
Async images rendering
Challenge: decouple image processing from page (html) rendering to speed up page
delivery for pages with multiple unprocessed images e.g. backend filelist module with
external storage.
In current master https://review.typo3.org/c/Packages/TYPO3.CMS/+/57646 there is already
a partial solution for this, but it has a few drawbacks, e.g. that it passes request through php
even for images which are already generated.

Preface
We currently face the challenge, that a page with many unprocessed images and or image
variants can take a long time to render, or at worst, cannot be delivered to the client at all
when the time to render exceeds timeouts PHP or of the delivering webserver.

User facing requirements

To improve the situation for users the following requirements MUST be met:

1.​ Improve time to first byte (TTFB) for pages with processed images, by not letting the
image processing block the overall page rendering

2.​ Possible implementations MUST be working for TYPO3 backend requests and SHOULD
be working for frontend requests

3.​ Each implementation of async image processing MUST NOT have security implications,
specifically it MUST NOT be possible for an attacker to trigger the async image
processing with arbitrary values.

Technical requirements

To improve the situation for maintenance of the product the following requirements MUST be
met:

1.​ Async image processing MUST be part of the main processing API, so that it can applied
to all places where image processing is required.

2.​ Since different implementations impose different requirements on the environment and
come with different user facing drawbacks, it MUST be possible to switch
implementations on environment level, e.g. through a global configuration option.

3.​ It MUST be possible to extend existing implementations and to add additional
implementations or external SaaS services by the usage of a public API.

4.​ Code that uses image processing MUST be independent from a concrete processing
implementation.

https://review.typo3.org/c/Packages/TYPO3.CMS/+/57646

Implementation steps

Step 1
Refactor \TYPO3\CMS\Core\Resource\Service\FileProcessingService to
allow other file processors beside
\TYPO3\CMS\Core\Resource\Processing\LocalImageProcessor to process a
file (or image).

Tim will handle that.

Step 2 (we will see if we need this step, based on experiments)
Allow to mark a \TYPO3\CMS\Core\Resource\ProcessedFile as partially processed.
Doing so is done by providing a temporary public URL and adding a flag that is persisted.

Rationale:
The first is needed to let a processing implementation provide an URL that will actually
process the image or points to a URL of a placeholder image. The latter is needed for
asynchronous tasks to pull out all partially processed files and actually process them.

Note:
Most probably we need to know the dimensions of the final image (thumbnail), even if the
image is not yet processed, so we can generate html img tag with correct dimensions set.
This probably means that the calculation of the size of the scaled/cropped image need to be
extracted processing code.

Step 3 Solution for BE
We get rid of the new async viewhelper (TODO find the name of the viewhelper).

Implement a BackendPreviewProcessor that sets the temporary URL to a
BackendUtility::getThumbnailUrl
The first hit (image has no thumbnail processed) will return urls pointing to a TYPO3
endpoint.
This endpoint can process image and return redirect to final url (so image is retrieved by
browser with correct cache headers).
The second hit (after image has been processed) will return urls to scaled image. This url will
not require any further php processing.

This would solve the issue for backend usages.

Step 4 Solution for FE

We need to investigate different scenarios (cdn, remote storage, remote file processing
services).
This step will result in having one or more processors which are tailored for different
scenarios. E.g. One can imagine that extension which provides s3 FAL storage, also
provides an s3 aware processor.

Implement further file processors, that are capable of asynchronously process files.
Examples:

●​ A Processor that sets the URL to the not yet existing processed file and letting the web
server rewrite the URL to a file processing end point.

●​ A Processor that sets the URL to a placeholder image (a generic one, a lowres bitmap
image representation, a svg representation, …) and a accompanied scheduler task that
processes images in a background queue.

●​ …

----Notes from TM----

When generating response e.g. HTML TYPO3 places urls to images which contain enough
information to generate image thumbnail in second request. The url would stay the same for
processed and unprocessed images (it will not change over time) allowing caching of the
generated html e.g. in reverse proxies. Url might look like this:
/storage/{token}/original/file/path/filename.jpg

Where token

a)​ contains all params required for image processing (width, height…) stored in it

 public function generateToken(array $params)
 {
 $params = json_encode($params);
 $token = hash_hmac('sha256', $params, $encryptionKey, true) . $params;
 // Base64 encode the token and transcribe the non URL-safe characters
 $token = strtr(base64_encode($token), self::BASE64_REMAP_SEARCH,
self::BASE64_REMAP_REPLACE);
 return $token;
 }
This way thumbnail generation doesn't require a DB connection, but url might
become quite long. Example implementation for Magento

https://github.com/AOEpeople/Aoe_LazyCatalogImages/blob/master/app/code/comm
unity/Aoe/LazyCatalogImages/Helper/Catalog/Image.php

b) token contains a reference to sys_file_processedfile record, which then contains all
required information for image processing
This approach requires thumbnail generation script to have access to the database and
perform one db insert per thumbnail still in the thread generating html.

For performance reasons, the thumbnail generation script should be called only when the
image is not yet processed (is not on the disk), this could be achieved using web server
rewrite.
This however might require additional configuration on the web server side (we can ship
default .htaccess and nginx rules, but it might be tricky for some integrators - and maybe we
should not make it default behavior but one enabled with configuration option (maybe in
sitehandling)?​
e.g.
https://github.com/AOEpeople/Aoe_LazyCatalogImages/blob/master/media/catalog/product/
LCI/.htaccess
https://github.com/AOEpeople/Aoe_LazyCatalogImages/issues/10

Solution testing checklist (the things we should take into account when reviewing the final
proposal).

●​ will it work when a site is behind a reverse proxy like varnish?
●​ will it work when images are cached/delivered by CDN?
●​ will it work for small installations on shared hosting (or is there a switch)?
●​ will it be OK for SEO?
●​ is there a performance penalty for uncached/BE pages with many images which are

already processed?
●​ will it work with files stored in external storages (S3, azure blob storage,...)​

Other related concepts

●​ Adaptive images (delivering different image sizes depending on the screen
resolution) e.g https://extensions.typo3.org/extension/c1_adaptive_images/

●​ LQIP (low quality image placeholders)
○​ SQIP (SVG-based image placeholders)

Related reviews:
https://review.typo3.org/c/Packages/TYPO3.CMS/+/60676 [WIP] Proof of concept
deferred thumbnail processing
https://review.typo3.org/c/Packages/TYPO3.CMS/+/60644

https://github.com/AOEpeople/Aoe_LazyCatalogImages/blob/master/app/code/community/Aoe/LazyCatalogImages/Helper/Catalog/Image.php
https://github.com/AOEpeople/Aoe_LazyCatalogImages/blob/master/app/code/community/Aoe/LazyCatalogImages/Helper/Catalog/Image.php
https://github.com/AOEpeople/Aoe_LazyCatalogImages/blob/master/media/catalog/product/LCI/.htaccess
https://github.com/AOEpeople/Aoe_LazyCatalogImages/blob/master/media/catalog/product/LCI/.htaccess
https://github.com/AOEpeople/Aoe_LazyCatalogImages/issues/10
https://review.typo3.org/c/Packages/TYPO3.CMS/+/60676
https://review.typo3.org/c/Packages/TYPO3.CMS/+/60644

https://review.typo3.org/c/Packages/TYPO3.CMS/+/60422/ [FEATURE] Render
thumbnails in file list module deferred

File module rework (backport to 9.5 is planned)
https://github.com/TYPO3-Initiatives/digital-asset-management

Meetings

10.08.2020
Attandees: Tymoteusz Motylewski, Helmut Hummel, Tim Schreiner

Topics:

●​ Current state of development, especially from Helmut
●​ Different cases that should be taken into account
●​ What to work on next

Conclusions:

●​ We decided to throw away the patch
https://review.typo3.org/c/Packages/TYPO3.CMS/+/61859 because it is not
blocking the actual task of async image processing and may be needed for
some cases. But we decided to deprecate the PreviewImageTask

●​ Helmut will keep working on backend implementation of async image
processing https://review.typo3.org/c/Packages/TYPO3.CMS/+/65237

●​ DB table sys_fileprocessedfile will gain a new column called something like
"public_processing_url" that can contain an additional url which will be used
when getting the public image url. That field may contain an url to an
endpoint that will do the actual image processing.

●​ Add new PHP class will be added to calculate the resulting image dimensions
without processing the image by taking the processingConfiguration into
account. That is needed to fill width and height field when creating the
sys_file_processedfile entry without actual image processing

●​ A processor for async frontend image processing will be created that works
similar to the backend implementation. To avoid problems with caches, the
processor will always return the final processed image url, even if the
resulting image does not exist. A change in .htaccess, nginx conf or
web-config will redirect every requests to a processed image folder that does
not match a file to index.php for further processing. TYPO3 then processes

https://review.typo3.org/c/Packages/TYPO3.CMS/+/60422/
https://github.com/TYPO3-Initiatives/digital-asset-management
https://review.typo3.org/c/Packages/TYPO3.CMS/+/61859
https://review.typo3.org/c/Packages/TYPO3.CMS/+/65237

the image. Some special attention should be given to documentation of this
feature and to explain the updates that has to be done in .htaccess or other
webserver configs

	Async images rendering
	Preface
	User facing requirements
	Technical requirements
	Implementation steps
	Step 1
	Step 2 (we will see if we need this step, based on experiments)
	Step 3 Solution for BE
	Step 4 Solution for FE

	Meetings
	10.08.2020

