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Abstract- Parkinson’s Disease (PD)
consistently ranks as one of the most common
neurodegenerative diseases nationally within the U.S.,
behind only Alzheimer’s. While current research to
fight the underlying causes of PD are underway,
diagnosis remains a pertinent issue due to an absence of
formal lab based tests. Patients with PD often develop
abnormal speech patterns, such as the slurring of
words. This study aims to utilize and compare various
different Gradient Boosting models to diagnose PD
based on audio data taken from a patient. Additionally,
this study also tests these models with mRMR feature
selection, Principal Component Analysis (PCA)
dimensionality reduction, Min-Max normalization, and
standardization. The dataset used in this study was the
UCI Machine Learning Repository’s Parkinsons Data
Set (available here). The dataset includes 195 voice
recordings from 31 subjects with 22 biomedical voice
measurements per recording. 48 of the voice recordings
in the dataset were from patients without PD and 147 of
the voice recordings were from patients with PD. 60%
of the voice recordings were used for model training,
20% for cross validation, and 20% for the test set. The
HistGradientBoosting model with Min-Max
normalization and mRMR feature selection was found
to perform the best on the cross validation set, in which
it had an accuracy of 94.8718%, a sensitivity of
96.7742%, a specificity of 87.5000%, an AUC score of
0.921371, and an F1 score of 0.967742. This same model
also achieved an accuracy of 89.7436%, a sensitivity of
96.6667%, a specificity of 66.6667%, an AUC score of
0.816667, and an F1 score of 0.935484 on the test set.
The results in this study show that Gradient Boosting
models have the potential to provide quick, efficient,
and accurate diagnoses for PD in a clinical setting so
patients can receive treatment sooner.
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Parkinson's Disease (PD) is a neurological
disease which persists typically amongst the elderly,
though not entirely. While the exact causes of the
disease vary amongst the affected population, all
exhibit injury within the basal ganglia and substantia
nigra portions of the brain [8]. These regions are most
closely correlated with voluntary movement and
dopamine assembly; thus, excessive damage and
inhibition of the neurons can lead to noticeable
manifestations of PD. For example, common in a
majority of PD patients is an involuntary tremor
within the hands and sometimes feet [11]. Motor
control and movement is inhibited as well, with
sudden bouts of muscle rigidity preventing typical
bodily actions [11].

Currently, doctors and laboratories tasked
with diagnosing PD base their reports upon symptom
descriptions and brain scans, particularly dopamine
mapping. In particular, tremors and muscle stiffness
symptoms typically reported by PD patients result in
the official diagnosis of the disease due to its
connection to the substantia nigra [3]. Rigorous PD
diagnosis, however, is unable to be conducted
properly simply due to the unavailability of clinical
PD tools and unique symptoms of PD. While the
disease results in the manifestation of numerous
symptoms, these are oftentimes not related solely to
PD, and can also be attributed to a variety of other
diseases and disorders. Utilizing dopamine mapping
as the basis for PD diagnosis also leads to
dramatically limited accessibility to patients
worldwide due to the lack of proper imaging tools.

In conjunction with the aforementioned
symptoms, PD patients also experience a change in
speech patterns, often with slight variations in
enunciation [3]. While such changes are typically too
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insignificant to be noticed by the human observer on
individual cases, tell-tale patterns are clear within
frequency metrics that are derived from vocal
recordings. The prevalence of such a symptom within
the PD population as a whole allows for an
opportunity to differentiate active PD patients
through a machine learning approach. Unlike other
widely considered symptoms, PD voice discrepancies
are specific to the PD disease, and a diagnosis tool
based around voice fluctuations could prove to be
comparatively rigorous in the diagnostic process.

2. METHODS

2.1 Dataset

This study utilized biomedical voice
measurements of voice recordings to both train and
evaluate Gradient Boosting models to detect PD. This
data was taken from the UCI Machine Learning
Repository’s Parkinsons Data Set. This dataset
includes a total of 195 voice recordings taken from
31 subjects, 23 of whom have PD and 8 of whom are
healthy. Subjects who have PD are labeled with a 1
and healthy subjects are labeled with a 0. For each
voice recording, 22 biomedical voice measurements
are included. These biomedical voice measurements
include the average vocal fundamental frequency
(MDVP:Fo(Hz)), the maximum vocal fundamental
frequency (MDVP:Fhi(Hz)), the minimum vocal
fundamental frequency (MDVP:Flo(Hz)), five
measures of variation in fundamental frequency
(MDVP:lJitter(%), MDVP:Jitter(Abs), MDVP:RAP,
MDVP:PPQ, Jitter:DDP), six measures of variation
in amplitude (MDVP:Shimmer,
MDVP:Shimmer(dB), Shimmer:APQ3,
Shimmer:APQS5, MDVP:APQ, Shimmer:DDA), two
measures of ratio of noise to tonal components in the
voice (NHR, HNR), two nonlinear dynamical
complexity measures (RPDE, D2), signal fractal
scaling exponent (DFA), and three nonlinear
measures of fundamental frequency variation
(spreadl, spread2, PPE). The dataset is then split,
with 60% of the voice recordings (117 voice
recordings) going to the training set, 20% of the voice
recordings (39 voice recordings) going to the cross
validation set, and 20% of the voice recordings (39
voice recordings) going to the test set. The training
set is used to train the Gradient Boosting models and
the cross validation set is used to compare them.
Once the best model is determined based on cross
validation set performance, it is then evaluated on the
test set to measure its performance on new data
outside of the training or cross validation sets.

2.2 Gradient Boosting

Gradient Boosting is an ensemble machine
learning model that utilizes numerous decision trees
[1]. Gradient Boosting starts with an initial prediction
Fy(x) is shown below:

Fy(x) = argminy  L(y;, ) M)

T =1

For Equation (1), L is the loss function and y' is the "
label.

Once an initial prediction is made,
regression trees are then constructed based on the
pseudo residuals of the previous prediction [1]. The
equation for calculating the pseudo residuals is
shown below:

OL(yi, F(:))
OF (z;)

Tim = 7[ ]F(z):Fm,l(x) fori=1..n (2)
For Equation (2), r;, is the pseudo residual for sample
i. This pseudo residual will be used to create
regression tree .

To create regression tree m, a regression tree
is fitted to the pseudo residuals [1]. The terminal
regions of the regression tree are denoted by R,
where j is the number of the terminal region in the
regression tree and m is the number of the regression
tree [1]. The output for each leaf node the tree is then
computed with the following equation:

For j =i...Jp:

Vjm = argmin Z L(ys, Fr1(z:) +7) (3)
7 z€Ry;
For Equation (3), J,, is the number of terminal regions
for regression tree m.
Using the outputs from the tree, the
predictions (denoted by F,,(x)) are now updated.

Jm
Fo(z)=Fp-1(z) +v Z'y]-ml(z € Rjm) 4)
j=1
For Equation (4), v is the learning rate.

This process is then repeated M times, with
each iteration generating a new tree [1]. The final
output is denoted by F,(x).

There are multiple other variations of
Gradient Boosting which introduce improvements to
the base algorithm. XGBoost (eXtreme Gradient
Boosting) is a version of Gradient Boosting that
improves on scalability [12]. LightGBM (Light
Gradient Boosting) decreases memory usage and
training time [4]. CatBoost allows for automatic
handling of categorical features and reduces
overfitting [7].

2.3 Model Implementation

This study utilized five different Gradient
Boosting models: XGBoost, HistGradientBoosting,
GradientBoosting, LightGBM, and CatBoost.



XGBoost was implemented using the XGBClassifier
class from the xgboost Python. HistGradientBoosting
and GradientBoosting were implemented using
sklearn’s HistGradientBoostingClassifier and
GradientBoostingClassifier classes. LightGBM was
implemented using the LGBMClassifier class from
the lightgbm Python library. CatBoost was
implemented using the CatBoostClassifier class from
the catboost Python library.

2.4 Data Preprocessing

The biomedical voice measurements in the
data were also normalized using Min-Max scaling.
For a given feature, MinMax scaling subtracts the
minimum value for that feature and then divides the
result by the maximum value for that feature. The
equation for Min-Max scaling is shown below:

o o i min(x;)
b maz(z;) — min(x;)

®

For Equation (5), x' is the i feature. To prevent data
leakage, the maximum and minimum feature values
used were taken from the training set.

Standardization was also tested as an
additional data preprocessing method.
Standardization works similarly to Min-Max scaling,
except that in Standardization the mean of the values
for a feature are subtracted from each feature value
and the result is then divided by the standard
deviation for the feature values.

o =Z K (6)

For Equation (6), u represents the mean of xi and ¢
represents the standard deviation of xi . For
standardization, the mean and standardization values
used were taken from the training set.

Min-Max scaling, and Standardization were
all tested for each model and with both mRMR
feature selection and PCA.

2.5 mRMR Feature Selection

Minimum redundancy maximum relevancy
(mRMR) feature selection is an algorithm that
identifies the best group of K features in a dataset
[13]. Unlike other feature selection algorithms like
Boruta that seek to identify features that have any
predictive capability, mRMR identifies a small subset
of features that will be the most useful [13]. For this
dataset in particular, which includes numerous
redundant features (such as the six different measures
of variation in amplitude), decreasing the number of
features to the most essential will help to eliminate
redundant features and potentially improve model
performance. For this study, mRMR feature selection

was used to reduce the number of features from 22 to
20. Additionally, to prevent data leakage, the features
will be selected based on training data. The models
will be tested both with and without mRMR feature
selection.

2.6 PCA Dimensionality Reduction

Similar to mRMR, Principal Component
Analysis (PCA) reduces the number of features
inputted to the model [2]. However, unlike mRMR
which selects features to utilize, PCA condenses
features that correlate with one another into a new
feature [2]. This allows PCA to both reduce the
number of dimensions and minimize the amount of
information lost in the process [2]. For this study,
PCA was used to reduce the number of dimensions
from 22 to 20. Additionally, to prevent data leakage,
PCA was performed based on data from the training
set. The models will be tested both with and without
PCA.

2.7 Model Training and Evaluation

The five different Gradient Boosting models
were trained on the data with different combinations
of Min-Max, Standardization, mRMR, and PCA. One
group on data with MinMax scaling, one group on
data with Min-Max scaling and mRMR, one group on
data with Min-Max scaling and PCA, one group on
data with Standardization, one group on data with
Standardization and mRMR, and one group on data
with Standardization and PCA. In total, 30 models
were trained on the training set and then evaluated
and compared on the cross validation set. The models
were evaluated on the cross validation set using the
metrics of accuracy, sensitivity, specificity, AUC
score, and F1 score.

1) Sensitivity and Specificity: Sensitivity is
the model’s accuracy on positive examples (examples
where the patient has PD). Specificity is the model’s
accuracy on negative examples (examples where the
patient is healthy). These metrics are useful because
they can specifically identify how a model does on a
specific class of data. This is especially useful for this
study because the dataset that is being utilized has a
high degree of class imbalance in favor of positive
examples.

2) AUC Score: The AUC score is the area
under the Receiver Operating Characteristic (ROC)
Curve. An ROC Curve is generated by varying the
model’s threshold and plotting the different false
positive and true positive rates. The area under this
curve works as a measure of how likely a model is to
output a higher probability for a positive example
than a negative example. For example, an AUC score
of 0.7 would represent that if given a positive
example and a negative example, the model will



output a higher probability for the positive example
than the negative one 70% of the time.

3) FI Score: A model’s F1 score is the
harmonic mean of the model’s precision and recall.
Precision is the likelihood that if the model predicts
that a given example is positive that the example is
actually positive. This metric is also known as the
Positive Probability Value (PPV). Recall is the same
as sensitivity (the model’s accuracy on positive
examples). The term recall is used in this context
because recall is most commonly used when
concerning F1 score. The equation for the F1 score is
shown below:

Fl_9x precz:szjon X recall N
precision + recall
For Equation (7), it is common to also add a value €
to the denominator. € is often a very small value (such
as le — 100) and serves to prevent dividing by zero.
Equation (7) with the € term included is shown
below:

Fl—9x pre'cz'swn X recall ®)
precision + recall + €

3. RESuULTS

The five models were trained on the training set with
different combinations of Min-Max scaling,
Standardization, mRMR feature selection, and PCA.
The models were then evaluated on the cross
validation set based on their accuracy, sensitivity,
specificity, AUC score, and F1 score. The results for
each model on the cross validation set are shown in
Tables 1-6.

TABLE I
GRADIENT BOOSTING MODELS ON VALIDATION SET (MIN-MAX)
Model Accurac | Sensitiv | Specific | AUC F1 Score
y (%) ity (%) ity (%) Score

XGBoost 87.1795 | 90.3226 | 75.0000 | 0.826613 | 0.918033
HistGradie | 92.3077 | 93.5484 | 87.5000 | 0.905242 | 0.950820
ntBoosting

GradientB | 82.0513 | 87.0968 | 62.5000 | 0.747984 | 0.885246
oosting

LightGBM | 92.3077 | 93.5484 | 87.5000 | 0.905242 | 0.950820
CatBoost 84.6154 | 87.0968 | 75.0000 | 0.810484 | 0.900000

TABLE II
GRADIENT BOOSTING MODELS ON VALIDATION SET (MIN-MAX +
PCA)
Model Accurac | Sensitiv | Specific | AUC F1 Score
y (%) ity (%) ity (%) Score
XGBoost 76.9231 | 83.8710 | 50.0000 | 0.669355 | 0.852459
HistGradie | 89.7436 | 96.7742 | 62.5000 | 0.796371 | 0.937500
ntBoosting
GradientB | 79.4872 | 83.8710 | 62.5000 | 0.731855 | 0.866667
oosting
LightGBM | 87.1795 | 93.5484 | 62.5000 | 0.780242 | 0.920635
CatBoost 89.7436 | 100.000 | 50.0000 | 0.750000 | 0.939394
TABLE III
GRADIENT BOOSTING MODELS ON VALIDATION SET (MIN-MAX +
MRMR)
Model Accurac | Sensitiv | Specific | AUC F1 Score
y (%) ity (%) ity (%) Score
XGBoost 89.7436 | 90.3226 | 87.5000 | 0.889113 | 0.933333
HistGradie | 94.8718 | 96.7742 | 87.5000 | 0.921371 | 0.967742
ntBoosting
GradientB | 76.9231 | 80.6452 | 62.5000 | 0.715726 | 0.847458
oosting
LightGBM | 92.3077 | 93.5484 | 87.5000 | 0.905242 | 0.950820
CatBoost 87.1795 | 90.3226 | 75.0000 | 0.826613 | 0.918033
TABLE IV
GRADIENT BOOSTING MODELS ON VALIDATION SET
(STANDARDIZATION)
Model Accurac | Sensitiv | Specific | AUC F1 Score
y (%) ity (%) ity (%) Score
XGBoost 87.1795 | 93.5484 | 62.5000 | 0.780242 | 0.920635
HistGradie | 87.1795 | 93.5484 | 62.5000 | 0.780242 | 0.920635
ntBoosting
GradientB | 84.6154 | 90.3226 | 62.5000 | 0.764113 | 0.903226
oosting
LightGBM | 84.6154 | 93.5484 | 50.0000 | 0.717742 | 0.906250
CatBoost 82.0513 | 87.0968 | 62.5000 | 0.747984 | 0.885246




TABLE V TABLE VII
GRADIENT BOOSTING MODELS ON VALIDATION SET HISTGRADIENTBOOSTING (MIN-MAX + MRMR) MODEL ON TEST
(STANDARDIZATION + PCA) SET
Model Accurac | Sensitiv | Specific | AUC F1 Score Model Accurac | Sensitiv | Specific | AUC F1 Score
y (%) ity (%) ity (%) Score y (%) ity (%) ity (%) Score
XGBoost 84.6154 | 96.7742 | 37.5000 | 0.671371 | 0.909091 HistGradie | 89.7436 | 96.6667 | 66.6667 | 0.816667 | 0.935484
ntBoosting
HistGradie | 89.7436 | 100.000 | 50.0000 | 0.750000 | 0.939394 (Min-Max
ntBoosting 0 +mRMR)
S;:S:igmB 871795 1 93.5484 1 62.5000 | 0.780242 1 0.920633 HistGradientBoosting (MinMax + mRMR) Confusian Matrix on Test Set
LightGBM | 87.1795 | 100.000 | 37.5000 | 0.687500 | 0.925373 Tue Negative False Positive =
0 [=]
15.385% 7.692% 20
CatBoost 89.7436 | 100.000 | 50.0000 | 0.750000 | 0.939394 E 5
0

TABLE VI
GRADIENT BOOSTING MODELS ON VALIDATION SET
(STANDARDIZATION + MRMR)

Model Accurac | Sensitiv | Specific | AUC F1 Score
y (%) ity (%) ity (%) Score

XGBoost 84.6154 | 93.5484 | 50.0000 | 0.717742 | 0.906250
HistGradie | 89.7436 | 96.7742 | 62.5000 | 0.796371 | 0.937500
ntBoosting

GradientB | 84.6154 | 90.3226 | 62.5000 | 0.764113 | 0.903226
oosting

LightGBM | 84.6154 | 90.3226 | 62.5000 | 0.764113 | 0.903226
CatBoost 84.6154 | 90.3226 | 62.5000 | 0.764113 | 0.903226

The HistGradientBoosting model with Min-Max and
mRMR performed the best on the cross validation set because, as
shown in Table 3, it obtained the highest accuracy, specificity,
AUC score, and F1 score and obtained the second highest
sensitivity. This model was then evaluated on the test set. Its
performance on the test set is shown in Table 7 and Fig. 1.

False Negative
1

2.564%

Prediction

Fig 1. HistGradientBoosting (Min-Max + mRMR) Confusion
Matrix on Test Set

4. DiScussSION & CONCLUSION

PD currently affects roughly 1 million people in the
U.S. alone, with 60,000 U.S. citizens being positively
diagnosed for the disease annually [9]. With this
statistic only expected to rise in the future, it is
becoming increasingly important to diagnose PD in
its early stages. Prolonged diagnosis delays have
proven to be catastrophic in the livelihood of families
and patients due to a lack of proper medication and
attention. While alternatives for diagnosis such as
dopamine screening and symptom checklists exist,
they require medical professionals and extensive
equipment to allow for proper execution; not only is
this not accessible to many populations, but it can
also be extremely expensive. Furthermore, many of
the tested symptoms of PD also overlap with the
known symptoms for other diseases. Creating a
viable and accurate solution for the rapid diagnosis of
PD is an essential asset in the race to stem disease
progression. Voice analysis, being a PD specific
symptom, can easily be scaled to meet the needs of
analysis due to its prevalence in positively diagnosed
patients. A machine learning algorithm to detect
discrepancies in patient voices for diagnosis tackles
the issues of both accessibility and cost by creating a
readily available software solution. Voice is also
unique with regards to PD, and so can be used as a
relatively accurate metric for diagnosis.




To improve the accuracy and efficiency of
speech-based PD diagnosis, this study aims to apply
Gradient Boosting to classify a patient as either
having PD or being healthy based on various
biomedical voice measurement features. After
training on the biomedical voice measurements from
117 voice recordings, the best performing Gradient
Boosting method was found to be
HistGradientBoosting with Min-Max feature scaling
and mRMR feature selection. On the cross validation
set, this model achieved an accuracy of 94.8718%, a
sensitivity of 96.7742%, a specificity of 87.5000%,
an AUC score 0f 0.921371, and an F1 score of
0.967742. When tested on the test set, this model was
found to have an accuracy of 89.7436%, a sensitivity
0f 96.6667%, a specificity of 66.6667%, an AUC
score of 0.816667, and an F1 score of 0.935484. This
relatively high performance on a limited amount of
data highlights Gradient Boosting's high applicability
to speech-based PD diagnosis and usefulness in
clinical practice.

Gradient Boosting often produces models
that take little memory and are able to both run and
train very quickly. This would further increase their
accessibility, as they wouldn't require intensive
hardware to run. Additionally, since they only require
an audio sample from a user, they may also be
applicable to smart phone applications so that users
may obtain diagnoses from their home. The
performance of Gradient Boosting on classifying PD
also indicates that it may also have applications in
diagnosing other neurological diseases, such as
Alzheimer's Disease, from audio samples. Based on
the findings of this study, Gradient Boosting has the
potential to provide accessible and efficient diagnosis
for PD and possibly many other neurological
diseases.

There are a variety of other methods that
may improve on these results and that weren't
implemented in this study. This study had to work
with a limited number of voice recordings (195) that
were taken from a small range of patients (31). Due
to the differences in speech based on language and
accent, voice samples from a large and diverse
number of subjects would help make a more
universal model. Other than collecting more data
from more participants, which may be time
consuming and costly, it may also be possible to
increase the diversity in the dataset by utilizing
machine learning algorithms that convert speech
samples to different accents. Additionally, since this
study found success by using mRMR feature
selection, other feature selection methods such as
Boruta and Fisher's Score may be worth testing to see
how they may perform differently than mRMR.
Finally, other boosting algorithms such as AdaBoost

may be worth testing on this problem based on the
performance of Gradient Boosting.

Based on Gradient Boosting's relatively
impressive results on a small dataset of 195 voice
recordings, Gradient Boosting is a promising method
for providing accessible and efficient PD diagnosis
throughout the world, especially following further
research.
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