Capability Delegation API

A proposal for time-constrained delegation of capabilities

mustag@chromium.org, danyao@chromium.org, flackr@chromium.org, girard@chromium.org,

jyasskin@chromium.org

Explainer: github.com/WICG/capability-delegation
Chromium bug: 1130558
Chromestatus entry

Document status: initial draft
Started: 2020-July-23. Last major modification: 2021-June-29

Overview

What is Capability Delegation
Goal of this document

Background
Motivation

Payment Request API
Other use cases

Related past attempts
Challenges

Transient Capability Delegation
Proposed Javascript API
Privacy and security considerations

Open questions
Specifying capability X

Handling capability guards

Overview

This document explores design choices for Capability Delegation and aims to define a concrete
JS API for the feature. This is based on a preliminary proposal in Capability Delegation: Design
Alternatives.


mailto:mustaq@chromium.org
mailto:danyao@chromium.org
mailto:flackr@chromium.org
mailto:girard@chromium.org
mailto:jyasskin@chromium.org
https://github.com/WICG/capability-delegation/
https://crbug.com/1130558
https://www.chromestatus.com/feature/5708770829139968
https://docs.google.com/document/d/1wTw4uplUswd5IBgMyoDbtndh8X1GOmBFuTJk_9WQbSI/edit?usp=sharing
https://docs.google.com/document/d/1wTw4uplUswd5IBgMyoDbtndh8X1GOmBFuTJk_9WQbSI/edit?usp=sharing

What is Capability Delegation

Capability delegation means allowing a frame to relinquish its ability to call a restricted APl and
transfer the ability to another (sub)frame it trusts.

To elaborate, many APls in the Web are usable from JS in restricted manners. For example:

e Most browsers allow popups (through window.open () ) only if the user has either
interacted with the page recently or allowed the browser to open popups from the page’s
origin.

e A sandboxed iframe cannot make itself full-screen (though
element.requestFullscreen () ) without a specific sandbox attribute or a user
interaction within the frame.

If an app wants to delegate a task to a known and trusted third-party frame, and the task relies
on a restricted JS API, the app would utilize a Capability Delegation mechanism to enable that
particular API in the third-party frame. Our focus in this document is a dynamic delegation
mechanism not currently available today.

Goal of this document

We are interested in a time-constrained delegation mechanism here that does not expose the
delegated capability to the target frame in a time-unconstrained manner. The use-cases we
want to cover here (see the corresponding section below) are not supported by existing
delegation mechanisms in the Web (<iframe allow*> attributes and feature policies) which
are static in nature; see a related discussion here.

Ideally we want to define an API that meets all of the following criteria, but it is conceivable that
we would have to make a tradeoff:

1. The API would support capability delegation in a general form. In other words, it would
be usable for capabilities other than the ones we have today.

2. Other browsers are willing to ship the API. Failing that, the APl would be shippable from
the web platform perspective, which means consensus from Blink APl owners as well as
approval from external TAG reviewers.

3. The API won't allow developers to do something sensitive without users’ knowledge.


https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTTP/Feature_Policy
https://docs.google.com/document/d/1wTw4uplUswd5IBgMyoDbtndh8X1GOmBFuTJk_9WQbSI/edit#bookmark=id.fty7e49s3wy9

Background

Motivation

Payment Request API

The first specific use-case we want to support through our delegation mechanism is Payment
Reqguest API. Online stores that outsource payment related tasks to third-party services rely on
this API.

To elaborate, there are many “middle-tier” merchants that are big enough to have their own
shopping websites but not quite big enough to have their own payment infrastructure. They
outsource the payment collection and processing infrastructure to Payment Service Providers
(like Stripe) due to the considerable security and regulatory complexities around card payments.
This creates a situation where the “pay” button is rendered inside the top (i.e. the merchant’s)
frame where it can blend better with the rest of the merchant’s website, while the payment
processing code is inside a cross-origin iframe from the PSP. A payment processing is initiated
through a call to PaymentReguest.show () which requires transient user activation to
prevent malicious attempts like unattended or repeated payment requests. Because the top
(merchant) frame’s user interaction is not visible to the iframe, the PSP code needs some kind
of a delegation in response to a click in the top frame to be able to use
PaymentRequest.show ().

We got a feature request recently (Jun 6 2019) that calls for the ability to delegate popup
capability to an iframe; details are here. Any capability delegation mechanism would solve their
use-case as long as there is a way to specify the “payment” capability.

Other use cases

e A website may want a third-party chat app in an iframe to be able to vibrate the phone
on message receipt, even when the user is not active in the iframe.

e A web service that does not care about user location except for a “branch locator”
functionality provided by a third-party map app can delegate its own location access
capability to the map iframe.

e A presentation/slide website that has a “control panel” to selectively make other
spawned windows fullscreen. This came from this developer request we received
following Chrome’s UAv2 launch (before this launch, user activation visibility was an
undefined concept). With Capability Delegation API, the “control panel” would delegate
fullscreen capability to the selected window to bring a non-focused window to fullscreen.

e An authentication provider may wish to show a popup to complete the authentication
flow before returning an authentication token to the host site.



https://w3c.github.io/payment-request
https://w3c.github.io/payment-request
https://w3c.github.io/payment-request/#show-method
https://crbug.com/928838#c20
https://bugs.chromium.org/p/chromium/issues/detail?id=931966#c5

Portals has users interacting with multiple sites in a single context. We suspect they may
need to delegate capabilities in some form.

We have seen one video-autoplay case where a cross-origin subframe with a video
remains hidden behind a thumbnail image on the top frame, and a click on the thumbnail
removes the image and expects to play the video in the subframe. The current model for
user-activation visibility prevents such use-cases but we can use capability delegation
API to enable this (subject to browser defined autoplay settings).

Related past attempts

The idea of transient (time-constrained) delegation was explored a few times before; we are
aware of the following proposals:

Gesture delegation explained

e Delegating user activation to child frames

e Combining gesture delegation with feature policy

e Activation delegation through transfer.
Challenges

The main challenge faced by past transient delegation proposals is enabling a legitimate
use-case without causing problems with unrelated APIs. One common theme of those past
proposals has been to tie the “transient” part of the capability delegation with transient user
activation. In other words, “delegating a capability” was done through “delegating user
activation”. This approach turned out to be problematic from a few perspectives:

“User activation” is a low-level state (representing user interaction), hence neither a
developer-facing API nor a capability. TAG asked a logical question whether such a
low-level concept should even be exposed to developers. Note that we already expose
this to developers but as a read-only state only (and TAG raised the same concern for
that too).

The transfer APl here would let developers modify the user activation state of a window
which feels too much of a control. The browser, as a User Agent, should never let a
script mimic real user interaction in any way. Unfortunately, a user activation “transfer”
would act as a “mimic instrument” to fool the target Window into believing that the user
interacted with it. For existing activation-gated APIs that rely on the user activation state
as a trusted source of truth about user interaction, this seems unacceptable.

(The “trust” argument above is analogous to that for trusted events: only the browser can
ever fire a trusted event, and we never allow a script to dispatch such an event—even
from the handler of a trusted event. As a result, a code can rely on the “trusted” bit of an
event without the fear of being fooled by a malicious JS.)


https://html.spec.whatwg.org/#user-activation-processing-model
https://docs.google.com/document/d/1HkTSdeQKrYrEFuLGzgBXRvxclo2BzWXwuGrYsL2vD9k/edit#
https://docs.google.com/document/d/1yZQjK7Q_BsyJ74Vj7Xpm3QzhDyDXB8kGdk3aESEYtSg/edit?usp=sharing
https://docs.google.com/document/d/11gqqQhHcVNhYRclVGL6h7prt_n9rjbYstvCWgZu-E7M
https://docs.google.com/document/d/1NKLJ2MBa9lA_FKRgD2ZIO7vIftOJ_YiXXMYfRMdlV-s/edit?usp=sharing
https://html.spec.whatwg.org/multipage/interaction.html#transient-activation
https://html.spec.whatwg.org/multipage/interaction.html#transient-activation
https://github.com/dtapuska/useractivation
https://github.com/w3ctag/meetings/blob/gh-pages/2019/telcons/03-05-minutes.md#user-activation-api
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted

See the first Web Platform Design Principle.

The problem with delegation of user activation becomes obvious when we consider the fact that
there are 25+ different APIs in Chromium. It does not make sense to delegate all these
capabilities when an app needs to delegate just one of them. For example, to process payment
requests through a subframe, the host app should not need to delegate popup or autoplay or
geolocation capabilities to the subframe.

Transient Capability Delegation

To address the (valid) concerns raised against the past attempts, we are proposing a model that
focuses on delegation of a specific capability only (instead of delegating user activation) in a
time-constrained manner. We will call it Transient Capability Delegation (TCD).

In short, the delegation of a capability X would consume the sender’s user activation to create a
time-limited availability-timestamp T, on the receiving end. In more details:

A. The sender’s ability to use TCD would be gated by transient user activation. More
precisely, a TCD request will consume the user activation in the sender’s Window to
prevent repeated requests (making TCD a transient activation consuming API) but the
receiving Window won'’t get any user activation at all.

o Question: perhaps for certain capabilities, a TCD request could be
non-consuming (i.e., transient activation-gated) instead?

B. Internally a successful delegation would create a time-constrained availability-timestamp
Ty in the recipient window. The lifespan and behavior of T, would depend on the
capability, and would be defined by the spec owners of capability X.
availability-timestamp T, won’t be exposed to JS.

C. On the receiving end, T, would be “tied” to the recipient window object so it would be
non-transferrable by design.

Proposed Javascript API

We are proposing a new option to Window.postMessage () that facilitates TCD through the
existing messaging mechanism (based on the feedback received during our last attempt).

targetWindow.postMessage('a_message', {delegate: 'payment'});


https://w3ctag.github.io/design-principles/#priority-of-constituencies
https://docs.google.com/document/d/1mcxB5J_u370juJhSsmK0XQONG2CIE3mvu827O-Knw_Y/edit?usp=sharing
https://html.spec.whatwg.org/multipage/interaction.html#activation-consuming-api
https://html.spec.whatwg.org/multipage/interaction.html#transient-activation-gated-api
https://github.com/whatwg/html/pull/4369#issuecomment-470580082

Privacy and security considerations

There is no privacy concern here because user data is not involved in any way.

From a security perspective, the proposal may seem like a “packaging” of capability-permission
plus user-activation into a token which can be passed around. However, there are quite a few
important distinctions between the general idea of a “passable token” vs the
“availability-timestamp” created here:

User activation is never delegated: We deliberately hold back user activation from being
passed on to the receiving end because we already know this would be problematic, see the
Challenges section above for some details. In other words, a call to delegate an API never
activates the receiving window so the receiver side cannot abuse user activation in any way
(e.g. trying to open a popup after receiving an availability-timestamp for “fullscreen”).

Delegation consumes user activation: Moreover, a delegation call consumes user activation
so a sender Window cannot abuse the state either (like trying to delegate to multiple
subframes). Note that by design consumption of user activation affects the whole frame tree.

The new availability-timestamp is inaccessible: The only “visible aspect” of the
availability-timestamp created at the receiving Window is that the capability becomes usable
there (see next point about “usability”). The availability-timestamp itself is not accessible from
JS, hence transitive (or chained) delegation won’t be possible. In other words, it would be
impossible to pass on the availability-timestamp to another potential receiver.

The new availability-timestamp can be single-use: The owners of each capability (spec) are
free to decide how the capability could be used at the receiving Window after an
availability-timestamp has been created there. For example, a capability that is “very abusable”
(like popup or fullscreen) can reset the availability-timestamp after a single call to prevent
repeated calls, while a capability that is “mildly abusable” (like <input type="file”> dialog) can
allow multiple calls. One suggested rule of thumb is that the availability-timestamp for an
activation-consuming capability should be single-use.

Open questions

Here are some open questions around TCD. We can choose to go with a non-generic
(capability-specific) delegation API to bypass some of these questions. But a generic solution is
preferred (and TAG seemed to have the same opinion).


https://html.spec.whatwg.org/#consume-user-activation
https://html.spec.whatwg.org/multipage/input.html#file-upload-state-(type=file)
https://html.spec.whatwg.org/#activation-consuming-api

Specifying capability X

e Question: Would it be a string, like “payment-request®? Or an enumeration label?
o We decided to use feature-identifiers in the Permissions Policy spec (details).

o Question: If the UA does not recognize X, it would have to reject the delegation
request. How to convey this "rejection" to the recipient?

e Question: Even when we have a list of candidate APIs for X, is it obvious which X
should be chosen? For example, would the payment request API require “popup”
capability instead of a “payment-request” capability?

e Question: Should it allow passing multiple capabilities?

Handling capability guards

Each capability is controlled by a set of “guards”; these guards are lower-level capabilities and
states that serve as the input parameters defining the usability/availability of the capability. Here
is a partial list of capabilities and their guards: go/web-capability-guards.

e Question: The proposal here seeks to bypass one specific capability guard (i.e. user
activation). What about other guards?

For example, a payment request is guarded by transient user activation, and a delegated
payment request would allow bypassing this requirement on the recipient Wwindow. But what if
we have other guards, like a user option like “never allow payment requests from a specific
origin”?

Note that bypassing all guards is a tricky (if not unacceptable) problem because different guards
for a specific capability may have different “contexts”. A concrete example: the “autoplay video
with sound” capability in Chromium is controlled by at least three guards:

a. the availability of user activation,

b. effective autoplay feature policy at the requester frame, and

c. requester site’s MEI (media engagement index).
Each of these guards is defined through a different “context”:

a. user activation = frame tree (browsing context hierarchy),

b. effective feature policy = feature policies of all ancestor frames, and

c. MEI = frame’s origin.



https://wicg.github.io/capability-delegation/spec.html#initiating-delegation
https://goto.google.com/web-capability-guards
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes#mei

	Capability Delegation API 
	Overview 
	What is Capability Delegation 
	Goal of this document 

	Background 
	Motivation 
	Payment Request API 
	Other use cases 

	Related past attempts 
	Challenges 

	Transient Capability Delegation 
	Proposed Javascript API 
	Privacy and security considerations 
	Open questions 
	Specifying capability X 
	Handling capability guards 


