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1. Introduction 
Traditional neural networks often struggle to learn stable dynamics due to lack of 
physical constraints. Hamiltonian Neural Networks ( HNNs ) offer a principled solution 
by incorporating the structure of Hamiltonian Mechanics into learning conservation laws 
like energy preservation. 

As listed in the Deepchem model wishlist, implementing HNNs would expand the 
library’s support for physics-informed learning. It will also provide researchers with a tool 
to simulate and learn from physical systems more reliably, especially in areas of 
molecular dynamics, materials simulation etc. 

This project aims to implement the HNN model using Pytorch, along with an HNNModel 
wrapper that inherits from Deepchem’s TorchModel class, enabling seamless integration 
with Deepchem’s training, evaluation, and dataset handling utilities. 

 
2. Relevant Experience and Interest 
 
I’m an undergraduate student interested in Deep Learning and its intersection with  
Different domains. Implementing Hamiltonian Neural Networks within Deepchem aligns  
Perfectly with both my interests and current learning goals in deep learning and physics 
Informed modeling 
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Here are a few of my relevant projects: 
 
●​ PainBrushAI -> Neural alchemy for generating styles 
 
●​ GeoRoadExtract -> Extracting pathways from satellite images 
 
●​ PongENV -> Custom environment on Reinforcement learning 
 
 
 
 Past Contributions to deepchem 
 
●​ [ tf-test CI ] ​ ​ ​       [ Under Review ] 
 
●​ [ ODE Tutorial fix ]                    [ Merged ]    ●​                                                   
 
●​ [ Equivariance Tutorial fix ]       [ Under Review ]    
​  
●​ [ MSA tutorial fix ] ​ ​       [ Under Review]    
 
 
 
 
 
3. Work Plan  
 
 
3.1 Introduction to HNN model 
​  
Hamiltonian Neural Networks are a class of neural networks designed to learn the  
Underlying dynamics of physical systems by modeling the Hamiltonian function directly. 
HNNs learn a scalar energy function H(q, p), where q and p represent generalized co- 
Ordinates ( position and momentum ), and derive dynamics from it using the structure 
Of Hamiltonian mechanics 
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3.2 Usage of HNN model 
​  
The HNN model is primarily used to learn and simulate the time evolution of conservat- 
ve dynamical systems. Once trained on position-momentum (q, p) data, the model can  
be used to: 
 

●​ Predict the time derivative ( dq/dt, dp/dt) at any state in the phase space 
 

●​ Generate phase space trajectories 
 

●​ Forecast long-term dynamics such as spring systems, pendulums. 
 

 
 
 
 
 
The time evolution is governed by: 
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Where J is canonical symplectic matrix, ensuring that the learned dynamics are consist- 
Ent with the physical laws of conservation (e.g., energy, preservation ) 
 
 
 
3.3 Design and Pseudocode 
 
The implementation of HNN model is organized into two primary classes: 
 
HNN class: 
The HNN class is a PyTorch module that defines the core logic of the Hamiltonian Neur- 
al Network. This class is responsible for learning the scalar Hamiltonian function H(q, p) 
 

 
 
 
HNNModel class: 
The HNNModel class acts as a DeepChem-compatible wrapper around the Pytorch- 
Based HNN class. It inherits from DeepChem’s TorchModel and handles training, eva- 
Luation, and integration with Deepchem’s NumpyDataset. 
 
By encapsulation the lower-level Pytorch logic, the wrapper allows years to leverage  
DeepChem’s standardized training loops, callback systems, and dataset handling, mak- 
ing the model more accessible and easier to use. 
 
 
 

 
 



 

 
 
 
[ Google colab notebook link ] 
 
3.4 Testing Plan 
 
Unit Testing: 
Core components of the HNN class, such as: 
 

●​ Output shape of the network 
 

●​ Symplectic structure of the J matrix 
 

●​ Correct application of hamilton’s equations 
 
HNNModel wrapper functions will be tested for: 
 

●​ Compatibility with Deepchem’s NumpyDataset 
 

●​ Proper integration with the Deepchem training and evaluation pipeline 
 

●​ Correct loss computation and backpropagation 
 
These tests will be written using the pytest framework and included under  
deepchem/models/tests/ with appropriate fixtures and assertions. 
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3.5 Source of risk 
 
The key potential risk in this project lies in the dataset preparation and its alignment  
with the model's assumption. Although the original authors of the HNN paper have 
provided scripts [ e.g dataset1, dataset2 ]. 
To mitigate this, we plan to start with the provided scripts to generate reproducible and  
clean datasets for initial training and testing. In addition we can also create Synthetic 
Datasets that simulate Hamiltonian systems with known ground truths. 
 
 
3.6. Milestones 
 
 
 
[Notebook Link] 
 
So Currently I have implemented the Raw HNN model and trained it on the Mass-Spring 
dataset ( link ) and got some good results on the first try. 
 
And The Results are as follows: 
 

 

 

Trained on 2000 epochs with a learning rate as 1e-3 with 3 layers in our base 

Sequential model, where the hidden layer consists of 200 units ( mentioned in the paper  
 
On the first try, I got these results which were good enough to test the raw model, This 
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represents the True values from the dataset and predicted values from Model 
 

 
​  
 
 
This Phase Space trajectory represents how the system's state evolves over time under 
the Hamiltonian mechanics. Here the closed shape suggests that our model was able to 
preserve the energy values. 
 
 
 
 
 
 
 
 
4.Timeline 
 
Time Period Activity 

May 8 - June 1 ( Community bonding period ) 
 
●​ Study the paper and understand the current    
implementation ( link )   
●​ Test some of its experiments with the raw HNN 
model which is currently implemented 
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June 2 - June 8 
( week 1 ) 

●​ Review the paper in detail, will understand the 
methods mentioned in the paper ( methods refers to training 
the model on different experiments ) 

June 9 - June 15 
( week 2 ) 

●​ Rebuild the Raw version ( current implementation ), 
and comparing the initial results will improved model results 
 

June 16 - June 22 
( week 3 ) 

●​ [ PR 1 ] Start to build the Base HNN model and all 
required methods. 
 

June 23 - June 29 
( week 4 ) 

●​ This week, test the Base HNN model on all 
experiments/examples mentioned in the paper 

June 30 - July 6 
( week 5 ) 

●​ Keep tracking the progress of the base HNN model 
on experiments, what improvements can be made, the best 
hyperparameters for the experiments, etc. 
●​ Also creating test cases  

July 7 - July 14 
( week 6 ) 

●​ Testing model on deepchem NumpyDataset,  ( HNN 
takes integer input parameters in most experiments) 
●​ Derive the plotted outputs and compare  

July 14 - July 20 
( week 7 ) 

          ( Midterm evaluation ) 
●​ Create a wrapper around the HNN model with 
deepchem TorchModel support 

July 21 - July 27 
( week 8 ) 

( after taking feedback from midterm evaluation )  
●​ [ PR 2 ] Refactor code to make it clean  
●​ Create test cases for the HNNModel wrapper  
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July 28 - Aug 3 
( week 9 ) 

●​ Improve the test suite for both classes 
●​ Study about the dataset ( reference )  

Aug 4 - Aug 10 
( week 10 ) 

●​ Implement raw code ( like deepchem tutorial ) to load 
the dataset and test the model. 
●​ Plotting all the results and comparing them with 
previous improvements 

Aug 10 - Aug 17 
( week 11 ) 

●​ Take feedback from mentors for the raw hnn.py code 
and show the results/improvements 
●​ Conduct the final checks, refine the code structure 

Aug 18 - Aug 25 
( week 12 ) 

●​ [ PR 3 ] Refine the model implementation after taking 
feedback, Submit the final report/results 
●​ ( Optional ) contribute additional resources like 
tested experiments, tutorials, notebooks, etc 

 
 
 
 
5. Community 
 
I have actively engaged with the Deepchem community ( through discord and github 
discussions ). These interactions have been insightful and helped me better understand 
the codebase and project structure 
 
Some interactions as: 

●​ Aaron - Guided me through the ODE tutorial provided clarity on the PR structure, 
which was especially helpful as it was my first contribution to DeepChem. 

●​ Rakshit - Supported me with both the ODE and MSA tutorials, and helped me 
better understand DeepChem’s coding and design conventions. 

●​ Jose - Assisted me with the Equivariance tutorial, particularly in understanding 
the changes in output that occurred after my PR. 

●​ Shreyas - Helped me understand the workings of DeepChem’s continuous 
integration (CI) system, which was particularly valuable as it was my first PR 
involving CI-related changes. 
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6. Resources Required 
 
 
For the development and testing of the Hamiltonian Neural Network (HNN) model, 
standard compute resources are sufficient. Most of the training and evaluation can be 
performed using freely available platforms such as Google Colab.  
 
No paid cloud compute services are strictly required for this project. All other 
development and testing (integration with DeepChem, CI checks, and wrapper creation) 
can be performed using a local machine or CPU-backed instances. 
 
No additional external resources or data subscriptions are needed, as synthetic 
datasets can be generated via scripts provided in the original HNN repository, or custom 
datasets can be constructed using standard physics simulation methods. 
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