
Variable Scope
Variables in C++ all have types. That is because you are telling the computer what kind of
information the variable will hold, and how much memory space it should allocate to the
variable. This is an important part of C++ that other higher-level programming languages (like
Python) will not require from their programmer, since they deal with that for you in the
background.

But there is one property of variables, that is (nearly) universal in programming languages: the
variable’s scope. That is to say, how transferrable a variable is from one part of a program to
another. The scope of a variable essentially follows one rule: The scope of a variable is
restricted to the part of the program where the variable is declared. And the advice for
‘good practice’ when thinking about where to declare any variable is also straightforward: Try to
give your variables as little scope as possible, or: avoid ‘global’ variables when you can.
The scope of a variable applies, regardless of the type of the variable.

Example Sketch 1: Explaining by Example
Below is an example sketch that will compile in the Arduino IDE. You can copy it over and try for
yourself. Each of the variables is followed by a comment that explains its scope in the program.

int x = 2; //A 'global' variable that can be used anywhere
int y = 3; //A 'global' variable that can be used anywhere
void setup() { // the setup function runs once
 Serial.begin(9600);
 Serial.print(add(x,y));
 Serial.print(" is the sum");
 Serial.print(multiply(x,y));
 Serial.print(" is the product");
}
void loop() { // the setup function runs repeatedly
 long w = 5000000; //'w' can only be used in 'loop()'
 delay(w);
}
int add (int a, int b){ //’a’ & ‘b’ can only be used in ‘add()’
 int c = a + b; //this 'c' can only be used in 'add()'
 return c;
}
long multiply (int a, float b){ // same as above...
 long c = a * b; //this 'c' can only be used in 'multiply()'
 return c;
} // the 'c' in 'add()' and 'multiply()' are not in conflict
 // because they have restricted scope that does not overlap

Explain the Serial Monitor behavior of the above sketch with written sentences:

Describe the output of this program on a serial monitor. (what text and time intervals?)

Answer here

There are several variables in the program example above. Use full sentences to
describe the scope of each of the variables. Be sure to describe where they can and cannot be
used in the whole program above. (Keep in mind the functions, and refer to them by name.) If
the variable has more than one separated scope, explain that as well and use clear language.

Answer here

Name Type Use Scope

x

y

w

a

b

c

What reason can you think of that would explain why an experienced programmer might
give a new programmer this advice: “Always use the smallest scope you can for variables.”

Answer here

How is this output achieved by the program? (Explain the logic of the program)

Answer Here

Example Sketch 2: Listen to Error Messages
Below is an example array implemented in a program. You can see that the array is
implemented in the ‘void loop()’ so this code will run forever, while powered.

void setup() {​ // the setup function runs once
 int ledPin = 13;
 pinMode(ledPin, OUTPUT);
} //morse code for the letters “A.I.”
int times[] = {250,80,750,80,250,80,250,2000};
Bool ledState;
void loop() { // will run forever, while there is power
 for(x = 0; x < 8; x++){
 digitalWrite(ledPin, ledState); // output on pin 13
 ledState = !ledState; //change ledState so it will flip
 delay(times[x]); //wait some time from the array
 }
}

Fill in the table of the variables in the program above. Add rows as needed to have a complete
explanation of every one of the variables in the sketch shown here. *do this for as shown

Name Type Use Scope

times[] int Array to hold delay times Global variable

The example sketch above will receive a series of error messages when you go to compile it in
the Arduino IDE. The error messages will be from the highlighted portions of the code (although
it is harder to tell that from the IDE error messages themselves). In the space below, explain the
nature of each highlighted error, and how it could be resolved by the programmer.

Answer here

Arduino’s Own Explanations
Scope Reference Page << a written explanation of variable scope, and how it works on Arduino
Variable Scope discussed on Arduino Forum << The community knows…
Some guy’s video explanation on Youtube << there are always a bunch of these, but...

Create your own Sketches
You don't know if you understand it, until you can create it from nothing...
Using what you have seen above, in the example sketches and from Arduino’s reference
materials. Create your own sketch that implements a while loop in some way. You have plenty of
creative license in this goal, but you must make a sketch that successfully uses a while loop. A
screenshot of your sketch and output is half of your response to these. A written explanation of
the logic is also required to prove that you understand what you are doing with this work.
Primary tasks are required for all students. Secondary tasks are required to get a top grade.

●​ Primary tasks:
○​ successfully implement a global variable, used in more than one function

Screenshot & Explanation here
○​ successfully implement a local variable in the ‘void loop()’ function

Screenshot & Explanation here
○​ successfully implement a very local variable in a ‘for loop’

Screenshot & Explanation here
●​ Moderate understanding secondary tasks:

○​ Show an error message for trying to use a variable out of scope
Screenshot & Explanation here

○​ Show an error message for trying to use an undeclared variable
Screenshot & Explanation here

https://www.arduino.cc/en/pmwiki.php?n=Reference/Scope
http://forum.arduino.cc/index.php?topic=149568.0
https://www.youtube.com/watch?v=iV9hIunuUAk

	Variable Scope
	Example Sketch 1: Explaining by Example
	

	Example Sketch 2: Listen to Error Messages
	
	Arduino’s Own Explanations
	Create your own Sketches

