
through a role-based web portal. A SaaS bureau may order secretarial services from a common cloud 
platform. Many IT companies are now offering cloud services with no guaranteed security. 

 



Security threats may be aimed at VMs, guest OSes, and software running on top of the cloud. 
IDSes attempt to stop these attacks before they take effect. Both signature matching and anomaly 
detection can be implemented on VMs dedicated to building IDSes. Signature matching IDS 
technology is more mature, but requires frequent updates of the signature databases. Network 
anomaly detection reveals abnormal traffic patterns, such as unauthorized episodes of TCP 
connection sequences, against normal traffic patterns. Distributed IDSes are needed to combat both 
types of intrusions. 
4.6.2.1​Distributed Defense against DDoS Flooding Attacks 

A DDoS defense system must be designed to cover multiple network domains spanned by a given 
cloud platform. These network domains cover the edge networks where cloud resources are con- 
nected. DDoS attacks come with widespread worms. The flooding traffic is large enough to crash the 
victim server by buffer overflow, disk exhaustion, or connection saturation. Figure 4.33(a) shows a 
flooding attack pattern. Here, the hidden attacker launched the attack from many zombies toward a 
victim server at the bottom router R0. 
The flooding traffic flows essentially with a tree pattern shown in Figure 4.33(b). Successive attack- 
transit routers along the tree reveal the abnormal surge in traffic. This DDoS defense system is based 
on change-point detection by all routers. Based on the anomaly pattern detected in covered network 
domains, the scheme detects a DDoS attack before the victim is overwhelmed. The detection scheme 
is suitable for protecting cloud core networks. The provider-level cooperation eliminates the need for 
intervention by edge networks. 

 
 
 

FIGURE 4.33: DDoS attacks and defense by change-point detection at all routers on the flooding tree. 
 

 
Figure 4.34 shows VM migration from host machine VMM A to host machine VMM B, via a 

security vulnerable network. In a man-in-the-middle attack, the attacker can view the VM contents 
being migrated, steal sensitive data, or even modify the VM-specific contents including the OS and 
application states. An attacker posing this attack can launch an active attack to insert a VM-based 
rootkit into the migrating VM, which can subvert the entire operation of the migration process without 
the knowledge of the guest OS and embedded application. 

 

 



4.6.3​Data and Software Protection Techniques 
In this section, we will introduce a data coloring technique to preserve data integrity and 

user privacy. Then we will discuss a watermarking scheme to protect software files from being 
widely distributed in a cloud environment. 

 
4.6.3.1​Data Integrity and Privacy Protection 

Users desire a software environment that provides many useful tools to build cloud applications 
over large data sets. In addition to application software for MapReduce, BigTable, EC2, 3S, Hadoop, 
AWS, GAE, and WebSphere2, users need some security and privacy protection software for using the 
cloud. Such software should offer the following features: 

●​ Special APIs for authenticating users and sending e-mail using commercial accounts 
●​ Fine-grained access control to protect data integrity and deter intruders or hackers 
●​ Shared data sets protected from malicious alteration, deletion, or copyright violation 
●​ Ability to secure the ISP or cloud service provider from invading users’ privacy 
●​ Personal firewalls at user ends to keep shared data sets from Java, JavaScript, and 

ActiveX applets 
●​ A privacy policy consistent with the cloud service provider’s policy, to protect against identity 

theft, spyware, and web bugs 
●​ VPN channels between resource sites to secure transmission of critical data objects 

 

FIGURE 4.34: A VM migrating from host A to host B through a vulnerable network threatened by a 
man-in- the-middle attack to modify the VM template and OS state. 

 
4.6.3.2​Data Coloring and Cloud Watermarking 

With shared files and data sets, privacy, security, and copyright information could be 
compromised in a cloud computing environment. Users desire to work in a trusted software 
environment that pro-vides useful tools to build cloud applications over protected data sets. In the 
past, watermarking was mainly used for digital copyright management. As shown in Figure 4.35, the 
system generates special colors for each data object. Data coloring means labeling each data object 
by a unique color. Differently colored data objects are thus distinguishable. 

 
The user identification is also colored to be matched with the data colors. This color matching 

process can be applied to implement different trust management events. Cloud storage provides a 
process for the generation, embedding, and extraction of the watermarks in colored objects. Interested 
readers may refer to the articles by Hwang and Li for details on the data coloring and matching 
process. In general, data protection was done by encryption or decryption which is computationally 
expensive. The data coloring takes a minimal number of calculations to color or decolor the data 
objects. Cryptography and watermarking or coloring can be used jointly in a cloud environment. 

 



 

 
 

FIGURE 4.35: Data coloring with cloud watermarking for trust management at various security 

clearance levels in data centers. 

4.6.3.3​Data Lock-in Problem and Proactive Solutions 
Cloud computing moves both the computation and the data to the server clusters maintained by 

cloud service providers. Once the data is moved into the cloud, users cannot easily extract their data 
and programs from cloud servers to run on another platform. This leads to a data lock-in problem. 
This has hindered the use of cloud computing. Data lock-in is attributed to two causes: lack of 
interoperability, whereby each cloud vendor has its proprietary API that limits users to extract data 
once submitted; and lack of application compatibility, in those most computing clouds expect users to 
write new applications from scratch, when they switch cloud platforms. 

One possible solution to data lock-in is the use of standardized cloud APIs. This requires building 
standardized virtual platforms that adhere to OVF, a platform-independent, efficient, extensible, and 
open format for VMs. This will enable efficient, secure software distribution; facilitating the mobility 
of VMs. Using OVF one can move data from one application to another. This will enhance QoS, and 
thus enable cross-cloud applications, allowing workload migration among data centers to user- 
specific storage. By deploying applications, users can access and intermix applications across 
different cloud services. 
4.6.4​Reputation-Guided Protection of Data Centers 

Trust is a personal opinion, which is very subjective and often biased. Trust can be transitive 
but not necessarily symmetric between two parties. Reputation is a public opinion, which is more 
objective and often relies on a large opinion aggregation process to evaluate. Reputation may change 
or decay over time. Recent reputation should be given more preference than past reputation. In this 
section, we review the reputation systems for protecting data centers or cloud user communities. 
4.6.4.1​Reputation System Design Options 

Figure 4.36 provides an overview of reputation system design options. Public opinion on the 
character or standing (such as honest behavior or reliability) of an entity could be the reputation of a 
person, an agent, a product, or a service. It represents a collective evaluation by a group of people/ 
agents and resource owners. Many reputation systems have been proposed in the past mainly for P2P, 
multiagent, or e-commerce systems. 

 



To address reputation systems for cloud services, a systematic approach is based on the design 
criteria and administration of the reputation systems. Figure 4.36 shows a two-tier classification of 
existing reputation systems that have been proposed in recent years. Most of them were designed for 
P2P or social networks. These reputation systems can be converted for protecting cloud comput-ing 
applications. In general, the reputation systems are classified as centralized or distributed depending 
on how they are implemented. In a centralized system, a single central authority is responsible for 
managing the reputation system, while the distributed model involves multiple con-trol centers 
working collectively. Reputation-based trust management and techniques for securing P2P and social 
networks could be merged to defend data centers and cloud platforms against attacks from the open 
network. 

 
A centralized reputation system is easier to implement, but demands more powerful and reliable 

server resources; a distributed reputation system is much more complex to build. Distributed systems 
are more scalable and reliable in terms of handling failures. At the second tier, reputation systems are 
further classified by the scope of reputation evaluation. User-oriented reputation systems focus on 
individual users or agents. Most P2P reputation systems belong to this category. In data centers, 
reputation is modeled for the resource site as a whole. This reputation applies to products or services 
offered by the cloud. Commercial reputation systems have been built by eBay, Google, and Amazon 
in connection with the services they provide. These are centralized reputation systems. 

 
FIGURE 4.36: Design options of reputation systems for social networks and cloud platforms. 

Distributed reputation systems are mostly developed by academic research communities. Aberer 
and Despotovic have proposed a model to manage trust in P2P systems. The Eigentrust reputation 
system was developed at Stanford University using a trust matrix approach. The PeerTrust system 
was developed at Georgia Institute of Technology for supporting e-commerce applications. The 
PowerTrust system was developed at the University of Southern California based on Power law 
characteristics of Internet traffic for P2P applications. Vu, et al. proposed a QoS-based ranking 
system for P2P transactions. 

 
4.6.4.2​Reputation Systems for Clouds 

Redesigning the aforementioned reputation systems for protecting data centers offers new 
opportunities for expanded applications beyond P2P networks. Data consistency is checked across 
multiple databases. Copyright protection secures wide-area content distributions. To separate user 
data from specific SaaS programs, providers take the most responsibility in maintaining data integrity 
and consistency. Users can switch among different services using their own data. Only the users have 
the keys to access the requested data. 

 



The data objects must be uniquely named to ensure global consistency. To ensure data consistency, 
unauthorized updates of data objects by other cloud users are prohibited. The reputation system can be 
implemented with a trust overlay network. A hierarchy of P2P reputation systems is suggested to 
protect cloud resources at the site level and data objects at the file level. This demands both coarse- 
grained and fine-grained access control of shared resources. These reputation systems keep track of 
security breaches at all levels. 

The reputation system must be designed to benefit both cloud users and data centers. Data objects 
used in cloud computing reside in multiple data centers over a SAN. In the past, most reputation 
systems were designed for P2P social networking or for online shopping services. These reputation 
systems can be converted to protect cloud platform resources or user applications in the cloud. A 
centralized reputation system is easier to implement, but demands more powerful and reliable server 
resources. Distributed reputation systems are more scalable and reliable in terms of handling failures. 
The five security mechanisms presented earlier can be greatly assisted by using a reputation system 
specifically designed for data centers. 

However, it is possible to add social tools such as reputation systems to support safe cloning of 
VMs. Snapshot control is based on the defined RPO. Users demand new security mechanisms to 
protect the cloud. For example, one can apply secured information logging, migrate over secured 
virtual LANs, and apply ECC-based encryption for secure migration. Sandboxes provide a safe 
execution platform for running programs. Further, sandboxes can provide a tightly controlled set of 
resources for guest operating systems, which allows a security test bed to test the application code 
from third-party vendors. 

 
4.6.4.3​Trust Overlay Networks 
Reputation represents a collective evaluation by users and resource owners. Many reputation systems 
have been proposed in the past for P2P, multiagent, or e-commerce systems. To sup-port trusted cloud 
services, Hwang and Li have suggested building a trust overlay network to model trust relationships 
among data-center modules. This trust overlay could be structured with a distributed hash table 
(DHT) to achieve fast aggregation of global reputations from a large number of local reputation 
scores. This trust overlay design was first introduced in. Here, the designer needs to have two layers 
for fast reputation aggregation, updating, and dissemination to all users. Figure 4.37 shows 
construction of the two layers of the trust overlay network. 

At the bottom layer is the trust overlay for distributed trust negotiation and reputation aggregation 
over multiple resource sites. This layer handles user/server authentication, access authorization, trust 
delegation, and data integrity control. At the top layer is an overlay for fast virus/worm signature 
generation and dissemination and for piracy detection. 

This overlay facilitates worm containment and IDSes against viruses, worms, and DDoS attacks. 
The content poisoning technique is reputation-based. This protection scheme can stop copyright 
violations in a cloud environment over multiple data centers. 

 
The reputation system enables trusted interactions between cloud users and data-center owners. 

Privacy is enforced by matching colored user identifications with the colored data objects. The use of 
content poisoning was suggested to protect copyright of digital content. The security-aware cloud 
architecture (see Figure 4.14) is specially tailored to protect virtualized cloud infrastructure. The trust 
of provided cloud platforms comes from not only SLAs, but also from effective enforcement of 
security policies and deployment of countermeasures to defend against network attacks. By varying 
security control standards, one can cope with the dynamic variation of cloud operating conditions. 
The design is aimed at a trusted cloud environment to ensure high quality services, including security. 

 



The cloud security trend is to apply virtualization support for security enforcement in data centers. 
Both reputation systems and data watermarking mechanisms can protect data center access at the coarse- 
grained level and to limit data access at the fine-grained file level. In the long run, a new Security as a 
Service is desired. This “SaaS” is crucial to the universal acceptance of web-scale cloud computing in 
personal, business, community, and government applications. Internet clouds are certainly in line with IT 
globalization and efficient computer outsourcing. However, interoperability among different clouds relies 
on a common operational standard by building a healthy cloud ecosystem. 

 
FIGURE 4.37: DHT-based trust overlay networks built over cloud resources provisioned from 

multiple data centers for trust management and distributed security enforcement. 

5 Service-Oriented Architectures for Distributed Computing 
5.1​SERVICES AND SERVICE-ORIENTED ARCHITECTURE 

Technology has advanced at breakneck speeds over the past decade, and many changes are still 
occurring. However, in this chaos, the value of building systems in terms of services has grown in 
acceptance and it has become a core idea of most distributed systems. Loose coupling and support of 
heterogeneous implementations makes services more attractive than distributed objects. Web services 
move beyond helping various types of applications to exchanging information. The techno-logy also 
plays an increasingly important role in accessing, programming on, and integrating a set of new and 
existing applications. 

We have introduced service-oriented architecture (SOA) in. In general, SOA is about how to 
design a software system that makes use of services of new or legacy applications through their 
published or discoverable interfaces. These applications are often distributed over the networks. SOA 
also aims to make service interoperability extensible and effective. It prompts architecture styles such 
as loose coupling, published interfaces, and a standard communication model in order to support this 
goal. The World Wide Web Consortium (W3C) defines SOA as a form of distributed systems 
architecture characterized by the following properties: 

 



Logical view: The SOA is an abstracted, logical view of actual programs, databases, business 
processes, and so on, defined in terms of what it does, typically carrying out a business-level 
operation. The service is formally defined in terms of the messages exchanged between provider 
agents and requester agents. 
Message orientation: The internal structure of providers and requesters include the 
implementation language, process structure, and even database structure. These features are 
deliberately abstracted away in the SOA: Using the SOA discipline one does not and should not 
need to know how an agent implementing a service is constructed. A key benefit of this concerns 
legacy systems. By avoiding any knowledge of the internal structure of an agent, one can 
incorporate any software component or application to adhere to the formal service definition. 
Description orientation: A service is described by machine-executable metadata. The 
description supports the public nature of the SOA: Only those details that are exposed to the 
public and are important for the use of the service should be included in the description. The 
semantics of a service should be documented, either directly or indirectly, by its description. 
●​ Granularity Services tend to use a small number of operations with relatively large and 

complex messages. 
●​ Network orientation Services tend to be oriented toward use over a network, though this is 

not an absolute requirement. 
●​ Platform-neutral Messages are sent in a platform-neutral, standardized format delivered 

through the interfaces. XML is the most obvious format that meets this constraint. 

Unlike the component-based model, which is based on design and development of tightly coupled 
components for processes within an enterprise, using different protocols and technologies such as 
CORBA and DCOM, SOA focuses on loosely coupled software applications running across different 
administrative domains, based on common protocols and technologies, such as HTTP and XML. 
SOA is related to early efforts on the architecture style of large-scale distributed systems, particularly 
Representational State Transfer (REST). Nowadays, REST still provides an alternative to the 
complex standard-driven web services technology and is used in many Web 2.0 services. In the 
following subsections, we introduce REST and standard-based SOA in distributed systems. 

 
5.1.1​REST and Systems of Systems 

REST is a software architecture style for distributed systems, particularly distributed hypermedia 
systems, such as the World Wide Web. It has recently gained popularity among enterprises such as 
Google, Amazon, Yahoo!, and especially social networks such as Facebook and Twitter because of its 
simplicity, and its ease of being published and consumed by clients. REST, shown in Figure 5.1, was 
introduced and explained by Roy Thomas Fielding, one of the principal authors of the HTTP 
specification, in his doctoral dissertation in 2000 and was developed in parallel with the HTTP/1.1 
protocol. The REST architectural style is based on four principles: 

Resource Identification through URIs: The RESTful web service exposes a set of resources which 
identify targets of interaction with its clients. The key abstraction of information in REST is a 
resource. Any information that can be named can be a resource, such as a document or image or a 
temporal service. A resource is a conceptual mapping to a set of entities. Each particular resource 
is identified by a unique name, or more precisely, a Uniform Resource Identifier (URI) which is 
of type URL, providing a global addressing space for resources involved in an interaction 
between components as well as facilitating service discovery. The URIs can be bookmarked or 
exchanged via hyperlinks, providing more readability and the potential for advertisement. 

 



 

 
FIGURE 5.1: A simple REST interaction between user and server in HTTP specification. 

 

Uniform, Constrained Interface: Interaction with RESTful web services is done via the HTTP 
standard, client/server cacheable protocol. Resources are manipulated using a fixed set of four CRUD 
(create, read, update, delete) verbs or operations: PUT, GET, POST, and DELETE. PUT creates a 
new resource, which can then be destroyed by using DELETE. GET retrieves the current state of a 
resource. POST transfers a new state onto a resource. 

Self-Descriptive Message: A REST message includes enough information to describe how to 
process the message. This enables intermediaries to do more with the message without parsing the 
message contents. In REST, resources are decoupled from their representation so that their content 
can be accessed in a variety of standard formats (e.g., HTML, XML, MIME, plain text, PDF, 
JPEG, JSON, etc.). REST provides multiple/alternate representations of each resource. Metadata 
about the resource is available and can be used for various purposes, such as cache control, 
transmission error detection, authentication or authorization, and access control. 
Stateless Interactions: The REST interactions are “stateless” in the sense that the meaning of a 
message does not depend on the state of the conversation. Stateless communications improve 
visibility, since a monitoring system does not have to look beyond a single request data field in 
order to determine the full nature of the request reliability as it facilitates the task of recovering 
from partial failures, and increases scalability as discarding state between requests allows the 
server component to quickly free resources. However, stateless interactions may decrease network 
performance by increasing the repetitive data (per-interaction overhead). Stateful interactions are 
based on the concept of explicit state transfer. Several techniques exist to exchange state, such as 
URI rewriting, cookies, and hidden form fields. State can be embedded in response messages to 
point to valid future states of the interaction. 

Such lightweight infrastructure, where services can be built with minimal development tools, is 
inexpensive and easy to adopt. The effort required to build a client to interact with a RESTful service 
is rather small as developers can begin testing such services from an ordinary web browser, without 
having to develop custom client-side software. From an operational point of view, a state-less 
RESTful web service is scalable to serve a very large number of clients, as a result of REST support 
for caching, clustering, and load balancing. 

 
RESTful web services can be considered an alternative to SOAP stack or “big web services,” 

described in the next section, because of their simplicity, lightweight nature, and integration with 
HTTP. With the help of URIs and hyperlinks, REST has shown that it is possible to discover web 
resources without an approach based on registration to a centralized repository. Recently, the web 
Application Description Language (WADL) has been proposed as an XML vocabulary to describe 
RESTful web services, enabling them to be discovered and accessed immediately by potential clients. 
However, there are not a variety of toolkits for developing RESTful applications. Also, restrictions on 

 



GET length, which does not allow encoding of more than 4 KB of data in the resource URI, can 
create problems because the server would reject such malformed URIs, or may even be subject to 
crashes. REST is not a standard. It is a design and architectural style for large-scale distributed 
systems. 

 

 
Table 5.1 lists the REST architectural elements. Several Java frameworks have emerged to help 

with building RESTful web services. Restlet, a lightweight framework, implements REST 
architectural elements such as resources, representation, connector, and media type for any kind of 
RESTful system, including web services. In the Restlet framework, both the client and the server are 
components. Components communicate with each other via connectors. 

JSR-311 (JAX-RS), a specification provided by Sun Microsystems, defines a set of Java APIs for 
the development of RESTful web services. The specification provides a set of annotations with 
associated classes and interfaces that can be used to expose Java objects as web resources. JSR-311 
provides clear mappings between the URI and corresponding resources, and mappings between 
HTTP methods with the methods in Java objects, by using annotations. The API supports a wide 
range of HTTP entity content types including HTML, XML, JSON, GIF, JPG, and so on. Jersey is a 
reference implementation of the JSR-311 specification for building RESTful web ser-vices. It also 
provides an API for developers to extend Jersey based on their needs. 

 
Example 5.1 RESTful Web Service in Amazon S3 Interface 
A good example of RESTful web service application in high-performance computing systems is the 

Amazon Simple Storage Service (S3) interface. Amazon S3 is data storage for Internet applications. It 

provides simple web services to store and retrieve data from anywhere at any time via the web. S3 keeps 

fundamental entities, “objects,” which are named pieces of data accompanied by some metadata to be 

stored in containers called “buckets,” each identified by a unique key. Buckets serve several purposes: 

They organize the Amazon S3 namespace at the highest level, identify the account responsible for storage 

and data transfer charges, play a role in access control, and serve as the unit of aggregation for usage 

reporting. Amazon S3 provides three types of resources: a list of user buckets, a particular bucket, and a 

particular S3 object, accessible through https://s3.amazonaws.com/{name-of-bucket}/{name-of-object}. 

 



 

 
These resources are retrieved, created, or manipulated by basic HTTP standard operations: GET, 

HEAD, PUT, and DELETE. GET can be used to list buckets created by the user, objects kept inside a 
bucket, or an object’s value and its related metadata. PUT can be used for creating a bucket or 
setting an object’s value or metadata, DELETE for removing a particular bucket or object, and HEAD 
for getting a specific object’s metadata. The Amazon S3 API supports the ability to find buckets, 
objects, and their related metadata; create new buckets; upload objects; and delete existing buckets 
and objects for the aforementioned operations. Table 5.2 shows some sample REST 
request-response message syntax for creating an S3 bucket. 

Amazon S3 REST operations are HTTP requests to create, fetch, and delete buckets and objects. A 

typical REST operation consists of sending a single HTTP request to Amazon S3, followed by waiting for an 

HTTP response. Like any HTTP request, a request to Amazon S3 contains a request method, a URI, 

request headers which contain basic information about the request, and sometimes a query string and 

request body. The response contains a status code, response headers, and sometimes a response body. 

The request consists of a PUT command followed by the bucket name created on S3. The Amazon S3 

REST API uses the standard HTTP header to pass authentication information. The authorization header 

consists of an AWS Access Key ID and AWS SecretAccess Key, issued by the developers when they regis- 

ter to S3 Web Services, followed by a signature. To authenticate, the AWSAccessKeyId element identifies 

the secret key to compute the signature upon request from the developer. If the request signature matches 

the signature included, the requester is authorized and subsequently, the request is processed. 
 

The composition of RESTful web services has been the main focus of composite Web 2.0 
applications, such as mashups. A mashup application combines capabilities from existing web-based 
applications. A good example of a mashup is taking images from an online repository such as Flickr 
and overlaying them on Google Maps. Mashups differ from all-in-one software products in that 
instead of developing a new feature into an existing tool, they combine the existing tool with another 
tool that already has the desired feature. All tools work independently, but create a uniquely 
customized experience when used together in harmony. 

 
5.1.2​Services and Web Services 

In an SOA paradigm, software capabilities are delivered and consumed via loosely coupled, 
reusable, coarse-grained, discoverable, and self-contained services interacting via a message-based 
communication model. The web has becomes a medium for connecting remote clients with 
applications for years, and more recently, integrating applications across the Internet has gained in 
popularity. The term “web service” is often referred to a self-contained, self-describing, modular 
application designed to be used and accessible by other software applications across the web. Once a 
web ser-vice is deployed, other applications and other web services can discover and invoke the 
deployed service (Figure 5.2). 

 



In fact, a web service is one of the most common instances of an SOA implementation. The W3C 
working group defines a web service as a software system designed to support interoperable 
machine-to-machine interaction over a network. According to this definition, a web service has an 
interface described in a machine-executable format (specifically Web Services Description Language 
or WSDL). Other systems interact with the web service in a manner prescribed by its description 
using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction 
with other web-related standards. The technologies that make up the core of today’s web services are 
as follows: 

 
 

FIGURE 5.2: A simple web service interaction among provider, user, and the UDDI registry. 

Simple Object Access Protocol (SOAP) SOAP provides a standard packaging structure for 
transmission of XML documents over various Internet protocols, such as SMTP, HTTP, and FTP. 
By having such a standard message format, heterogeneous middleware systems can achieve 
interoperability. A SOAP message consists of a root element called envelope, which contains a 
header: a container that can be extended by intermediaries with additional application-level 
elements such as routing information, authentication, transaction management, message parsing 
instructions, and Quality of Service (QoS) configurations, as well as a body element that carries 
the payload of the message. The content of the payload will be marshaled by the sender’s SOAP 
engine and unmarshaled at the receiver side, based on the XML schema that describes the 
structure of the SOAP message. 
Web Services Description Language (WSDL) WSDL describes the interface, a set of operations 
supported by a web service in a standard format. It standardizes the representation of input and 
output parameters of its operations as well as the service’s protocol binding, the way in which the 
messages will be transferred on the wire. Using WSDL enables disparate clients to automatically 
understand how to interact with a web service. 
Universal Description, Discovery, and Integration (UDDI) UDDI provides a global registry for 
advertising and discovery of web services, by searching for names, identifiers, categories, or the 
specification implemented by the web service. 

SOAP is an extension, and an evolved version of XML-RPC, a simple and effective remote 
procedure call protocol which uses XML for encoding its calls and HTTP as a transport mechanism, 
introduced in 1999. According to its conventions, a procedure executed on the server and the value it 
returns was a formatted in XML. However, XML-RPC was not fully aligned with the latest XML 
standardization. Moreover, it did not allow developers to extend the request or response for-mat of an 
XML-RPC call. As the XML schema became a W3C recommendation in 2001, SOAP mainly 
describes the protocols between interacting parties and leaves the data format of exchanging 
messages to XML schema to handle. 

 



The major difference between web service technology and other technologies such as J2EE, 
CORBA, and CGI scripting is its standardization, since it is based on standardized XML, providing a 
language-neutral representation of data. Most web services transmit messages over HTTP, making 
them available as Internet-scale applications. In addition, unlike CORBA and J2EE, using HTTP as 
the tunneling protocol by web services enables remote communication through firewalls and proxies. 

SOAP-based web services are also referred to as “big web services”. As we saw earlier in this 
chapter, RESTful services can also be considered a web service, in an HTTP context. SOAP-based 
web services interaction can be either synchronous or asynchronous, making them sui-table for both 
request-response and one-way exchange patterns, thus increasing web service avail-ability in case of 
failure. 
5.1.2.1​WS-I Protocol Stack 
Unlike RESTful web services that do not cover QoS and contractual properties, several optional 
specifications have been proposed for SOAP-based web services to define nonfunctional 
requirements and to guarantee a certain level of quality in message communication as well as 
reliable, transactional policies, such as WS-Security, WS-Agreement, WS ReliableMessaging, WS- 
Transaction, and WS-Coordination as shown in Figure 5.3. 

 
FIGURE 5.3: WS-I protocol stack and its related specifications. 

As mentioned, SOAP messages are encoded using XML, which requires that all self-described 
data be sent as ASCII strings. The description takes the form of start and end tags which often 
constitute half or more of the message’s bytes. Transmitting data using XML leads to a considerable 
transmission overhead, increasing the amount of transferred data by a factor 4 to 10. Moreover, XML 
processing is compute and memory intensive and grows with both the total size of the data and the 
number of data fields, making web services inappropriate for use by limited-profile devices, such as 
handheld PDAs and mobile phones. 

Web services provide on-the-fly software composition, through the use of loosely coupled, reusable 
software components. By using Business Process Execution Language for Web Services (BPEL4WS), a 
standard executable language for specifying interactions between web services recommended by OASIS, 
web services can be composed together to make more complex web services and workflows. BPEL4WS is 
an XML-based language, built on top of web service specifications, which is used to define and manage 
long-lived service orchestrations or processes. 

In BPEL, a business process is a large grained stateful service, which executes steps to complete a 
business goal. That goal can be the completion of a business transaction, or fulfillment of the job of a 
service. The steps in the BPEL process execute activities (represented by BPEL language elements) 
to accomplish work. Those activities are centered on invoking partner services to perform tasks (their 

 



job) and return results back to the process. BPEL enables organizations to automate their business 
processes by orchestrating services. Workflow in a grid context is defined as “The automation of the 
processes, which involves the orchestration of a set of Grid services, agents and actors that must be 
combined together to solve a problem or to define a new service.” 

The JBPM Project, built for the JBoss open source middleware platform, is an example of a 
workflow management and business process execution system. Another workflow system, Taverna, 
has been extensively used in life science applications. There are a variety of tools for developing and 
deploying web services in different languages, among them SOAP engines such as Apache Axis for 
Java, gSOAP for C++, the Zolera Soap Infrastructure (ZSI) for Python, and Axis2/Java and Axis2/C. 
These toolkits, consisting of a SOAP engine and WSDL tools for generating client stubs, 
considerably hide the complexity of web service application development and integration. As there is 
no standard SOAP mapping for any of the aforementioned languages, two different implementations 
of SOAP may produce different encodings for the same objects. 

Since SOAP can combine the strengths of XML and HTTP, as a standard transmission protocol 
for data, it is an attractive technology for heterogeneous distributed computing environments, such as 
grids and clouds, to ensure interoperability. Open Grid Services Architecture (OGSA) grid services 
are extensions of web services and in new grid middleware, such as Globus Toolkit 4 and its latest 
released version GT5, pure standard web services. Amazon S3 as a cloud-based persistent storage 
service is accessible through both a SOAP and a REST inter-face. However, REST is the preferred 
mechanism for communicating with S3 due to the difficulties of processing large binary objects in the 
SOAP API, and in particular, the limitation that SOAP puts on the object size to be managed and 
processed. Table 5.3 depicts a sample SOAP request-response to get a user object from S3. 
A SOAP message consists of an envelope used by the applications to enclose information that need to 
be sent. An envelope contains a header and a body block. The Encoding Style element refers to the 
URI address of an XML schema for encoding elements of the message. Each element of a SOAP 
message may have a different encoding, but unless specified, the encoding of the whole message is as 
defined in the XML schema of the root element. The header is an optional part of a SOAP message 
that may contain auxiliary information as mentioned earlier, which does not exist in this example. 

The body of a SOAP request-response message contains the main information of the conversation, 
formatted in one or more XML blocks. In this example, the client is calling CreateBucket of the 
Amazon S3 web service interface. In case of an error in service invocation, a SOAP message 
including a Fault element in the body will be forwarded to the service client as a response, as an 
indicator of a protocol-level error. 

 

 



 

 
 

5.1.2.2​WS-* Core SOAP Header Standards 
Table 5.4 summarizes some of the many (around 100) core SOAP header specifications. 

There are many categories and several overlapping standards in each category. Many are expanded in 
this chapter with XML, WSDL, SOAP, BPEL, WS-Security, UDDI, WSRF, and WSRP. The number 
and complexity of the WS-* standards have contributed to the growing trend of using REST and not 
web services. It was a brilliant idea to achieve interoperability through self-describing messages, but 
experience showed that it was too hard to build the required tooling with the required perfor-mance 
and short implementation time. 

 
Example 5.2 WS-RM or WS-Reliable Messaging 

WS-RM is one of the best developed of the so-called WS-* core web service specifications. WS-RM 

uses message instance counts to allow destination services to recognize message delivery faults (either missing 

or out- of-order messages). WS-RM somewhat duplicates the capabilities of TCP-IP in this regard, but operates at 

a different level—namely at the level of user messages and not TCP packets, and from source to destination 

independent of TCP routing in between. This idea was not fully developed (e.g., multicast messaging is not 

properly supported). 

 

5.1.3​Enterprise Multitier Architecture 
Enterprise applications often use multitier architecture to encapsulate and integrate various 

functionalities. Multitier architecture is a kind of client/server architecture in which the presentation, the 
application processing, and the data management are logically separate processes. The simplest known 
multilayer architecture is a two-tier or client/server system. This traditional two-tier, client/server model 
requires clustering and disaster recovery to ensure resiliency. While the use of fewer nodes in an enter- 
prise simplifies manageability, change management is difficult as it requires servers to be taken offline for 
repair, upgrading, and new application deployments. Moreover, the deployment of new applications and 
enhancements is complex and time-consuming in fat-client environments, resulting in reduced availability. 
A three-tier information system consists of the following layers (Figure 5.4): 

 



 
 

FIGURE 5.4: Three-tier system architecture. 

●​ Presentation layer Presents information to external entities and allows them to interact with the system by 
submitting operations and getting responses. 

●​ Business/application logic layer or middleware Programs that implement the actual operations requested by the 
client through the presentation layer. The middle tier can also control user authentication and access to resources, as 
well as performing some of the query processing for the client, thus removing some of the load from the database 
servers. 

●​ Resource management layer Also known as the data layer, deals with and implements the different data sources of 
an information system. 

In fact, a three-tier system is an extension of two-tier architecture where the application logic is separated from the 
resource management layer. By the late 1990s, as the Internet became an important part of many applications, the industry 
extended the three-tier model to an N-tier approach. SOAP-based and RESTful web services have become more integrated 
into applications. As a consequence, the data tier split into a data storage tier and a data access tier. In very sophisticated 
systems, an additional wrapper tier can be added to unify data access to both databases and web services. Web services can 
benefit from the separation of concerns inherent in multitier architecture in almost the same way as most dynamic web 
applications. 

The business logic and data can be shared by both automated and GUI clients. The only differences are the nature of the 
client and the presentation layer of the middle tier. Moreover, separating business logic from data access enables database 
independence. N-tier architecture is characterized by the functional decomposition of applications, service components, and 
their distributed deployment. Such an architecture for both web services and dynamic web applications leads to reusability, 
simplicity, extensibility, and clear separation of component functionalities. 

Web services can be seen as another tier on top of the middleware and application integration infrastructure, allowing 
systems to interact with a standard protocol across the Internet. Because each tier can be managed or scaled independently, 
flexibility is increased in the IT infrastructure that employs N-tier architecture. In the next section, we will describe OGSA, 
as multitier, service-oriented architecture for middleware which describes the capabilities of a grid computing environment 
and embodies web services to make computing resources accessible in large-scale heterogeneous environments. 

 
5.1.4​Grid Services and OGSA 

The OGSA, developed within the OGSA Working Group of the Global Grid Forum (recently renamed to Open Grid 
Forum or OGF and being merged with the Enterprise Grid Alliance or EGA in June 2006), is a service-oriented architecture 
that aims to define a common, standard, and open architecture for grid-based applications. “Open” refers to both the process 
to develop standards and the standards themselves. In OGSA, everything from registries, to computational tasks, to data 
resources is considered a service. These extensible set of services are the building blocks of an OGSA-based grid. OGSA is 
intended to: 

●​ Facilitate use and management of resources across distributed, heterogeneous environments 
●​ Deliver seamless QoS 
●​ Define open, published interfaces in order to provide interoperability of diverse resources 
●​ Exploit industry-standard integration technologies 
●​ Develop standards that achieve interoperability 
●​ Integrate, virtualize, and manage services and resources in a distributed, heterogeneous environment 
●​ Deliver functionality as loosely coupled, interacting services aligned with industry-accepted web service standards 

 



Based on OGSA, a grid is built from a small number of standards-based components, called grid services. Defines a grid 
service as “a web service that provides a set of well-defined interfaces, following specific conventions (expressed using 
WSDL).” OGSA gives a high-level architectural view of grid services and doesn’t go into much detail when describing grid 
services. It basically outlines what a grid service should have. A grid service implements one or more interfaces, where each 
interface defines a set of operations that are invoked by exchanging a defined sequence of messages, based on the Open Grid 
Services Infrastructure (OGSI). OGSI, also developed by the Global Grid Forum, gives a formal and technical specification 
of a grid service. 

Grid service interfaces correspond to portTypes in WSDL. The set of portTypes supported by a grid service, along with 
some additional information relating to versioning, are specified in the grid service’s serviceType, a WSDL extensibility 
element defined by OGSA. The interfaces address discovery, dynamic service creation, lifetime management, notification, 
and manageability; whereas the conventions address naming and upgradeability. Grid service implementations can target 
native plat-form facilities for integration with, and of, existing IT infrastructures. 

According to, OGSA services fall into seven broad areas, defined in terms of capabilities frequently required in a grid 
scenario. Figure 5.5 shows the OGSA architecture. These services are summarized as follows: 

●​ Infrastructure Services Refer to a set of common functionalities, such as naming, typically required by higher 
level services. 

●​ Execution Management Services Concerned with issues such as starting and managing tasks, including placement, 
provisioning, and life-cycle management. Tasks may range from simple jobs to complex workflows or composite 
services. 

●​ Data Management Services Provide functionality to move data to where it is needed, maintain replicated copies, run 
queries and updates, and transform data into new formats. These services must handle issues such as data consistency, 
persistency, and integrity. An OGSA data service is a web service that implements one or more of the base data interfaces 
to enable access to, and management of, data resources in a distributed environment. The three base interfaces, Data 
Access, Data Factory, and Data Management, define basic operations for representing, accessing, creating, and managing 
data. 

●​ Resource Management Services Provide management capabilities for grid resources: management of the resources 
themselves, management of the resources as grid components, and management of the OGSA infrastructure. For example, 
resources can be monitored, reserved, deployed, and configured as needed to meet application QoS requirements. It also 
requires an information model (semantics) and data model (representation) of the grid resources and services. 

●​ Security Services Facilitate the enforcement of security-related policies within a (virtual) organization, and supports safe 
resource sharing. Authentication, authorization, and integrity assurance are essential functionalities provided by these 
services. 

●​ Information Services Provide efficient production of, and access to, information about the grid and its constituent 
resources. The term “information” refers to dynamic data or events used for status monitoring; relatively static data used 
for discovery; and any data that is logged. Troubleshooting is just one of the possible uses for information provided by 
these services. 

●​ Self-Management Services Support service-level attainment for a set of services (or resources), with as much automation 
as possible, to reduce the costs and complexity of managing the system. These services are essential in addressing the 
increasing complexity of owning and operating an IT infrastructure. 

 
FIGURE 5.5: The OGSA architecture. 

 



OGSA has been adopted as reference grid architecture by a number of grid projects. The first prototype grid service 
implementation was demonstrated January 29, 2002, at a Globus Toolkit tutorial held at Argonne National Laboratory. Since 
then, the Globus Toolkit 3.0 and 3.2 have offered an OGSA implementation based on OGSI. 

Two key properties of a grid service are transience and statefulness. Creation and destruction of a transient grid service 
can be done dynamically. The creation and lifetime of OGSA grid services are handled following the “factory pattern,”. Web 
service technologies are designed to support loosely coupled, coarse-grained dynamic systems, and hence do not meet all grid 
requirements, such as keeping state information, and thus they are unable to fully address the wide range of distributed 
systems OGSA is designed to support. 

OGSA applies a set of WSDL extensions to represent the identifiers necessary to implement a grid service instance across 
any system. These extensions were defined by OGSI. A key extension is the grid service reference: a network-wide pointer to 
a specific grid service instance, which makes that instance accessible to remote client applications. These extensions, 
including the Grid Service Handle (GSH) and Grid Service Reference (GSR). These extensions include stateful grid services 
and the shortcomings of OGSI with its dense and long specifications. Further problems concern incompatibility with some 
current web service tools and the fact that it takes a lot of concepts from object orientation. 

Unlike the nature of web services, this has led to close cooperation between the grid and web service communities. As a result of 
these joint efforts, the Web Services Resource Framework (WSRF), WS-Addressing, and WS-Notification (WSN) specifications 
have been proposed to OASIS. Consequently, OGSI extensions to web services have been deprecated in favor of new web service 
standards, and in particular, WSRF. WSRF is a collection of five different specifications. Of course, they all relate to the 
management of WS-Resources. Table 5.5 depicts WSRF-related interface operations. 

 
Plain web services are usually stateless. This means the web service can’t “remember” information, or keep state, from 

one invocation to another. However, since a web service is stateless, the following invocations have no idea of what was done 
in the previous invocations. Grid applications generally require web services to keep state information as they interact with 
the clients or other web services. The purpose of WSRF is to define a generic framework for modeling and accessing 
persistent resources using web services in order to facilitate the definition and implementation of a service and the integration 
and management of multiple services. Note that “stateless” services can, in fact, remember state if that is carried in messages 
they receive. These could contain a token remembered in a cookie on the client side and a database or cache accessed by the 
service. Again, the user accessing a stateless service can establish state for the session through the user login that references 
permanent information stored in a database. 

The state information of a web service is kept in a separate entity called a resource. A service may have more than one 
(singleton) resource, distinguished by assigning a unique key to each resource. Resources can be either in memory or 
persistent, stored in secondary storage such as a file or database. The pairing of a web service with a resource is called a WS- 
Resource. The preferred way of addressing a specific WS-Resource is to use the qualified endpoint reference (EPR) 
construct, proposed by the WS-Addressing specification. Resources store actual data items, referred to as resource properties. 
Resource properties are usually used to keep service data values, providing information on the current state of the service, or 
metadata about such values, or they may contain information required to manage the state, such as the time when the resource 
must be destroyed. Currently, the Globus Toolkit 4.0 provides a set of OGSA capabilities based on WSRF. 
5.1.5​Other Service-Oriented Architectures and Systems 

A survey of services and how they are used can be found in. Here we give two examples: one of a system and one of 
a small grid. 
Example 5.3 U.S. DoD Net-Centric Services 

The U.S. military has introduced a set of so-called Net-Centric services that are to be used in Department of Defense (DoD) 

software systems to be used on the GiG – Global Information Grid. As shown in Table 5.6, these make different choices of services 

from OGSA. This is not a radically different architecture, but rather a different layering. Messaging is present in Table 5.6 but viewed 

as part of WS-* or a higher application layer in OGSA. 

 



 
 

Example 5.4 Services in CICC—The Chemical Informatics Grid 
The goal of this project is to support cluster analysis, data mining, and quantum simulation/first principles 

calculations on experimentally obtained data on small molecules with potential use in drug development. Small 
molecule data is gathered from NIH PubChem and DTP databases, with additional large molecule data available 
from service-wrapped databases such as the Varuna, Protein Data Bank, PDBBind, and MODB. NIH-funded High 
Throughput Screening centers are expected to deluge the PubChem database with assays of the next several years, 
making the automated organization and analysis of data essential. 

 
Data analysis applications are interestingly combined with text analysis applications applied to journal and 

technical articles to make a comprehensive scientific environment. Workflow is a key part of this project as it 
encodes scientific use cases. 

 

 



 

5.2​MESSAGE-ORIENTED MIDDLEWARE 
This section introduces message-oriented middleware for supporting distributed computing. The study included 

enterprise bus, publish-subscribe model, queuing, and messaging systems. 
5.2.1​Enterprise Bus 

In the previous section, we described services and service architectures. These services, by definition, interact with 
messages with a variety of different formats (APIs), wire protocols, and transport mechanisms. It is attractive to abstract the 
communication mechanism so that services can be defined that communicate independent of details of the implementation. 
For example, the author of a service should not need to worry that a special port is to be used to avoid firewall difficulties or 
that we need to use UDP and special fault tolerance approaches to achieve satisfactory latency on a long-distance 
communication. Further, one may wish to introduce a wrapper so that services expecting messages in different styles (say, 
SOAP, REST, or Java RMI) can communicate with each other. The term “enterprise service bus” or ESB refers to the case 
where the bus supports the convenient integration of many components, often in different styles. These remarks motivate the 
messaging black box abstraction shown in Figure 5.6. 

 
FIGURE 5.6: Two message bus implementations between services or using a broker network. 

One does not open a channel between source and destination, but rather injects a message into the bus with enough information 
to allow it to be delivered correctly. This injection is performed by code loaded into each service and represented by the filled ovals 
as client interfaces in Figure 5.6(a). The message bus is shown linking services in this figure, but it can work with any software or 
hardware entity sending and receiving messages. A simple example could be desktops or smart phones as the clients. Further, such 
buses can be implemented internally to an application, or in a distributed fashion. In the latter case, the message bus is typically 
implemented as a set of “brokers” shown in Figure 5.6(b). 

 
The use of multiple brokers allows the bus to scale to many clients (services) and large mes-sage traffic. Note that the 

brokers of Figure 5.6(b) are “just” special servers/services that receive messages and perform needed transformations and 
routing on them and send out new messages. There is a special (simple) case of message buses where the brokers shown in 
Figure 5.6(b) are not separate servers but are included in the client software. Note that such buses support not just point-to- 
point messaging but broadcast or selective multicast to many recipient clients (services). 

 



Often, one implements brokers as managers of queues, and software in this area often has MQ or “Message Queue” in its 
description. An early important example is MQSeries from IBM which is now marketed as the more recent WebSphereMQ. 
Later, when we study cloud platforms, we will find that both Azure and Amazon offer basic queuing software. A typical use 
of a message queue is to relate the master and workers in the “farm” model of parallel computing where the “master” defines 
separate work items that are placed in a queue which is accessed by multiple workers that select the next available item. This 
provides a simple dynamically load-balanced parallel execution model. If necessary, the multiple brokers of Figure 5.6(b) can 
be used to achieve scalability. 

 
5.2.2​Publish-Subscribe Model and Notification 
An important concept here is “publish-subscribe” [34] which describes a particular model for link-ing source and destination 
for a message bus. Here the producer of the message (publisher) labels the message in some fashion; often this is done by 
associating one or more topic names from a (controlled) vocabulary. Then the receivers of the message (subscriber) will 
specify the topics for which they wish to receive associated messages. Alternatively, one can use content-based delivery 
systems where the content is queried in some format such as SQL. 

The use of topic or content-based message selection is termed message filtering. Note that in each of these cases, we find 
a many-to-many relationship between publishers and subscribers. Publish-subscribe messaging middleware allows 
straightforward implementation of notification or event-based programming models. The messages could, for example, be 
labeled by the desired notifying topic (e.g., an error or completion code) and contain content elaborating the notification. 

 
5.2.3​Queuing and Messaging Systems 

There are several useful standards in this field. The best known is the Java Message Service (JMS)which specifies a 
set of interfaces outlining the communication semantics in pub/sub and queuing systems. Advanced Message Queuing 
Protocol (AMQP) specifies the set of wire formats for communications; unlike APIs, wire formats are cross-platform. In the 
web service arena, there are competing standards, WS-Eventing and WS-Notification, but neither has developed a strong 
following. Table 5.8 compares a few common messaging and queuing systems. We selected two cloud systems: Amazon 
Simple Queue and Azure Queue. 

We also list MuleMQ, which is the messaging framework underlying the ESB system Mule, developed in Java, of which there 
are 2,500 product deployments as of 2010. The focus of Mule is to simplify the integration of existing systems developed using 
JMS, Web Services, SOAP, JDBC, and traditional HTTP. Protocols supported within Mule include POP, IMAP, FTP, RMI, SOAP, 
SSL, and SMTP. ActiveMQ is a popular Apache open source message broker while WebSphereMQ is IBM’s enterprise message bus 
offering. Finally, we list the open source NaradaBrokering that is notable for its broad range of supported transports and was 
successfully used to support a software Multipoint Control Unit (MCU) for multipoint video conferencing and other collaboration 
capabilities. 

Note that the four non-cloud systems support JMS. Also, some key features of messaging systems are listed in the table 
but are not discussed in this brief section. These are security approach and guarantees and mechanisms for message delivery. 
Time-decoupled delivery refers to situations where the producer and consumer do not have to be present at the same time to 
exchange messages. Fault tolerance is also an important property: Some messaging systems can back up messages and 
provide definitive guarantees. This table is only illustrative and there are many other important messaging systems. For 
example, RabbitMQ is a new impressive system based on the AMQP standard. 

 
5.2.4​Cloud or Grid Middleware Applications 
Three examples are given here to illustrate the use of the NaradaBrokering middleware service with distributed computing. 
The first example is related to environmental protection. The second is for Internet conferencing and the third is for 
earthquake science applications. 
Example 5.5 Environmental Monitoring and Internet Conference Using NaradaBrokering 

The GOAT project at Clemson University is part of the Program of Integrated Study for Coastal Environmental 
Sustainability (PISCES), which addresses environmental sustainability issues that can accompany coastal development. The 
current study incorporates groundwater monitoring, surface water quality and quantity monitoring, weather, and a variety of 
ecological measurements. The project utilizes the publish-subscribe messaging system, NaradaBrokering, to provide a 
flexible and reliable layer to move observation data from a wide variety of sensor sources to users that have diverse data 
management and processing requirements. NaradaBrokering can display environmental sensors. 

The commercial Internet Meeting software Anabas (www.anabas.com) incorporates support for sharing applications 
besides incorporating support for shared whiteboards, and chat tools. Anabas uses NaradaBrokering for its content 
dissemination and messaging requirements. On a daily basis, Anabas supports several online meetings in the United States, 
Hong Kong, and mainland China. Note NaradaBrokering supports audio-video conferencing (using UDP) as well as other 
collaborative applications using TCP. Dynamic screen display published to NaradaBrokering can be displayed on 
collaborating clients. 

 



 
 
 

Example 5.6 QuakeSim Project for Earthquake Science 
The NASA-funded QuakeSim project uses NaradaBrokering to manage workflows that connect 

distributed services, and to support GPS filters delivering real-time GPS data to both human and application 
consumers as shown in Figure 5.7 (http://quakesim.jpl.nasa.gov/). The GPS application is an important 
application similar to Example 5.4 where publish-subscribe systems manage sensor networks. In fact, one can 
consider webcams as sensors (as they produce real-time streams) and so Example 5.5 is also of this type. Clouds 
are an important implementation for this type of application as brokers can be added on demand to support myriad 
dynamic sensors from cell phones to military or civil sensors responding to an extreme event. The display of GPS 
sensors is managed by NaradaBrokering. The map displays the time series produced by GPS stations. 

 
FIGURE 5.7: Display of GPS sensors managed by NaradaBrokering in Southern California; the map displays the time series 

produced by one of the GPS stations. 

 

http://quakesim.jpl.nasa.gov/)

	UNIT- 3 Cloud Platform Architecture over Virtualized Data Centers. . 
	4.1​CLOUD COMPUTING AND SERVICE MODELS 
	4.1.1​Public, Private, and Hybrid Clouds 
	4.1.1.1​Centralized versus Distributed Computing 
	4.1.1.2​Public Clouds 
	4.1.1.3​Private Clouds 
	4.1.1.4​Hybrid Clouds 
	4.1.1.5​Data-Center Networking Structure 
	4.1.1.6​Cloud Development Trends 

	4.1.2​Cloud Ecosystem and Enabling Technologies 
	4.1.2.1​Cloud Design Objectives 
	4.1.2.2​Cost Model 
	4.1.2.3​Cloud Ecosystems 
	4.1.2.4​Surge of Private Clouds 

	4.1.3​Infrastructure-as-a-Service (IaaS) 
	4.1.3.1​Infrastructure as a Service 
	4.1.4.2​Software as a Service (SaaS) 
	4.1.4.3​Mashup of Cloud Services 

	4.2.1​Warehouse-Scale Data-Center Design 
	4.2.1.1​Data-Center Construction Requirements 
	4.2.1.2​Cooling System of a Data-Center Room 

	4.2.2​Data-Center Interconnection Networks 
	4.2.2.1​Application Traffic Support 
	4.2.2.2​Network Expandability 
	4.2.2.3​Fault Tolerance and Graceful Degradation 
	4.2.2.4​Switch-centric Data-Center Design 

	4.2.3​Modular Data Center in Shipping Containers 
	4.2.3.1​Container Data-Center Construction 

	4.2.4​Interconnection of Modular Data Centers 
	4.2.4.1​Inter-Module Connection Networks 

	4.2.5​Data-Center Management Issues 
	4.2.5.1​Marketplaces in Cloud Computing Services 

	4.3​ARCHITECTURAL DESIGN OF COMPUTE AND STORAGE CLOUDS 
	4.3.1​A Generic Cloud Architecture Design 
	4.3.1.1​Cloud Platform Design Goals 
	4.3.1.2​Enabling Technologies for Clouds 
	4.3.1.3​A Generic Cloud Architecture 

	4.3.2​Layered Cloud Architectural Development 
	4.3.2.1​Market-Oriented Cloud Architecture 
	4.3.2.2​Quality of Service Factors 

	4.3.3​Virtualization Support and Disaster Recovery 
	4.3.3.1​Hardware Virtualization 
	4.3.3.2​Virtualization Support in Public Clouds 
	4.3.3.3​Storage Virtualization for Green Data Centers 
	4.3.3.4​Virtualization for IaaS 
	4.3.3.5​VM Cloning for Disaster Recovery 

	4.3.4​Architectural Design Challenges 
	4.3.4.1​Challenge 1—Service Availability and Data Lock-in Problem 
	4.3.4.2​Challenge 2—Data Privacy and Security Concerns 
	4.3.4.3​Challenge 3—Unpredictable Performance and Bottlenecks 
	4.3.4.4​Challenge 4—Distributed Storage and Widespread Software Bugs 
	4.3.4.5​Challenge 5—Cloud Scalability, Interoperability, and Standardization 
	4.3.4.6​Challenge 6—Software Licensing and Reputation Sharing 


	4.4​PUBLIC CLOUD PLATFORMS: GAE, AWS, AND AZURE 
	4.4.1​Public Clouds and Service Offerings 
	4.4.2​Google App Engine (GAE) 
	4.4.2.1​Google Cloud Infrastructure 
	4.4.2.2​GAE Architecture 
	4.4.2.3​Functional Modules of GAE 
	4.4.2.4​GAE Applications 

	4.4.3​Amazon Web Services (AWS) 
	4.4.4​Microsoft Windows Azure 

	4.5​INTER-CLOUD RESOURCE MANAGEMENT 
	4.5.1​Extended Cloud Computing Services 
	4.5.1.1​Cloud Service Tasks and Trends 
	4.5.1.2​Software Stack for Cloud Computing 
	4.5.1.3​Runtime Support Services 

	4.5.2​Resource Provisioning and Platform Deployment 
	4.5.2.1​Provisioning of Compute Resources (VMs) 
	4.5.2.2​Resource Provisioning Methods 
	4.5.2.3​Demand-Driven Resource Provisioning 
	4.5.2.4​Event-Driven Resource Provisioning 
	4.5.2.5​Popularity-Driven Resource Provisioning 
	4.5.2.6​Dynamic Resource Deployment 
	4.5.2.7​Provisioning of Storage Resources 

	4.5.3​Virtual Machine Creation and Management 
	4.5.3.1​Independent Service Management 
	4.5.3.2​Running Third-Party Applications 
	4.5.3.3​Virtual Machine Manager 
	4.5.3.4​Virtual Machine Templates 
	4.5.3.5​Distributed VM Management 

	4.5.4​Global Exchange of Cloud Resources 
	4.6.1​Cloud Security Defense Strategies 
	4.6.1.1​Basic Cloud Security 
	4.6.1.2​Security Challenges in VMs 
	4.6.1.3​Cloud Defense Methods 
	4.6.1.4​Defense with Virtualization 
	4.6.1.5​Privacy and Copyright Protection 

	4.6.2​Distributed Intrusion/Anomaly Detection 
	4.6.2.1​Distributed Defense against DDoS Flooding Attacks 

	4.6.3​Data and Software Protection Techniques 
	4.6.3.1​Data Integrity and Privacy Protection 
	4.6.3.2​Data Coloring and Cloud Watermarking 
	4.6.3.3​Data Lock-in Problem and Proactive Solutions 

	4.6.4​Reputation-Guided Protection of Data Centers 
	4.6.4.1​Reputation System Design Options 
	4.6.4.2​Reputation Systems for Clouds 
	4.6.4.3​Trust Overlay Networks 


	5.1​SERVICES AND SERVICE-ORIENTED ARCHITECTURE 
	5.1.1​REST and Systems of Systems 
	5.1.2​Services and Web Services 
	5.1.2.1​WS-I Protocol Stack 
	5.1.2.2​WS-* Core SOAP Header Standards 

	5.1.3​Enterprise Multitier Architecture 
	5.1.4​Grid Services and OGSA 
	5.1.5​Other Service-Oriented Architectures and Systems 
	The goal of this project is to support cluster analysis, data mining, and quantum simulation/first principles calculations on experimentally obtained data on small molecules with potential use in drug development. Small molecule data is gathered from NIH PubChem and DTP databases, with additional large molecule data available from service-wrapped databases such as the Varuna, Protein Data Bank, PDBBind, and MODB. NIH-funded High Throughput Screening centers are expected to deluge the PubChem database with assays of the next several years, making the automated organization and analysis of data essential. 


	5.2​MESSAGE-ORIENTED MIDDLEWARE 
	5.2.1​Enterprise Bus 
	5.2.2​Publish-Subscribe Model and Notification 
	5.2.3​Queuing and Messaging Systems 
	5.2.4​Cloud or Grid Middleware Applications 
	Example 5.5 Environmental Monitoring and Internet Conference Using NaradaBrokering 
	Example 5.6 QuakeSim Project for Earthquake Science 



