
Lab: Spark Streaming
Status: Under review

This tutorial is intended to help you get started with the official Spark Streaming
Programming Guide.

Spark Streaming is an extension of the core Spark API that enables scalable,
high-throughput, fault-tolerant stream processing of live data streams. Data can be ingested
from many sources like Kafka, Kinesis, or TCP sockets, and can be processed using
complex algorithms expressed with high-level functions like map, reduce, join and window.
Finally, processed data can be pushed out to filesystems, databases, and live dashboards.
In fact, you can apply Spark’s machine learning and graph processing algorithms on data
streams.

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/graphx-programming-guide.html

Setup

Requirements

The tutorial assumes the following technical requirements:

●​ AWS Cloud9 environment
●​ Python 3.10 (included in Cloud9)
●​ Netcat (included in Cloud9)
●​ Pyspark

Configuration

Install pyspark as follows:

pip install pyspark

codespaces

sudo apt update

apt install netcat-traditional

Spark Streaming Examples:

The following examples will read from a TCP stream and count the number of words during
a specific window.

●​ In a new terminal, start the netcat application on port 9999:

nc -lk 9999

Ex1: Network wordcount

Save the following code in a file called network_wordcount.py.

import sys​
​
from pyspark import SparkContext​
from pyspark.streaming import StreamingContext​
​

if __name__ == "__main__":​
 if len(sys.argv) != 3:​
 # print("Usage: network_wordcount.py <hostname> <port>", file=sys.stderr)​
 sys.exit(-1)​
 sc = SparkContext(appName="PythonStreamingNetworkWordCount")​
 ssc = StreamingContext(sc, 1)​
​
 sc.setLogLevel("WARN")​
​
 lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))

​
 counts = lines.flatMap(lambda line: line.split(" "))\​
 .map(lambda word: (word, 1))\​
 .reduceByKey(lambda a, b: a + b)

​
 counts.pprint()​
​
 ssc.start()​
 ssc.awaitTermination()

●​ To run the example, open a new terminal and execute the following command:

spark-submit network_wordcount.py localhost 9999

Ex2: Structured wordcount

Save the following code in a file called structured_network_wordcount.py.

import sys​
​
from pyspark.sql import SparkSession​
from pyspark.sql.functions import explode​
from pyspark.sql.functions import split​
​
if __name__ == "__main__":​
 if len(sys.argv) != 3:​
 # print("Usage: structured_network_wordcount.py <hostname> <port>", file=sys.stderr)​
 sys.exit(-1)​
​
 host = sys.argv[1]​
 port = int(sys.argv[2])​

​
 spark = SparkSession\​
 .builder\​
 .appName("StructuredNetworkWordCount")\​
 .getOrCreate()​
 ​
 spark.sparkContext.setLogLevel("WARN")​
​
 # Create DataFrame representing the stream of input lines from connection to host:port​
 lines = spark\​
 .readStream\​
 .format('socket')\​
 .option('host', host)\​
 .option('port', port)\​
 .load()​
​
 # Split the lines into words​
 words = lines.select(​
 # explode turns each item in an array into a separate row​
 explode(​
 split(lines.value, ' ')​
).alias('word')​
)​
​
 # Generate running word count​
 wordCounts = words.groupBy('word').count()​
​
 # Start running the query that prints the running counts to the console​
 query = wordCounts\​
 .writeStream\​
 .outputMode('complete')\​
 .format('console')\​
 .start()​
​
 query.awaitTermination()

●​ To run the example, open a new terminal and execute the following command:

spark-submit structured_network_wordcount.py localhost 9999

	Lab: Spark Streaming
	Setup
	Requirements
	Configuration

	Spark Streaming Examples:
	Ex1: Network wordcount
	Ex2: Structured wordcount

