2.04 Triangle Proofs

Equilateral	Draw Examples
a triangle that has congruent sides.	Diaw Examples
They also have all angles, each	
measuring each.	
Scalene	
a triangle that has congruent sides.	
Scalene triangles also have	
congruent angles.	
Isosceles	
a triangle with at least congruent	
sides. The corresponding angles will	
also be congruent.	
Acute	
a triangle with all three angles are acute	
(than 90°).	
Right	
a triangle that contains an angle measure of	
degrees.	
Obtuse	
a triangle with one obtuse angle	
(than 90°) and two acute	
angles.	
Equiangular	
a triangle where all three angles measure	
°.	

Triangle Sum Theorem Video CLICK HERE

Triangle Sum Theorem - The ______ of the measures of the angles in a triangle is _____°.

$$m\angle A + m\angle B + m\angle C = \underline{\hspace{1cm}}^{\circ}$$

Triangle Sum Theorem Proof Video CLICK HERE

Prove the sum of the angles in ΔTRI , shown below, total 180°.

Two-column Proof:	
Statement	Reason
Draw AN parallel to TR	by Construction
$m\angle AIT + m\angle RIT + m\angle RIN = m\angle$	Addition Postulate
∠AIT ≅ ∠	Alternate Angles
∠RIN ≅ ∠	Alternate Angles
$m \angle ITR + m \angle RIT + m \angle TRI = m \angle AIN$	
∠AIN =°	Definition of a Angle
$m \angle ITR + m \angle RIT + m \angle TRI =°$	Substitution

Triangle Inequality Theorem Video CLICK HERE

The sum of any two sides of a triangle is always
_____ than the length of the third side.

Example:

Hinge Theorem Video CLICK HERE

If two triangles have two congruent corresponding sides, and the included angle of the first triangle is ______ than the included angle of the second triangle, then the third, opposite side of the first triangle will be _____ than the third, opposite side of the second triangle.

Isosceles Triangle Theorem Proof Video CLICK HERE

In ΔRST, shown below, RS ≅ ST. Prove that ∠TRS ≅ ∠STR.

Paragraph Proof Video:

RS \cong ST according to the _____ information. Using a compass and straightedge, construct ____ as an angle bisector of \angle RST. \angle RSU is congruent to ____ by the definition of an angle bisector. \overline{US} is congruent to \overline{US} by the _____ Property of Equality. \triangle RSU is congruent to \triangle TSU by the _____ Postulate. Therefore, \angle TRS \cong

∠STR by CPCTC (___orresponding ___arts of ___ongruent ___riangles are ___ongruent).

Converse of the Isosceles Triangle Theorem Proof Video CLICK HERE

Given: In ∆OLN, ∠OLN ≅ ∠LNO

Prove: $\overline{OL} \cong \overline{ON}$

Flowchart Proof:

Let's Practice!

Question 1 Video CLICK HERE

Question 2 Video CLICK HERE

ABC is an Equilateral triangle with Angle Bisectors BF, AD, and CE.

Charlie is building a shelf shaped like a triangle. He has 3 pieces of wood with lengths of 12 inches, 20 inches, and 7 inches. Will he be able to create a triangular shelf without cutting any of the pieces of wood?

Question 3 Video CLICK HERE

angles.

Question 4 Video CLICK HERE

Given: m \angle 2 = 28° and m \angle 3 = 61° Prove: m \angle 4 + m \angle 5 + m \angle 6 = 360°

The _____ of the ____

in a triangle is _____.