

Province of the **EASTERN CAPE** EDUCATION

GRADE 11

NOVEMBER 2010

MATHEMATICS – PAPER 3 MEMORANDUM

MARKS: 100

This memorandum consists of 8 pages.

1.1 P(I or J) = P(I) + P(J)0,41 = 0,25 + P(J)

P(J) = 0.16

✓ Formula or substitution

(2)

answer

1.2 $P(A \text{ and } B) = P(A) \times P(B)$

 $\frac{1}{12} = \frac{1}{3} \times P(B)$

 $P(B) = \frac{1}{4}$

✓ Formula or substitution

✓ answer

(2)

1.3 1.3.1

MF

✓ values

 \mathbf{EM}

✓ second branch

✓ first branch

 $\mathbf{E}\mathbf{F}$

✓ values

LM

✓ outcomes

LF

5)

1.3.2 P(Engineer) = $\frac{5}{10} = \frac{1}{2}$

(2) ✓ ✓ answer

1.3.3 P(Male) = $\frac{4}{10} = \frac{2}{5}$

(2) ✓ ✓ answer

1.3.4 P(Not Male Engineer) = 1 - P(Male Engineer)= $1 - \frac{3}{10}$

✓ method

(2)

[15]

2.1 a = 350; b = 450; c = 600 and d = 1250

✓ ✓ ✓ ✓ One (4)

- 2.2 $P(Used) = \frac{650}{1250} = 0,52$
 - $P(Male) = \frac{750}{1250} = 0,60$
 - $P(Used) \times P(Male) = 0.52 \times 0.60 = 0.31$
 - P(Male & Used) = $\frac{300}{1250}$ = 0, 24
 - \Rightarrow P(U) x P(M) \neq P(M & U)
 - : Choice not independent of gender.
- 2.3 $\frac{150}{1250}$ × 50 000 = 6000 females
- 2.4 No. The sample size is very small, only 2,5% of a very large crowd population.
 - Yes. The sample was chosen at random which should be a good representation of the crowd population.

- mark per answer
 - √ P(Used)
 - √ P(Male)
 - ✓ Product
 - ✓ P(M & U)
 - ✓ deduction
- ✓ conclusion (6)
 - ✓ calculation
- ✓ answer (2)
 - ✓ No / Yes
 - ✓ valid explanation

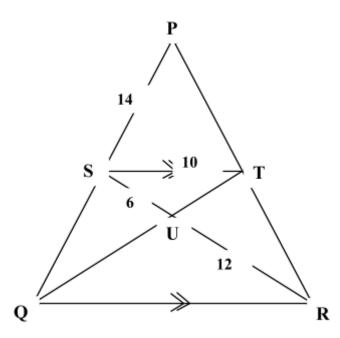
- **QUESTION 3**
- 3.1 25 people
- 155 + x + 50 + 115 + 75 + 90 + 240 + 25 = 8003.2
 - x = 50
- 3.3 No. The sample size is far too small. The sample might have been biased in one way or the other.
- $P(Bus) = \frac{305}{800} = 0.38$ 3.4
- 3.5 $\frac{265}{800} \times 100 \approx 33\%$
- $P(C' \cap T \cap B) = \frac{50}{800} = \frac{1}{16}$ 3.6

(1) ✓ answer

(2) [15]

- ✓ equation
- ✓ answer (2)
- ✓ No (2) ✓ reason
 - **√** 305
 - **√** 800
- (3) ✓ answer
 - ✓ numerator
 - ✓ denominator
- ✓ answer (3)
 - **√** 50
 - **√** 800
- ✓ answer (3)

- 4.1 Percentage of tickets sold = $\frac{1600000}{3200000} \times 100 = 50\%$
- ✓ method
- (2) ✓ answer
- 4.2 The reason for this is the scale used on the y-axis.
 A smaller scale is used with graph A and this causes a steeper gradient.
- ✓ explanation✓ explanation
- (2)
- 4.3 Graph A, because it definite gives the impression that there is a steep increase in ticket sales.
- ✓ Graph A✓ reason
- [6]


QUESTION 5

5.1 Option D

- (2) ✓ ✓ answer
- 5.2 The corresponding sides of the figures are proportional.
- (1) ✓ answer
- [3]

* FOR QUESTIONS 6 TO 8 FOLLOW CANDIDATES REASONING *

QUESTION 6

- 6.1 In $\triangle SUT$ and $\triangle RUQ$
 - $1. \hat{STQ} = \hat{TQR} \quad (alternate \angle s : ST||QR)$
 - $2.T\hat{S}R = S\hat{R}Q \quad (alternate \angle s : ST||QR)$
 - $3. \hat{SUT} = \hat{QUR}$ (vertically opposite $\angle s$)
 - $\therefore \Delta SUT \mid \mid \mid \Delta RUQ (\angle, \angle, \angle)$

- ✓ first angle
- ✓ second angle
- (3) ✓ third angle or reason

(3)

6.2 6.2.1
$$\frac{QR}{ST} = \frac{UR}{SU}$$

$$\frac{QR}{10} = \frac{12}{6}$$

 $\therefore QR = 20 \text{ units}$

✓ statement or substitution

✓ statement or substitution

✓ answer (SQ)

(2) ✓ answer

6.2.2 In
$$\triangle PQR$$
: $\frac{PS}{PQ} = \frac{ST}{QR}$

$$\frac{14}{PQ} = \frac{10}{20}$$

PQ = 28 units

✓ answer (PQ)

SQ = 14 units

 $\frac{PT}{TR} = \frac{PS}{SQ} = 1$

✓ statement

 $\therefore PT = TR$

 \Rightarrow T is the midpoint of PR.

(2) ✓ conclusion

 $\frac{TU}{QT} = \frac{SU}{SR}$

 $\frac{TU}{24} = \frac{6}{18}$

✓ statement or substitution

TU = 8 units

✓ answer (TU)

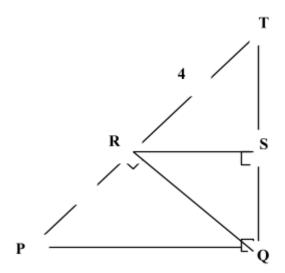
 $ST^2 = SU^2 + UT^2$ (Pythagoras)

$$(10)^2 = (6)^2 + (8)^2$$

$$100 = 36 + 64$$

$$100 = 100$$

✓ Pythagoras


✓ LHS = RHS

 $\therefore \Delta SUT$ is a right - angled Δ , with $\hat{SUT} = 90^{\circ}$

 \Rightarrow SR \perp QT at U.

✓ conclusion

(5) **[15]**

7.1

7.1.1 In
$$\triangle TRQ$$
 and $\triangle QRP$

Let $\stackrel{\circ}{P} = x$, then $\stackrel{\circ}{PQR} = 90^0 - x$.

Then, also $\stackrel{\circ}{RQT} = x$

1. $\stackrel{\circ}{RQT} = \stackrel{\circ}{PRQ}$ (proven above)

2. $\stackrel{\circ}{TRQ} = \stackrel{\circ}{PRQ}$ (both = 90^0)

$$\therefore \triangle TRQ / / / \triangle QRP (\angle, \angle, \angle)$$

7.1.2 $\frac{QR}{PR} = \frac{TR}{QR}$

$$= 4 \times \frac{9}{4}$$

$$= 9$$

(4) \checkmark substitution

QR = 3 units

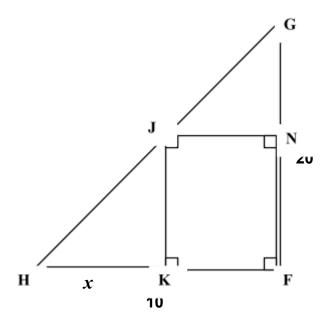
✓ answer

7.1.3 $In \Delta TRQ : TQ = 5 units (Pythagoras)$

√ TQ

 $\frac{TS}{TQ} = \frac{TR}{PT} (RS || PQ)$

✓ statement


 $TS = \frac{4 \times 5}{\frac{25}{4}}$

✓ substitution

 $=\frac{16}{5}$ units

(4) ✓ answer

7.2

7.2.1 In $\triangle GHF$ and $\triangle JHK$

1.
$$\hat{H}$$
 is common

$$2. \stackrel{\circ}{GFH} = \stackrel{\circ}{JKH} \left(both = 90^{\circ}\right)$$

3.
$$H\hat{G}F = H\hat{J}K$$
 (corresponding $\angle s$)

$$\Delta GHF /// \Delta JHK (\angle, \angle, \angle)$$

7.2.2
$$\frac{JK}{GF} = \frac{HK}{HF}$$

$$JK = \frac{20 \times x}{10} = 2x$$

7.2.3 Area of rectangle = $l \times b$ = $JK \times KF$

$$= 2x \times (10 - x)$$
$$= -2x^2 + 20x$$

7.2.4 Area of
$$\triangle HJK = \frac{1}{2}(HK)(JK)$$

$$25 = \frac{1}{2}(x)(2x)$$

$$25 = x^{2}$$

$$\therefore x = 5 \text{ units}$$

$$\frac{Area of rectangle JKFN}{Area of triangle GHF} = \frac{l \times b}{\frac{1}{2}(b \times h)} = \frac{10 \times 5}{\frac{1}{2}(10)(20)}$$
$$= \frac{50}{100} = \frac{1}{2}$$

✓ statement

✓ statement

✓ third angle or reason

(3)

✓ statement

(2) ✓ answer

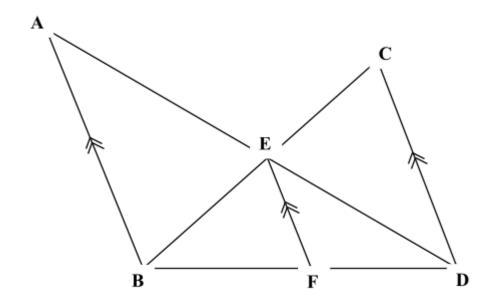
√ formula

✓ KF

✓ substitution

NB – no mark for answer.

✓ formula or substitution


 $\checkmark x = 5$

√ formulae

✓ substitution

(5) ✓ answer

[24]

(1) ✓ answer

8.2 8.2.1
$$\frac{EF}{CD} = \frac{1}{2}$$

(1) ✓ answer

8.2.2 Area of
$$\triangle BEF$$
Area of $\triangle BED$

 $= \frac{\frac{1}{2} \times BF \times h}{\frac{1}{2} \times BD \times h} \quad (\Delta's \ between \ same \ parallel \ lines)$

$$= \frac{BF}{BD} = \frac{1}{2}$$

✓ statement

(2) ✓ answer

8.2.3
$$\frac{Area \ of \ \Delta \ BEF}{Area \ of \ \Delta \ ABD} = \frac{Area \ of \ \Delta \ BEF}{Area \ of \ \Delta \ BED} \times \frac{Area \ of \ \Delta \ BED}{Area \ of \ \Delta \ ABD}$$

$$\frac{Area \ of \ \Delta \ BEF}{Area \ of \ \Delta \ BED} = \frac{1}{2} \quad (from \ 8. \ 2. \ 2)$$

$$\frac{Area \ of \ \Delta \ BED}{Area \ of \ \Delta \ BED} = \frac{ED}{AD} = \frac{1}{2} \quad (\Delta' \ s \ betw \ same \ || \ lines)$$

$$= \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{4}$$
(NOVEMBER 2010)

(NOVEMBER 2010)

(4) ✓ answer [8]

TOTAL: 100