

Hamiltonian Neural Networks

Abhay Shinde

-> Name: Abhay Shinde

-> Location: Mumbai, India

-> Branch: Information Technology

-> E-mail: theabhay.shinde@gmail.com

-> Github: https://github.com/a-b-h-a-y-s-h-i-n-d-e

-> Time Zone: UTC+05:30

1. Introduction
Traditional neural networks often struggle to learn stable dynamics due to lack of
physical constraints. Hamiltonian Neural Networks (HNNs) offer a principled solution
by incorporating the structure of Hamiltonian Mechanics into learning conservation laws
like energy preservation.

As listed in the Deepchem model wishlist, implementing HNNs would expand the
library’s support for physics-informed learning. It will also provide researchers with a tool
to simulate and learn from physical systems more reliably, especially in areas of
molecular dynamics, materials simulation etc.

This project aims to implement the HNN model using Pytorch, along with an HNNModel
wrapper that inherits from Deepchem’s TorchModel class, enabling seamless integration
with Deepchem’s training, evaluation, and dataset handling utilities.

2. Relevant Experience and Interest

I’m an undergraduate student interested in Deep Learning and its intersection with
Different domains. Implementing Hamiltonian Neural Networks within Deepchem aligns
Perfectly with both my interests and current learning goals in deep learning and physics
Informed modeling

mailto:theabhay.shinde@gmail.com
https://github.com/a-b-h-a-y-s-h-i-n-d-e

Here are a few of my relevant projects:

●​ PainBrushAI -> Neural alchemy for generating styles

●​ GeoRoadExtract -> Extracting pathways from satellite images

●​ PongENV -> Custom environment on Reinforcement learning

 Past Contributions to deepchem

●​ [tf-test CI] ​ ​ ​ [Under Review]

●​ [ODE Tutorial fix] [Merged] ●​

●​ [Equivariance Tutorial fix] [Under Review]
​
●​ [MSA tutorial fix] ​ ​ [Under Review]

3. Work Plan

3.1 Introduction to HNN model
​
Hamiltonian Neural Networks are a class of neural networks designed to learn the
Underlying dynamics of physical systems by modeling the Hamiltonian function directly.
HNNs learn a scalar energy function H(q, p), where q and p represent generalized co-
Ordinates (position and momentum), and derive dynamics from it using the structure
Of Hamiltonian mechanics

https://huggingface.co/spaces/ZapBot/paintbrushai
https://github.com/a-b-h-a-y-s-h-i-n-d-e/GeoRoadExtract
https://github.com/a-b-h-a-y-s-h-i-n-d-e/Reinforcement-Learning-on-Pong
https://github.com/deepchem/deepchem/pull/4385
https://github.com/deepchem/deepchem/pull/4262
https://github.com/deepchem/deepchem/pull/4271
https://github.com/deepchem/deepchem/pull/4360

(image taken from paper)

3.2 Usage of HNN model
​
The HNN model is primarily used to learn and simulate the time evolution of conservat-
ve dynamical systems. Once trained on position-momentum (q, p) data, the model can
be used to:

●​ Predict the time derivative (dq/dt, dp/dt) at any state in the phase space

●​ Generate phase space trajectories

●​ Forecast long-term dynamics such as spring systems, pendulums.

The time evolution is governed by:

https://arxiv.org/pdf/1906.01563

Where J is canonical symplectic matrix, ensuring that the learned dynamics are consist-
Ent with the physical laws of conservation (e.g., energy, preservation)

3.3 Design and Pseudocode

The implementation of HNN model is organized into two primary classes:

HNN class:
The HNN class is a PyTorch module that defines the core logic of the Hamiltonian Neur-
al Network. This class is responsible for learning the scalar Hamiltonian function H(q, p)

HNNModel class:
The HNNModel class acts as a DeepChem-compatible wrapper around the Pytorch-
Based HNN class. It inherits from DeepChem’s TorchModel and handles training, eva-
Luation, and integration with Deepchem’s NumpyDataset.

By encapsulation the lower-level Pytorch logic, the wrapper allows years to leverage
DeepChem’s standardized training loops, callback systems, and dataset handling, mak-
ing the model more accessible and easier to use.

[Google colab notebook link]

3.4 Testing Plan

Unit Testing:
Core components of the HNN class, such as:

●​ Output shape of the network

●​ Symplectic structure of the J matrix

●​ Correct application of hamilton’s equations

HNNModel wrapper functions will be tested for:

●​ Compatibility with Deepchem’s NumpyDataset

●​ Proper integration with the Deepchem training and evaluation pipeline

●​ Correct loss computation and backpropagation

These tests will be written using the pytest framework and included under
deepchem/models/tests/ with appropriate fixtures and assertions.

https://colab.research.google.com/drive/1-5nWTXv1VeFFnBleUNhJSiDefY202KCp?usp=sharing

3.5 Source of risk

The key potential risk in this project lies in the dataset preparation and its alignment
with the model's assumption. Although the original authors of the HNN paper have
provided scripts [e.g dataset1, dataset2].
To mitigate this, we plan to start with the provided scripts to generate reproducible and
clean datasets for initial training and testing. In addition we can also create Synthetic
Datasets that simulate Hamiltonian systems with known ground truths.

3.6. Milestones

[Notebook Link]

So Currently I have implemented the Raw HNN model and trained it on the Mass-Spring
dataset (link) and got some good results on the first try.

And The Results are as follows:

Trained on 2000 epochs with a learning rate as 1e-3 with 3 layers in our base

Sequential model, where the hidden layer consists of 200 units (mentioned in the paper

On the first try, I got these results which were good enough to test the raw model, This

https://github.com/greydanus/hamiltonian-nn/blob/master/experiment-spring/data.py
https://github.com/greydanus/hamiltonian-nn/blob/master/experiment-pend/data.py
https://colab.research.google.com/drive/1-5nWTXv1VeFFnBleUNhJSiDefY202KCp?usp=sharing
https://github.com/greydanus/hamiltonian-nn/blob/master/experiment-spring/data.py

represents the True values from the dataset and predicted values from Model

​

This Phase Space trajectory represents how the system's state evolves over time under
the Hamiltonian mechanics. Here the closed shape suggests that our model was able to
preserve the energy values.

4.Timeline

Time Period Activity

May 8 - June 1 (Community bonding period)

●​ Study the paper and understand the current
implementation (link)
●​ Test some of its experiments with the raw HNN
model which is currently implemented

https://github.com/greydanus/hamiltonian-nn

June 2 - June 8
(week 1)

●​ Review the paper in detail, will understand the
methods mentioned in the paper (methods refers to training
the model on different experiments)

June 9 - June 15
(week 2)

●​ Rebuild the Raw version (current implementation),
and comparing the initial results will improved model results

June 16 - June 22
(week 3)

●​ [PR 1] Start to build the Base HNN model and all
required methods.

June 23 - June 29
(week 4)

●​ This week, test the Base HNN model on all
experiments/examples mentioned in the paper

June 30 - July 6
(week 5)

●​ Keep tracking the progress of the base HNN model
on experiments, what improvements can be made, the best
hyperparameters for the experiments, etc.
●​ Also creating test cases

July 7 - July 14
(week 6)

●​ Testing model on deepchem NumpyDataset, (HNN
takes integer input parameters in most experiments)
●​ Derive the plotted outputs and compare

July 14 - July 20
(week 7)

 (Midterm evaluation)
●​ Create a wrapper around the HNN model with
deepchem TorchModel support

July 21 - July 27
(week 8)

(after taking feedback from midterm evaluation)
●​ [PR 2] Refactor code to make it clean
●​ Create test cases for the HNNModel wrapper

https://colab.research.google.com/drive/1-5nWTXv1VeFFnBleUNhJSiDefY202KCp?usp=sharing

July 28 - Aug 3
(week 9)

●​ Improve the test suite for both classes
●​ Study about the dataset (reference)

Aug 4 - Aug 10
(week 10)

●​ Implement raw code (like deepchem tutorial) to load
the dataset and test the model.
●​ Plotting all the results and comparing them with
previous improvements

Aug 10 - Aug 17
(week 11)

●​ Take feedback from mentors for the raw hnn.py code
and show the results/improvements
●​ Conduct the final checks, refine the code structure

Aug 18 - Aug 25
(week 12)

●​ [PR 3] Refine the model implementation after taking
feedback, Submit the final report/results
●​ (Optional) contribute additional resources like
tested experiments, tutorials, notebooks, etc

5. Community

I have actively engaged with the Deepchem community (through discord and github
discussions). These interactions have been insightful and helped me better understand
the codebase and project structure

Some interactions as:

●​ Aaron - Guided me through the ODE tutorial provided clarity on the PR structure,
which was especially helpful as it was my first contribution to DeepChem.

●​ Rakshit - Supported me with both the ODE and MSA tutorials, and helped me
better understand DeepChem’s coding and design conventions.

●​ Jose - Assisted me with the Equivariance tutorial, particularly in understanding
the changes in output that occurred after my PR.

●​ Shreyas - Helped me understand the workings of DeepChem’s continuous
integration (CI) system, which was particularly valuable as it was my first PR
involving CI-related changes.

https://github.com/greydanus/hamiltonian-nn

6. Resources Required

For the development and testing of the Hamiltonian Neural Network (HNN) model,
standard compute resources are sufficient. Most of the training and evaluation can be
performed using freely available platforms such as Google Colab.

No paid cloud compute services are strictly required for this project. All other
development and testing (integration with DeepChem, CI checks, and wrapper creation)
can be performed using a local machine or CPU-backed instances.

No additional external resources or data subscriptions are needed, as synthetic
datasets can be generated via scripts provided in the original HNN repository, or custom
datasets can be constructed using standard physics simulation methods.

7. References

​ [1] https://arxiv.org/pdf/1906.01563
​ [2] https://greydanus.github.io/2019/05/15/hamiltonian-nns/
​ [3] https://github.com/greydanus/hamiltonian-nn
​ [4] https://www.youtube.com/watch?v=AEOcss20nDA

https://arxiv.org/pdf/1906.01563
https://greydanus.github.io/2019/05/15/hamiltonian-nns/
https://github.com/greydanus/hamiltonian-nn
https://www.youtube.com/watch?v=AEOcss20nDA

