Wilson County Schools

5th Grade Community Resource Framework

Mathematics

2023-2024

Fifth Grade Mathematics Year at a Glance

	First Quarter		Mastan	Second Quarter		Mantan	3rd Quarter		4th Quarter	
	Cluster 1	Cluster 2	Mastery Connect	Cluster 3	Cluster 4		Cluster 5	Cluster 6	Cluster 7	Mastery Connect
Title:	Creating Classroom Community through Data and Graphing	Using Models to Explore Properties of Multiplication and Division	Assessment 1 NC.5.OA.2 NC.5.OA.3 NC.5.NBT.5 NC.5.NBT.6 NC.5.MD.2 NC.5.MD.4	Using Models to Multiply and Divide Fractions	Understanding Place Value in the Context of Metric Measurement	NC.5.NBT.1 NC.5.NBT.3 NC.5.NF.3 NC.5.NF.4 NC.5.NF.7	Using Models to Add and Subtract Decimals and Fractions	Using Models to Multiply and Divide of Whole Numbers, Decimals, and Fractions	Classifying Quadrilaterals	Assessment All Standards
Time:	2 - 3 Weeks	4 - 5 Weeks	NC.5.MD.5	3 - 4 Weeks	3 - 4 Weeks	Review	4 -5 Weeks	5 - 6 Weeks	1 - 2 Weeks	
Content Standards:	NC.5.OA.3 NC.5.MD.2 NC.5.G.1	NC.5.OA.2 NC.5.NBT.5 NC.5.NBT.6 NC.5.MD.4 NC.5.MD.5	NC.5.G.1	NC.5.OA.2 NC.5.NF.3 NC.5.NF.4 NC.5.NF.7	NC.5.NBT.1 NC.5.NBT.3 NC.5.MD.2	NC.5.OA.2 NC.5.OA.3 NC.5.NBT.5 NC.5.NBT.6 NC.5.MD.2 NC.5.MD.4 NC.5.MD.5 NC.5.MD.5	NC.5.OA.2 NC.5.NBT.7 NC.5.NF.1	NC.5.OA.2 NC.5.NBT.5 NC.5.NBT.6 NC.5.NBT.7 NC.5.NF.4 NC.5.NF.7 NC.5.MD.1	NC.5.G.1 NC.5.G.3	
Mathematical Practice Standards:	1, 2, 3, 4, 8	1, 2, 4, 5, 6		1, 2, 3, 4, 5, 6, 7, 8	1, 4, 6, 7, 8		1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4, 6	

Questions to Ask When Helping Your Child with Math Homework

Keep in mind that homework in elementary schools is designed as practice. If your child is having problems, please let the classroom teacher know. When helping your child with his/her math homework, you don't have to know all the answers! Instead, we encourage you to ask probing questions so your child can work through the challenges independently.

What is the problem you're working on?
What do the directions say?
What do you already know that can help you solve the problem?
What have you done so far and where are you stuck?
Where can we find help in your notes?
Are there manipulatives, pictures, or models that would help?
Can you explain what you did in class today?
Did your teacher show examples that you could use?
Can you go onto another problem & come back to this one later?
Can you mark this problem so you can ask the teacher for an explanation tomorrow?

Numbers in Base Tens (NBT)

Vocabulary

Addend: a number that is added to another in an addition problem (Example: in 2 + 3 = 5, 2 and 3 are addends)

Approximate: to find a result that is close to the exact answer

Base Ten- a way to express numbers using place value based on 10, where each place has a value 10 times the place to its right

Decimal number: a number that uses a decimal point to show tenths, hundredths, and thousandths

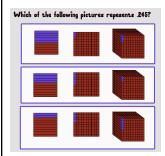
Decompose: to break apart of break down into smaller parts

Standards Included

NC.5.NBT.1 Explain the patterns in the place value system from one million to the thousandths place.

- Explain that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.
- Explain patterns in products and quotients when numbers are multiplied by 1,000, 100, 10, 0.1, and 0.01 and/or divided by 10 and 100.

NC.5.NBT.3 Read, write, and compare decimals to thousandths.


• Write decimals using base-ten numerals,

Parent Activities

- Allow your child to explain the prices of items and explain the values of numbers within those prices.
- Ask your child questions that deal with multiplying by 10.
- Allow your child to watch you write checks and discuss how it is written in word form and standard form.
- Have your child create a grocery list and estimate what they feel the cost of each item would be. When shopping have them round to the nearest dollar each item and estimate the cost before checking out.
- Use a deck of playing cards and play multiplication war.
- Here are samples of games to play using decks of cards.

Online Activities

Football decimals

Place Value of Decimals

Engage NY

Recognize the place value of digits

Difference: the answer to a subtraction problem (in 8 - 3 = 5, 5 is the difference)

Distributive Property- multiplying a number by a sum is the same as multiplying the number by each addend of the sum and then adding the products, such as $2 \times (3+4) = (2 \times 3) + (2 \times 4)$

Dividend- the number to be divided in a division problem

Divisible- when a number can be divided by another number with no remainder, such as 12 is divisible by 3

Divisor- the number by which another number is divided

Equation: a number sentence that uses the equal sign to show that two amounts have equivalent value

Estimate: an answer that is close to the exact answer

Expanded form- a way to write numbers that show the value of each digit

Exponent: a quantity representing the power to which a given number or expression is to be raised, usually expressed as a raised symbol beside the number or expression (e.g., 3 in $2^3 = 2 \times 2 \times 2$)

Factor: a number that is multiples by another number to find a product

Hundredth: One part in a hundred equal parts (found two places to the right of the decimal)

number names, and expanded form.

 Compare two decimals to thousandths based on the value of the digits in each place, using >, =, and < symbols to record the results of comparisons.

NC.5.NBT.5 Demonstrate fluency with the multiplication of two whole numbers up to a three-digit number by a two-digit number using the standard algorithm.

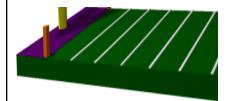
NC.5.NBT.6 Find quotients with remainders when dividing whole numbers with up to four-digit dividends and two-digit divisors using rectangular arrays, area models, repeated subtraction, partial quotients, and/or the relationship between multiplication and division. Use models to make connections and develop the algorithm.

NC.5.NBT.7 Compute and solve real-world problems with multi-digit whole numbers and decimal numbers.

- Add and subtract decimals to thousandths using models, drawings or strategies based on place value.
- Multiply decimals with a product to thousandths using models, drawings, or strategies based on place value.
- Divide a whole number by a decimal and divide a decimal by a whole number, using repeated subtraction or area models. Decimals should be limited to hundredths.
- Use estimation strategies to assess reasonableness of answers.

 Play different types of <u>dice and card games</u> with your child. **Math Goodies**

Place Value Pirates


Decimals in Space

Soccer Math

Fling the teacher

Baseball Exponents

Multiple: the product of a given number and any whole number Partial Product: in a multiplication problem the result of one factor being multiplied by one of the digits in a multi digit problem Place value: the location of a digit in a number Power: the number of times a base number is to be multiplied by itself Power of Ten: the quantity of 10 multiplied by itself the number of times shown by an exponent Product: the answer to a multiplication problem Quotient- the answer to a division problem Remainder- the number left over after dividing into equal groups Round: to estimate a number to the nearest ten, hundred, thousand, etc. Standard form- a number written with one digit for each place value Sum: the answer to an addition problem (Example: in 2 + 3 = 5, 5 is the sum) Tenth: One part in ten equal parts (found to the right of the decimal) Thousandth: One part in a thousand equal parts (found three places to the right of the decimal)

Operations and Algebraic Thinking (OA)

Vocabulary

braces: symbol used to group part of a mathematical expression or equation {}

brackets: symbols used to group part of a mathematical expression or equation []

coordinate plane: a plane spanned by the x-axis and y-axis in which the coordinates of a point are its distances from two intersecting perpendicular axes

corresponding terms: two numbers or elements that occupy the same position in two different patterns

evaluate: to find the value of an expression ordered pair: a pair of numbers used to find a point on a coordinate plane

parentheses: symbols used to group part of a mathematical expression or equation ()

term: a number within a sequence

x-axis: the horizontal axis on a coordinate

plane

y-axis: the vertical axis on a coordinate

plane

Standards Included

NC.5.OA.2 Write, explain, and evaluate numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving:

- Parentheses, using the order of operations.
- Commutative, associative and distributive properties.

NC.5.OA.3 Generate two numerical patterns using two given rules.

- Identify apparent relationships between corresponding terms.
- Form ordered pairs consisting of corresponding terms from the two patterns.
- Graph the ordered pairs on a coordinate plane.

Parent Activities

Create a math Jenga

Create a target number game with a deck of cards

Amazing Equation Race

Online Activities

Order of Operations

Rags to Riches

Math Froq

Measurement and Data (MD)

Vocabulary

capacity: a measure of the amount of liquid a container will hold

centimeter (cm): a metric unit used to measure length (the width of the smallest part of your fingernail)

cup: a customary unit for measuring capacity cubic units: a unit, shaped like a cube, used to measure volume

customary: the measurement system used most often in the United States

decompose: to break into smaller parts

gram (g): a metric unit used to measure mass (example: a paper clip)

gallon (g): a customary unit used to measure capacity

kilogram (kg): a metric unit used to measure mass (1,000 grams= 1 kilogram)

kilometers (km)- a metric unit used to measure length (a little more than $\frac{1}{2}$ a mile)

liquid volume: amount of liquid in a container

line plot: graph that shows data on a number line with Xs

liter (L): a metric unit used to measure capacity

mass: a measure of the amount of matter in an object

Standards Included

NC.5.MD.1 Given a conversion chart, use multiplicative reasoning to solve one-step conversion problems within a given measurement system.

NC.5.MD.2 Represent and interpret data.

- Collect data by asking a question that yields data that changes over time.
- Make and interpret a representation of data using a line graph.
- Determine whether a survey question will yield categorical or numerical data, or data that changes over time.

NC.5.MD.4 Recognize volume as an attribute of solid figures and measure volume by counting unit cubes, using cubic centimeters, cubic inches, cubic feet, and improvised units.

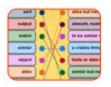
NC.5.MD.5 Relate volume to the operations of multiplication and addition.

- Find the volume of a rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths.
- Build understanding of the volume formula for rectangular prisms with whole-number edge lengths in the context of solving problems.
- Find volume of solid figures with one-digit dimensions composed of two non-overlapping rectangular prisms.

Parent Activities

- Watermelon Seed Spitting
- Tip the Scales for Estimation
- Area and Volume
- Metric Conversion Game
- Have your child measure something with a yardstick and share that result in yards, feet, and inches.
- Look at the grocery store for items measured in cups, gallons, liters, and discuss the difference between them.
- Allow your child to use a measuring tool to measure household items. Ask them to estimate the volume of a box that would be large enough to hold it.

Online Activities



What is the volume

Volume Shape Game

Minecraft: Rectangular Prism

Volume and Surface Area

meter: a metric unit used to measure length (think of the height of a door from the door knob to the floor)

metric: a measurement system used throughout the world based on multiples of 10

mile (mi): a customary unit used to measure length or distance

milligram (mg): a metric unit used to measure mass

milliliter (mL): a metric unit used to measure capacity

ounce (oz): a customary unit used to measure weight (16oz = 1 lb)

perimeter: the distance around a closed figure

pint (pt): a customary unit used to measure capacity (2 cups= 1 pint)

polygon: closed figure made of line segments

pound (lb): a customary unit used to measure weight

quart (qt): a customary unit used to measure capacity (2 pints = 1 quart, 4 cups= 1 quart)

rectangular prism: a three dimensional figure with six rectangular faces

scale: a tool used to measure weight or mass; a number line that marks at fixed intervals used in graphing

standard units: units of measure that are

Metric System Game

Moon Shoot

All about measurement

Customary Units

accepted as a standard		
time interval: amount of time that passes between two events (seconds, minutes, hours, days, weeks, etc.)		
volume: the amount of cubic units needed to fill the space within a solid		
yard (yd): a customary unit for measuring length or distance (3ft=1yd)		

Number and Operations- Fractions (NF)

Vocabulary

common denominator: a denominator that is the same in two or more fractions

compose: joining numbers to create a new new number

decompose: to break apart a number into smaller parts

denominator: the bottom number in a fraction; the total number of equal parts

dividend: the number to be divided in a division problem

divisor: a number by which another number is to be divided

Standards Included

NC.5.NF.1 Add and subtract fractions, including mixed numbers with unlike denominators using related fractions: halves, fourths and eighths; thirds, sixths, and twelfths; fifths, tenths, and hundredths.

- Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.
- Solve one- and two-step word problems in context using area and length models to develop the algorithm. Represent the word problem in an equation.

NC.5.NF.3 Use fractions to model and solve division problems.

• Interpret a fraction as an equal sharing

Parent Activities

- Use a deck of card to work on <u>simplifying</u> fractions
- Support your child with equivalent fractions by playing the <u>Snaq a Spoon game</u>
- Play <u>common denominator war</u>
- Pretend <u>shopping with decimals</u>
- Coupon Math with decimals
- Fold for fractions to better understand equivalent fractions
- Give your child a specific time to work on an activity (give it to them using fractions, for example you have 7 ½ minutes). Stop them within the time and let them know they have been working for a fraction of the time (for example 3 ¾) and then ask them how many minutes do they have left.
- Work with measuring cups and recipes to determine fractional parts and how to double or

Online Activities

equivalent fraction: two or more fractions that are equal

factor: the numbers being multiplied in a multiplication problem

fraction: number that names a part of a whole or part of a group

improper fraction: a fraction where the numerator is greater than the denominator

least common denominator (LCD): is the smallest number that can be used for all denominators of 2 or more fractions

mixed number: a number made up of a whole number and a fraction

numerator: the top number in a fraction; how many equal parts are being considered

product: an answer to a multiplication problem

proper fraction: a fraction where the numerator is smaller than the denominator

quotient: an answer to a division problem

simplify: a fraction in lowest terms

unit fraction: a fraction with a numerator of 1, such as $\frac{1}{3}$, $\frac{1}{8}$, $\frac{1}{2}$

- context, where a quantity is divided into equal parts.
- Model and interpret a fraction as the division of the numerator by the denominator.
- Solve one-step word problems involving division of whole numbers leading to answers in the form of fractions and mixed numbers, with denominators of 2, 3, 4, 5, 6, 8, 10, and 12, using area, length, and set models or equations.

NC.5.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction, including mixed numbers.

- Use area and length models to multiply two fractions, with the denominators 2, 3,
- Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number and when multiplying a given number by a fraction less than 1 results in a product smaller than the given number.
- Solve one-step word problems involving multiplication of fractions using models to develop the algorithm.

NC.5.NF.7 Solve one-step word problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions using area and length models, and equations to represent the problem.

halve a recipe.

- Have questions such as, "Would you rather have ¾ or 4/6 hours of telivision time tonight?"
- Talk with your child about professions where fractions are important part of their jobs (doctor, nurse, dentist, chef, baker, accountant, etc.)
- Have your child roll three dice, create a fraction with two of the dice, and multiply the fraction by the third dice.
- Allow your child to break whole pieces of food into fractional parts.

Football adding fractions

Multiplying Fractions

Multiplying fractions millionare game

Geometry (G)

Vocabulary

acute angle: an angle less than 90 degrees

acute triangle: a triangle with 3 acute angles

attribute: a characteristic or property of a shape or thing

adjacent: side by side or adjoining congruent: identical in form (same size, same shape)

coordinate plane: a plane spanned by the x-axis and y-axis in which the coordinates of a point are its distances from two intersecting perpendicular axes

coordinates: an ordered pair of numbers (x, y)

equilateral triangle: a triangle where all sides have the same length

hexagon: polygon with six sided and six

Standards Included

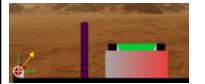
NC.5.G.1 Graph points in the first quadrant of a coordinate plane, and identify and interpret the x and y coordinates to solve problems.

NC.5.G.3 Classify quadrilaterals into categories based on their properties.

- Explain that attributes belonging to a category of quadrilaterals also belong to all subcategories of that category.
- Classify quadrilaterals in a hierarchy based on properties.

Parent Activities

- Play the game battleship with your child
- Go on a shape walk. Find shapes within your home, neighborhood, and community.



Allow your child to create a dream house out of

Online Activities

angles intersecting lines: two lines that cross at exactly one point isosceles triangle: a triangle where two sides have the same length line segment: a part of a line with two endpoints obtuse angle: an angle that is more than 90 degrees but less than 180 degrees obtuse triangle: a triangle where one angle is greater than 90 degrees octagon: polygon with eight sides and eight angels parallel lines: two lines that never intersect parallelogram: quadrilateral with opposite sides that are parallel and congruent pentagon: polygon with five sides and five angles perpendicular lines: two lines that intersect creating a right angle polygon: closed figure made of line segments quadrilateral: polygon with four sides and four angles ray: a part of a line that has one endpoint and extends forever in the other direction rectangle: a quadrilateral with 4 sides, 4 right

angles, and opposite sides are equal length

shapes.

Classifying Polygons

Classifying Quadrilaterals

3D Nets

What are polygons

Maze Game

Shape Explorer

Coordinate Game

rhombus: parallelogram whose four sides are congruent and whose opposite angles are congruent		
right angle: an angle that measures 90 degrees		
right triangle: a triangle with one right angle		
scalene triangle: a triangle where all sides have different lengths		
square: a quadrilateral with 4 sides, 4 right angles, and all sides are equal length		
trapezoid: quadrilateral with one pair of parallel sides		
triangle: polygon with 3 sides		
vertex/vertices: point where two rays meet, where two sides of a polygon meet, or where the edges of a polyhedron meet; the top point of a cone or pyramid		
x-axis: the horizontal axis on a coordinate plane		
y-axis: the vertical axis on a coordinate plane		

EOG Practice

Released Form
Free practice online and downloadable
Houghton Mifflin
Vocabulary Practice

K-5 WEBSITE RESOURCES

Math at Home www.mathplayground.com XL Math Practice Online Math Games

Math Activities online

Online Manipulatives

Math Activities

Math Challenges for the Family

Math Zone

<u>Common Core for Parents with students with disabilities</u> <u>Math Videos</u>

TABLE 2. Common multiplication and division situations.⁷

	Unknown Product	Group Size Unknown ("How many in each group?" Division)	Number of Groups Unknown ("How many groups?" Division)		
	3 × 6 = ?	$3 \times ? = 18$, and $18 \div 3 = ?$? × 6 = 18, and 18 ÷ 6 = ?		
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there in all?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?	If 18 plums are to be packed 6 to a bag, then how many bags are needed?		
	Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?		
Arrays,4 Areas	There are 3 rows of apples with 6 apples in each row. How many apples are there?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be?		
	Area example. What is the area of a 3 cm by 6 cm rectangle?	Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?		
	A blue hat costs \$6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs \$18 and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs \$18 and a blue hat costs \$6. How many times as much does the red hat cost as the blue hat?		
Compare	Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?		
General	a × b = ?	$a \times ? = p$, and $p + a = ?$	$? \times b = p$, and $p + b = ?$		

⁴The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.

⁵Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.