Chapter 4 Test Review

Constants: $c = 3.00 \times 10^8 \text{m/s}$ $h = 6.63 \times 10^{-34} \text{ J/s}$ $1 \text{ m} = 1 \times 10^9 \text{ nm}$

You will not be given the equations on the test. Make sure they are memorized!

- 1) What is the energy of a photon whose frequency is $3.0 \times 10^{12} \text{ sec}^{-1}$?
- 2) Show your work and calculate the following.
 - a. Calculate v for a $\lambda = 700.0$ nm.
 - b. Calculate v for a $\lambda = 400.0$ nm.
 - c. Calculate the energy for each wavelength above.
 - a)
 - b)
 - d. Which wavelength has the greatest frequency?
 - e. Which wavelength has more energy?
 - f. How are energy, wavelength, and frequency related?

- 3) A red light has a wavelength of 728 nm.
 - a. What is the frequency of the light?
 - b. What is the speed of the wave in m/s?
- 4) A purple light has a frequency of 7.42×10^{14} /sec.
 - a. What is its wavelength?
 - b. Find the energy for this wavelength.
- 5) You broke your big toe! The x-ray they take of your toe uses waves that have a length of 2.19×10^{10} m.
 - a. What is the speed of the wave in m/s?
 - b. What is the wavelength in nm?
 - c. What is the frequency of the x-ray?
- 6) Element Math Game: http://education.jlab.org/elementmath/ M A = n
- 7) Periodic Table of Isotopes: http://ie.lbl.gov/education/isotopes.htm

Honors Chemistry
Chapter 4 Test Review

Name: Date:

8) Balancing Nuclear Equations:

- a. 214 Bi \Box 214 Po + _____
- b. 90 Rb \square _____ + $^{\circ}$ e
- c. 235 U \square $_{----}$ $^{+4}$ He
- d. ²³⁰ Po emits an alpha particle.
- e. ¹⁴ C emits a beta particle.

9) Half-Life Problems:

- a. If one starts with 20 mg of a radioactive isotope with a half-life of 2.0 days, how much remains after eight days?
- b. The half-life of an isotope is 10 years. If we start with a 10 gram sample of the isotope, how much is left after 20 years?
- c. Start with 12.0 g of a given isotope. After 11 years only 3.0 grams is left. What is the half-life of the isotope?

10) Average Atomic Mass

Naturally occurring lead is composed of four isotopes: 1.40% ²⁰⁴ Pb (203.97 amu), 24.10% ²⁰⁶ Pb (205.97 amu), 22.10% ²⁰⁷ Pb (206.98 amu), and 52.40% ²⁰⁸ Pb (207.98 amu). What is the average atomic mass of lead?

Honors Chemistry Chapter 4 Answer Key

- 2) a. 4.29 x 10¹⁴ s⁻¹
 - b. $7.5 \times 10^{14} \,\mathrm{s}^{-1}$
 - c. $2.84 \times 10^{-19} \text{J}$; $4.97 \times 10^{-19} \text{J}$
 - d. 400 nm
 - e. 400 nm
- 3) a. $4.12 \times 10^{14} \,\mathrm{s}^{-1}$
 - b. $3.0 \times 10^8 \text{ m/s}$
- 4) a. $4.04 \times 10^{-7} \text{ m}$
 - b. 4.92 x 10⁻¹⁹ J
- 5) a. $3.0 \times 10^8 \text{ m/s}$
 - b. 2.19 x 10¹⁹ nm
 - c. 1.37 x 10⁻² s⁻¹
- 6) Element Math Game: http://education.jlab.org/elementmath/ (1st 36 elements)

$$M - A = n$$

$$\parallel$$

$$P - e = C$$

- 7) Periodic Table of Isotopes: http://ie.lbl.gov/education/isotopes.htm
- 8) Balancing Nuclear Equations:
 - a. $^{214}_{83}$ Bi \Box $^{214}_{84}$ Po $^{+}_{-1}$ e
 - b. ${}^{90}_{37}$ Rb \square ${}^{90}_{38}$ Sr ${}^{+0}_{-1}$ e
 - c. $_{92}^{235}$ U $\square _{90}^{231}$ Th $_{2}^{+4}$ He
 - d. $^{230}_{84}$ Po $_{2}^{4}$ He $^{+226}_{82}$ Pb
 - $e. \ \ {}^{14}_{6} \, C \ \Box \ \ {}^{o}_{-1} \, e + \ {}^{14}_{7} \, N$
- 9) Half-Life Problems:
 - a. 1.25 mg
 - b. 2.5 g
 - c. 5.5 years
- **10) Average Atomic Mass** = 207.22 amu