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Abstract- Parkinson’s Disease (PD) 
consistently ranks as one of the most common 
neurodegenerative diseases nationally within the U.S., 
behind only Alzheimer’s. While current research to 
fight the underlying causes of PD are underway, 
diagnosis remains a pertinent issue due to an absence of 
formal lab based tests. Patients with PD often develop 
abnormal speech patterns, such as the slurring of 
words. This study aims to utilize and compare various 
different Gradient Boosting models to diagnose PD 
based on audio data taken from a patient. Additionally, 
this study also tests these models with mRMR feature 
selection, Principal Component Analysis (PCA) 
dimensionality reduction, Min-Max normalization, and 
standardization. The dataset used in this study was the 
UCI Machine Learning Repository’s Parkinsons Data 
Set (available here). The dataset includes 195 voice 
recordings from 31 subjects with 22 biomedical voice 
measurements per recording. 48 of the voice recordings 
in the dataset were from patients without PD and 147 of 
the voice recordings were from patients with PD. 60% 
of the voice recordings were used for model training, 
20% for cross validation, and 20% for the test set. The 
HistGradientBoosting model with Min-Max 
normalization and mRMR feature selection was found 
to perform the best on the cross validation set, in which 
it had an accuracy of 94.8718%, a sensitivity of 
96.7742%, a specificity of 87.5000%, an AUC score of 
0.921371, and an F1 score of 0.967742. This same model 
also achieved an accuracy of 89.7436%, a sensitivity of 
96.6667%, a specificity of 66.6667%, an AUC score of 
0.816667, and an F1 score of 0.935484 on the test set. 
The results in this study show that Gradient Boosting 
models have the potential to provide quick, efficient, 
and accurate diagnoses for PD in a clinical setting so 
patients can receive treatment sooner. 
 

1.​ INTRODUCTION 
 

Parkinson's Disease (PD) is a neurological 
disease which persists typically amongst the elderly, 
though not entirely. While the exact causes of the 
disease vary amongst the affected population, all 
exhibit injury within the basal ganglia and substantia 
nigra portions of the brain [8]. These regions are most 
closely correlated with voluntary movement and 
dopamine assembly; thus, excessive damage and 
inhibition of the neurons can lead to noticeable 
manifestations of PD. For example, common in a 
majority of PD patients is an involuntary tremor 
within the hands and sometimes feet [11]. Motor 
control and movement is inhibited as well, with 
sudden bouts of muscle rigidity preventing typical 
bodily actions [11]. 

Currently, doctors and laboratories tasked 
with diagnosing PD base their reports upon symptom 
descriptions and brain scans, particularly dopamine 
mapping. In particular, tremors and muscle stiffness 
symptoms typically reported by PD patients result in 
the official diagnosis of the disease due to its 
connection to the substantia nigra [3]. Rigorous PD 
diagnosis, however, is unable to be conducted 
properly simply due to the unavailability of clinical 
PD tools and unique symptoms of PD. While the 
disease results in the manifestation of numerous 
symptoms, these are oftentimes not related solely to 
PD, and can also be attributed to a variety of other 
diseases and disorders. Utilizing dopamine mapping 
as the basis for PD diagnosis also leads to 
dramatically limited accessibility to patients 
worldwide due to the lack of proper imaging tools. 

In conjunction with the aforementioned 
symptoms, PD patients also experience a change in 
speech patterns, often with slight variations in 
enunciation [3]. While such changes are typically too 
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insignificant to be noticed by the human observer on 
individual cases, tell-tale patterns are clear within 
frequency metrics that are derived from vocal 
recordings. The prevalence of such a symptom within 
the PD population as a whole allows for an 
opportunity to differentiate active PD patients 
through a machine learning approach. Unlike other 
widely considered symptoms, PD voice discrepancies 
are specific to the PD disease, and a diagnosis tool 
based around voice fluctuations could prove to be 
comparatively rigorous in the diagnostic process. 
 

2.​ METHODS 
 
2.1 Dataset 
​ This study utilized biomedical voice 
measurements of voice recordings to both train and 
evaluate Gradient Boosting models to detect PD. This 
data was taken from the UCI Machine Learning 
Repository’s Parkinsons Data Set. This dataset 
includes a total of 195 voice recordings taken from 
31 subjects, 23 of whom have PD and 8 of whom are 
healthy. Subjects who have PD are labeled with a 1 
and healthy subjects are labeled with a 0. For each 
voice recording, 22 biomedical voice measurements 
are included. These biomedical voice measurements 
include the average vocal fundamental frequency 
(MDVP:Fo(Hz)), the maximum vocal fundamental 
frequency (MDVP:Fhi(Hz)), the minimum vocal 
fundamental frequency (MDVP:Flo(Hz)), five 
measures of variation in fundamental frequency 
(MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, 
MDVP:PPQ, Jitter:DDP), six measures of variation 
in amplitude (MDVP:Shimmer, 
MDVP:Shimmer(dB), Shimmer:APQ3, 
Shimmer:APQ5, MDVP:APQ, Shimmer:DDA), two 
measures of ratio of noise to tonal components in the 
voice (NHR, HNR), two nonlinear dynamical 
complexity measures (RPDE, D2), signal fractal 
scaling exponent (DFA), and three nonlinear 
measures of fundamental frequency variation 
(spread1, spread2, PPE). The dataset is then split, 
with 60% of the voice recordings (117 voice 
recordings) going to the training set, 20% of the voice 
recordings (39 voice recordings) going to the cross 
validation set, and 20% of the voice recordings (39 
voice recordings) going to the test set. The training 
set is used to train the Gradient Boosting models and 
the cross validation set is used to compare them. 
Once the best model is determined based on cross 
validation set performance, it is then evaluated on the 
test set to measure its performance on new data 
outside of the training or cross validation sets. 
 
2.2 Gradient Boosting 

​ Gradient Boosting is an ensemble machine 
learning model that utilizes numerous decision trees 
[1]. Gradient Boosting starts with an initial prediction 
F0(x) is shown below: 

 
For Equation (1), L is the loss function and yi is the ith 
label. 

Once an initial prediction is made, 
regression trees are then constructed based on the 
pseudo residuals of the previous prediction [1]. The 
equation for calculating the pseudo residuals is 
shown below: 

 
For Equation (2), rim is the pseudo residual for sample 
i. This pseudo residual will be used to create 
regression tree m. 

To create regression tree m, a regression tree 
is fitted to the pseudo residuals [1]. The terminal 
regions of the regression tree are denoted by Rjm, 
where j is the number of the terminal region in the 
regression tree and m is the number of the regression 
tree [1]. The output for each leaf node the tree is then 
computed with the following equation: 

 
For Equation (3), Jm is the number of terminal regions 
for regression tree m. 

Using the outputs from the tree, the 
predictions (denoted by Fm(x)) are now updated. 

 
For Equation (4), ν is the learning rate. 

This process is then repeated M times, with 
each iteration generating a new tree [1]. The final 
output is denoted by FM(x). 

There are multiple other variations of 
Gradient Boosting which introduce improvements to 
the base algorithm. XGBoost (eXtreme Gradient 
Boosting) is a version of Gradient Boosting that 
improves on scalability [12]. LightGBM (Light 
Gradient Boosting) decreases memory usage and 
training time [4]. CatBoost allows for automatic 
handling of categorical features and reduces 
overfitting [7]. 
 
2.3 Model Implementation 
​ This study utilized five different Gradient 
Boosting models: XGBoost, HistGradientBoosting, 
GradientBoosting, LightGBM, and CatBoost. 



 

XGBoost was implemented using the XGBClassifier 
class from the xgboost Python. HistGradientBoosting 
and GradientBoosting were implemented using 
sklearn’s HistGradientBoostingClassifier and 
GradientBoostingClassifier classes. LightGBM was 
implemented using the LGBMClassifier class from 
the lightgbm Python library. CatBoost was 
implemented using the CatBoostClassifier class from 
the catboost Python library. 
 
2.4 Data Preprocessing 
​ The biomedical voice measurements in the 
data were also normalized using Min-Max scaling. 
For a given feature, MinMax scaling subtracts the 
minimum value for that feature and then divides the 
result by the maximum value for that feature. The 
equation for Min-Max scaling is shown below: 

 
For Equation (5), xi is the ith feature. To prevent data 
leakage, the maximum and minimum feature values 
used were taken from the training set. 
​ Standardization was also tested as an 
additional data preprocessing method. 
Standardization works similarly to Min-Max scaling, 
except that in Standardization the mean of the values 
for a feature are subtracted from each feature value 
and the result is then divided by the standard 
deviation for the feature values. 

 
For Equation (6), µ represents the mean of xi and σ 
represents the standard deviation of xi . For 
standardization, the mean and standardization values 
used were taken from the training set. 
​ Min-Max scaling, and Standardization were 
all tested for each model and with both mRMR 
feature selection and PCA. 
 
2.5 mRMR Feature Selection 
​ Minimum redundancy maximum relevancy 
(mRMR) feature selection is an algorithm that 
identifies the best group of K features in a dataset 
[13]. Unlike other feature selection algorithms like 
Boruta that seek to identify features that have any 
predictive capability, mRMR identifies a small subset 
of features that will be the most useful [13]. For this 
dataset in particular, which includes numerous 
redundant features (such as the six different measures 
of variation in amplitude), decreasing the number of 
features to the most essential will help to eliminate 
redundant features and potentially improve model 
performance. For this study, mRMR feature selection 

was used to reduce the number of features from 22 to 
20. Additionally, to prevent data leakage, the features 
will be selected based on training data. The models 
will be tested both with and without mRMR feature 
selection. 
 
2.6 PCA Dimensionality Reduction 
​ Similar to mRMR, Principal Component 
Analysis (PCA) reduces the number of features 
inputted to the model [2]. However, unlike mRMR 
which selects features to utilize, PCA condenses 
features that correlate with one another into a new 
feature [2]. This allows PCA to both reduce the 
number of dimensions and minimize the amount of 
information lost in the process [2]. For this study, 
PCA was used to reduce the number of dimensions 
from 22 to 20. Additionally, to prevent data leakage, 
PCA was performed based on data from the training 
set. The models will be tested both with and without 
PCA. 
 
2.7 Model Training and Evaluation 
​ The five different Gradient Boosting models 
were trained on the data with different combinations 
of Min-Max, Standardization, mRMR, and PCA. One 
group on data with MinMax scaling, one group on 
data with Min-Max scaling and mRMR, one group on 
data with Min-Max scaling and PCA, one group on 
data with Standardization, one group on data with 
Standardization and mRMR, and one group on data 
with Standardization and PCA. In total, 30 models 
were trained on the training set and then evaluated 
and compared on the cross validation set. The models 
were evaluated on the cross validation set using the 
metrics of accuracy, sensitivity, specificity, AUC 
score, and F1 score. 

1) Sensitivity and Specificity: Sensitivity is 
the model’s accuracy on positive examples (examples 
where the patient has PD). Specificity is the model’s 
accuracy on negative examples (examples where the 
patient is healthy). These metrics are useful because 
they can specifically identify how a model does on a 
specific class of data. This is especially useful for this 
study because the dataset that is being utilized has a 
high degree of class imbalance in favor of positive 
examples. 

2) AUC Score: The AUC score is the area 
under the Receiver Operating Characteristic (ROC) 
Curve. An ROC Curve is generated by varying the 
model’s threshold and plotting the different false 
positive and true positive rates. The area under this 
curve works as a measure of how likely a model is to 
output a higher probability for a positive example 
than a negative example. For example, an AUC score 
of 0.7 would represent that if given a positive 
example and a negative example, the model will 



 

output a higher probability for the positive example 
than the negative one 70% of the time. 

3) F1 Score: A model’s F1 score is the 
harmonic mean of the model’s precision and recall. 
Precision is the likelihood that if the model predicts 
that a given example is positive that the example is 
actually positive. This metric is also known as the 
Positive Probability Value (PPV). Recall is the same 
as sensitivity (the model’s accuracy on positive 
examples). The term recall is used in this context 
because recall is most commonly used when 
concerning F1 score. The equation for the F1 score is 
shown below: 

 
For Equation (7), it is common to also add a value ϵ 
to the denominator. ϵ is often a very small value (such 
as 1e − 100) and serves to prevent dividing by zero. 
Equation (7) with the ϵ term included is shown 
below: 

 
 

3.​ RESULTS 
 

The five models were trained on the training set with 
different combinations of Min-Max scaling, 
Standardization, mRMR feature selection, and PCA. 
The models were then evaluated on the cross 
validation set based on their accuracy, sensitivity, 
specificity, AUC score, and F1 score. The results for 
each model on the cross validation set are shown in 
Tables 1-6.  
 

TABLE I 
GRADIENT BOOSTING MODELS ON VALIDATION SET (MIN-MAX) 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

XGBoost 87.1795 90.3226 75.0000 0.826613 0.918033 

HistGradie
ntBoosting 

92.3077 93.5484 87.5000 0.905242 0.950820 

GradientB
oosting 

82.0513 87.0968 62.5000 0.747984 0.885246 

LightGBM 92.3077  93.5484 87.5000 0.905242 0.950820 

CatBoost ​​84.6154 87.0968 75.0000 0.810484 0.900000 

 
 
 
 
 
 
 

 
TABLE II 

GRADIENT BOOSTING MODELS ON VALIDATION SET (MIN-MAX + 
PCA) 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

XGBoost 76.9231 83.8710 50.0000 0.669355 0.852459 

HistGradie
ntBoosting 

89.7436 96.7742 62.5000 0.796371 0.937500 

GradientB
oosting 

79.4872 83.8710 62.5000 0.731855 0.866667 

LightGBM 87.1795 93.5484 62.5000 0.780242 0.920635 

CatBoost 89.7436 100.000 50.0000 0.750000 0.939394 

 
TABLE III 

GRADIENT BOOSTING MODELS ON VALIDATION SET (MIN-MAX + 
MRMR) 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

XGBoost 89.7436 90.3226 87.5000 0.889113 0.933333 

HistGradie
ntBoosting 

94.8718 96.7742 87.5000 0.921371 0.967742 

GradientB
oosting 

76.9231 80.6452 62.5000 0.715726 0.847458 

LightGBM 92.3077 93.5484 87.5000 0.905242 0.950820 

CatBoost 87.1795 90.3226 75.0000 0.826613 0.918033 

 
TABLE IV 

GRADIENT BOOSTING MODELS ON VALIDATION SET 
(STANDARDIZATION) 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

XGBoost 87.1795 93.5484 62.5000 0.780242 0.920635 

HistGradie
ntBoosting 

87.1795 93.5484 62.5000 0.780242 0.920635 

GradientB
oosting 

84.6154 90.3226 62.5000 0.764113 0.903226 

LightGBM 84.6154 93.5484 50.0000 0.717742 0.906250 

CatBoost 82.0513 87.0968 62.5000 0.747984 0.885246 

 
 
 
 
 
 



 

 
TABLE V 

GRADIENT BOOSTING MODELS ON VALIDATION SET 
(STANDARDIZATION + PCA) 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

XGBoost 84.6154 96.7742 37.5000 0.671371 0.909091 

HistGradie
ntBoosting 

89.7436 100.000
0 

50.0000 0.750000 0.939394 

GradientB
oosting 

87.1795 93.5484 62.5000 0.780242 0.920635 

LightGBM 87.1795 100.000
0 

37.5000 0.687500 0.925373 

CatBoost 89.7436 100.000
0 

50.0000 0.750000 0.939394 

 
TABLE VI 

GRADIENT BOOSTING MODELS ON VALIDATION SET 
(STANDARDIZATION + MRMR) 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

XGBoost 84.6154 93.5484 50.0000 0.717742 0.906250 

HistGradie
ntBoosting 

89.7436 96.7742 62.5000 0.796371 0.937500 

GradientB
oosting 

84.6154 90.3226 62.5000 0.764113 0.903226 

LightGBM 84.6154 90.3226 62.5000 0.764113 0.903226 

CatBoost 84.6154 90.3226 62.5000 0.764113 0.903226 

 
The HistGradientBoosting model with Min-Max and 

mRMR performed the best on the cross validation set because, as 
shown in Table 3, it obtained the highest accuracy, specificity, 
AUC score, and F1 score and obtained the second highest 
sensitivity. This model was then evaluated on the test set. Its 
performance on the test set is shown in Table 7 and Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE VII 

HISTGRADIENTBOOSTING (MIN-MAX + MRMR) MODEL ON TEST 
SET 

 

Model Accurac
y (%) 

Sensitiv
ity (%) 

Specific
ity (%) 

AUC 
Score 

F1 Score 

HistGradie
ntBoosting 
(Min-Max 
+ mRMR) 

89.7436 96.6667 66.6667 0.816667 0.935484 

 

 
Fig 1. HistGradientBoosting (Min-Max + mRMR) Confusion 

Matrix on Test Set 
 

4.​ DISCUSSION & CONCLUSION 
 

PD currently affects roughly 1 million people in the 
U.S. alone, with 60,000 U.S. citizens being positively 
diagnosed for the disease annually [9]. With this 
statistic only expected to rise in the future, it is 
becoming increasingly important to diagnose PD in 
its early stages. Prolonged diagnosis delays have 
proven to be catastrophic in the livelihood of families 
and patients due to a lack of proper medication and 
attention. While alternatives for diagnosis such as 
dopamine screening and symptom checklists exist, 
they require medical professionals and extensive 
equipment to allow for proper execution; not only is 
this not accessible to many populations, but it can 
also be extremely expensive. Furthermore, many of 
the tested symptoms of PD also overlap with the 
known symptoms for other diseases. Creating a 
viable and accurate solution for the rapid diagnosis of 
PD is an essential asset in the race to stem disease 
progression. Voice analysis, being a PD specific 
symptom, can easily be scaled to meet the needs of 
analysis due to its prevalence in positively diagnosed 
patients. A machine learning algorithm to detect 
discrepancies in patient voices for diagnosis tackles 
the issues of both accessibility and cost by creating a 
readily available software solution. Voice is also 
unique with regards to PD, and so can be used as a 
relatively accurate metric for diagnosis. 



 

To improve the accuracy and efficiency of 
speech-based PD diagnosis, this study aims to apply 
Gradient Boosting to classify a patient as either 
having PD or being healthy based on various 
biomedical voice measurement features. After 
training on the biomedical voice measurements from 
117 voice recordings, the best performing Gradient 
Boosting method was found to be 
HistGradientBoosting with Min-Max feature scaling 
and mRMR feature selection. On the cross validation 
set, this model achieved an accuracy of 94.8718%, a 
sensitivity of 96.7742%, a specificity of 87.5000%, 
an AUC score of 0.921371, and an F1 score of 
0.967742. When tested on the test set, this model was 
found to have an accuracy of 89.7436%, a sensitivity 
of 96.6667%, a specificity of 66.6667%, an AUC 
score of 0.816667, and an F1 score of 0.935484. This 
relatively high performance on a limited amount of 
data highlights Gradient Boosting's high applicability 
to speech-based PD diagnosis and usefulness in 
clinical practice. 

Gradient Boosting often produces models 
that take little memory and are able to both run and 
train very quickly. This would further increase their 
accessibility, as they wouldn't require intensive 
hardware to run. Additionally, since they only require 
an audio sample from a user, they may also be 
applicable to smart phone applications so that users 
may obtain diagnoses from their home. The 
performance of Gradient Boosting on classifying PD 
also indicates that it may also have applications in 
diagnosing other neurological diseases, such as 
Alzheimer's Disease, from audio samples. Based on 
the findings of this study, Gradient Boosting has the 
potential to provide accessible and efficient diagnosis 
for PD and possibly many other neurological 
diseases. 

There are a variety of other methods that 
may improve on these results and that weren't 
implemented in this study. This study had to work 
with a limited number of voice recordings (195) that 
were taken from a small range of patients (31). Due 
to the differences in speech based on language and 
accent, voice samples from a large and diverse 
number of subjects would help make a more 
universal model. Other than collecting more data 
from more participants, which may be time 
consuming and costly, it may also be possible to 
increase the diversity in the dataset by utilizing 
machine learning algorithms that convert speech 
samples to different accents. Additionally, since this 
study found success by using mRMR feature 
selection, other feature selection methods such as 
Boruta and Fisher's Score may be worth testing to see 
how they may perform differently than mRMR. 
Finally, other boosting algorithms such as AdaBoost 

may be worth testing on this problem based on the 
performance of Gradient Boosting. 

Based on Gradient Boosting's relatively 
impressive results on a small dataset of 195 voice 
recordings, Gradient Boosting is a promising method 
for providing accessible and efficient PD diagnosis 
throughout the world, especially following further 
research. 
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