
 

Proposal for ​
TLX: Tensor LLVM eXtensions 

Rationale 
Diverse hardware vendors are developing new hardware support for (mostly dense) tensor 
computations, which have become increasingly important for machine learning applications. 
These include both ISA extensions on CPUs and GPUs (such as Intel AMX, Power MMA, 
NVIDIA’s tensor cores, AMD’s matrix cores, and Qualcomm’s HVX vector ISA) and dedicated 
accelerators for compute offload (such as NVIDIA’s NVDLA, Amazon’s Inferentia and Trainium, 
and numerous ML accelerators from smaller companies). While ML workloads are the primary 
motivation and likely to be the dominant use cases, other tensor-intensive application domains, 
such as image processing, scientific computing, quantum simulations, financial modeling, and 
others can benefit from this hardware support as well, via languages like C++, DPC++, Julia, 
Fortran, Halide, CUDA, OpenCL, and others. 
 
LLVM can play a crucial role in making it easier for these vendors to create optimizing compiler 
back-ends for their emerging hardware (if the existing vector and matrix support in LLVM were 
generalized to support tensor operations). LLVM is already widely-used today by many of the 
vendors that develop these tensor architectures, e.g., to target CPUs and GPUs. LLVM is highly 
retargetable, by design. For the CPU targets, LLVM allows an integrated code generation 
framework for tensor operations with optimized intermixing of scalar, 1-D vector and 2-D matrix 
operations in the same code section (e.g., loop body). And LLVM has front-ends for a wide 
range of high-level languages, including essentially all the languages used widely for relevant 
application domains today. 
 
No existing infrastructure we know of meets these needs. MLIR is likely the best option, and we 
believe it is entirely complementary to LLVM. MLIR provides strong support for high-level tensor 
operations in TOSA, relevant optimizations in Affine and Linalg, and lowering paths to 
accelerators, GPUs and (via the LLVM dialect) CPUs. Crucially, however, MLIR does not have a 
low-level code generation framework that is retargetable to diverse hardware: it relies on LLVM 
for this purpose. If LLVM could be extended with tensor operations and a corresponding 
retargetable tensor code generation framework, MLIR could leverage this as well. Moreover, 
there are enough vendors and also languages that rely heavily on LLVM (but don’t use MLIR) 
that it seems worthwhile to have a high-quality tensor code generation framework in both LLVM 
as well as in MLIR.  Ideally, both systems would largely share the same code. 
 
The broad goal of our project is to add a retargetable tensor code generation framework to 
LLVM. We are currently working on a prototype implementation with our collaborators at 
Amazon AWS, Intel, IBM and Qualcomm. This RFC focuses on the first stage: extending the 
LLVM IR with tensor operations which we refer to as TLX (Tensor LLVM eXtensions). 



 

Overall Project Objectives 
●​ A unified retargetable code generation and optimization framework for LLVM to target 

diverse tensor architectures with a common set of IR extensions, instead of using 
target-specific solutions. 

●​ (Subject of this RFC.) A single set of target-agnostic tensor extensions in LLVM IR that 
higher-level tensor code generation frameworks such as XLA, Halide, TVM, MLIR, etc. 
can target, instead of lowering to target-specific intrinsics in LLVM, while retaining the 
optimizations in these high-level frameworks. 

●​ A pathway for LLVM-based languages such as  C/C++, DPC++, Fortran, Rust, Julia, etc. 
that do not have front ends for compiler systems like MLIR, TVM, XLA, etc. to target 
modern tensor architectures by lowering to our tensor extensions in LLVM. 

●​ Target-independent optimizations (e.g. peephole optimizations and generic SSA-based 
optimizations) and also flexible code generation capabilities in LLVM that could involve 
mixing instructions operating on vector and rectangular registers, and involve developing 
cost models which could help reduce register spills and maximize usage of available 
hardware resources. 

●​ Contribute our tensor extensions (this RFC) and retargetable code generation framework 
(as a followup) to the LLVM project for the community to experiment with and provide 
feedback. 

 

RFC: Introduction of Tensor Concept in LLVM 
To achieve our objectives, we need to introduce the concept of tensors in LLVM, which are 
currently missing. To do this, we need to add a tensor type (i.e., an N-dimensional data type), 
generalizing 1-D vectors and 2-D matrices. We also need crucial tensor operations which 
front-ends for high-level languages can target, and which represent or can be implemented via 
ISAs of different tensor architectures. 
 

Implementation of Tensor Type in LLVM 

Overview: 
The concept of dense tensors can be implemented as a new, first-class n-dimensional vector 
type in LLVM. However, doing this would be extremely intrusive since it will require changes to 
hundreds of files in LLVM. While this may be the correct option in the long term, once the design 
has been properly evaluated and refined, the effort required to do so for an initial prototype and 
evaluation is not justified. So we propose to implement the tensor concept as an LLVM intrinsic 
called llvm.tensor.typeinfo, while representing tensor data in “flattened” form as ordinary 
LLVM vector types.  The intrinsic takes as operands a “flattened” LLVM vector, together with 
shape, layout and padding vectors, and returns a value of LLVM token type. By returning a  
value of token type, this intrinsic avoids the risk of being eliminated by optimizations (especially, 



 

dead code elimination) when it has uses.  This intrinsic is marked with the ‘readnone’ and 
‘speculatable’ attributes so that it does not inhibit optimizations like redundancy 
elimination, dead code elimination, code motion, etc. 
 
 
 token llvm.tensor.typeinfo(<llvm-vector-type> %tensor,  
<n x i32> %shape, <n x i32> %layout, <n x i32> %padding) 
 

Operands: 

Operand Description 

%tensor n-dimensional tensor value represented as a “flattened” vector  

%shape Vector of dimension values of a tensor 

%layout Vector of permutation of dimension indices ranging from 0 to n-1 

%padding Vector of padding values along every dimension of a tensor 

Result: 

Result Description 

token value LLVM value of token type associated with a tensor value  

Semantics: 
The ‘llvm.tensor.typeinfo’ intrinsic is used to produce a unique token value associated 
with a tensor value represented as a “flattened” vector. The layout operand of this intrinsic is 
expressed as a permutation of dimension indices (from 0 to n-1 for an n-dimensional tensor). 
This represents tensor layouts in LLVM in a generic way. The number of elements in shape, 
layout and padding vectors must be the same and equal to the number of dimensions of the 
given tensor. 
Note that this intrinsic is only meant to hold information such as shape, layout and padding of a 
tensor value in LLVM IR. It does not read nor write memory nor perform any computations, and 
it does not exhibit any kind of undefined behavior.  

Example: 
 
; The first argument (%tensor) is the tensor that is being modeled as a flattened vector. The second 

argument is the shape (16 x 5 x 3), the third argument is layout (<0, 1, 2>) and the fourth argument is 

padding (<3, 2, 1> along the corresponding dimensions) for the given tensor. 



 

input = call token @llvm.tensor.typeinfo(<240 x float> %tensor, <3 x 
i32> <i32 16, i32 5, i32 3>, <3 x i32> <i32 0, i32 1, i32 2>, <3 x 
i32> <i32 3, i32 2, i32 1>) 
 
; The first argument is the input virtual tensor register,  and the second argument is the new permutation 

of the layout of the input tensor. This operation produces a tensor of layout  <2, 0, 1>. 
%output = call <240 x float> @llvm.tensor.transpose(token %input, <3 x 
i32> <i32 2, i32 0, i32 1>) 
 
; The first argument (%output) is the output tensor that is being modeled as a flattened vector. The 

second argument is the new shape (3 x 16 x 5), the third argument is layout (<2, 0, 1>) and the fourth 

argument is the new padding (<1, 3, 4> along the corresponding dimensions) for the output tensor. 
%typed_output = call token @llvm.tensor.typeinfo(<240 x float> 
%output, <3 x i32> <i32 3, i32 16, i32 5>, <3 x i32> <i32 2, i32 0, 
i32 1>, <3 x i32> <i32 1, i32 3, i32 2>) 
 

Tensor Operations in LLVM 

llvm.tensor.load 

Overview: 
This operation loads a tensor or sub-tensor with the given shape, layout and padding from 
memory into a register. This operation is strided, unlike the existing load instruction in LLVM, to 
be able to load sub-tensors from memory. This intrinsic is marked with ‘speculatable’ 
attribute to prevent it from inhibiting optimizations like redundancy elimination, dead code 
elimination, code motion, etc.  
 
 
token llvm.tensor.load(<element_type>* %mem_ptr, <n x i32> %shape, <n 
x i32> %layout, <n x i32> %pad, <n xi32> %strides) 
 

Operands: 

Operand Description 

%mem_ptr Starting address of a tensor/subtensor in memory 

%shape Vector of dimension values of the loaded tensor/sub-tensor 

%layout Vector of permutation of dimension indices ranging from 0 to n-1 

%padding Vector of padding values along every dimension of the loaded 



 

tensor/sub-tensor 

%strides Vector of strides in memory along every dimension of the loaded 
tensor/sub-tensor 

Result: 

Result Description 

%output token value representing the output tensor 

Semantics: 
The ‘llvm.tensor.load’ intrinsic loads a tensor or subtensor with the given shape, layout 
and padding from memory into a register. This operation is strided based on %strides, unlike 
the existing load instruction in LLVM, to be able to load subtensors from memory since 
sub-tensors are not laid out contiguously in memory. This intrinsic reads from memory, but does 
not write to memory. 

Example: 
; This loads a sub-tensor from the memory location pointed to by %mem_ptr. The sub-tensor has the 

shape <16 x 6 x 4> (second argument), layout <0, 1, 2>  (third argument) and zero padding (fourth 

argument). The strides in memory along every dimension are <0, 0, 8>, which means that the rows of the 

loaded sub-tensor have a distance of 8 bytes in memory. This produces a unique token %tensor.. 
%tensor = call token @llvm.tensor.load(i8* %mem_ptr, <3 x i32> <i32 
16, i32 6, i32 4>, <2 x i32> <i32 0, i32 1, i32 2>, <3 x i32> <i32 0, 
i32 0, i32 0>, <3 x i32> <i32 0, i32 0, i32 8>) 

 

llvm.tensor.store 

Overview: 
This operation stores a tensor or subtensor from a register into memory. This operation is 
strided, unlike the existing store instruction in LLVM, to be able to store sub-tensors into 
memory. This intrinsic is marked with ‘readnone’ attribute to prevent it from inhibiting 
optimizations like redundancy elimination, dead code elimination, code motion, etc.  
 
 
void llvm.tensor.store(<element_type>* %mem_ptr,token %tensor, <n 
xi32> %strides) 
 



 

Operands: 

Operand Description 

%mem_ptr Starting address in memory where tensor is stored 

%tensor Stored tensor/subtensor 

%strides Vector of strides in memory along every dimension of the stored 
tensor/subtensor 

Result: 
Intrinsic does not return anything. 

Semantics: 
The ‘llvm.tensor.store’ intrinsic stores a tensor or subtensor from a register into memory. 
This operation is strided based on %strides, unlike the existing store instruction in LLVM, to 
be able to store sub-tensors to memory since sub-tensors are not laid out contiguously in 
memory. This intrinsic writes to memory, but does not read from memory. 

Example: 
 
%tensor = call token @llvm.tensor.typeinfo(<240 x float> %tensor, <3 x 
i32> <i32 16, i32 6, i32 4>, <3 x i32> <i32 0, i32 1, i32 2>, <3 x 
i32> <i32 0, i32 0, i32 0>) 

 

; This stores a tensor from the memory location pointed to by %mem_ptr and the second argument is the 

stored tensor itself. The strides in memory along every dimension are <0, 12, 10> (third argument), which 

means that the rows of %tensor are stored 10*sizeof(float) bytes apart and columns of %tensor are 

12*sizeof(float) bytes apart in memory.  
call void @llvm.tensor.store(float* %mem_ptr, token %tensor, <3 x i32> 
<i32 0, i32 12, i32 10>) 
 

llvm.tensor.matmul 

Overview: 
This intrinsic performs batched matrix multiplication between the inner dimensions of two 
multidimensional tensors. This intrinsic is marked with the ‘readnone’ and ‘speculatable’ 
attributes to prevent it from inhibiting optimizations like redundancy elimination, dead code 
elimination, code motion, etc.  
 
 



 

<vector_ty> llvm.tensor.matmul(token %input1, token %input2) 
 

Operands: 

Operand Description 

%input1 Token value representing the first input tensor 

%input2 Token value representing the second input tensor 

Result: 

Result Description 

%output Output tensor expressed as a “flattened” LLVM vector  

Semantics: 
The ‘llvm.tensor.matmul’ intrinsic performs batched matrix multiplication between two 
input tensors. The inner two dimensions of the input tensors must have valid matrix 
multiplication dimensions, and any further outer dimensions must be of matching batch size. 
This intrinsic does not read nor write memory, nor does it exhibit any kind of undefined behavior. 

Example: 
 
%input1 = call token @llvm.tensor.typeinfo(<12 x float> %tensor1, <2 x 
i32> <i32 3, i32 4>, <2 x i32> <i32 0, i32 1>, <2 x i32> <i32 0, i32 
0>) 
%input2 = call token @llvm.tensor.typeinfo(<12 x float> %tensor2, <2 x 
i32> <i32 4, i32 3>, <2 x i32> <i32 0, i32 1>, <2 x i32> <i32 0, i32 
0>) 
 
%output = call <9 x float> @llvm.tensor.matmul(token %input1, token 
%input2) 
 
%typed_output = call token @llvm.tensor.typeinfo(<9 x float> %output, 
<2 x i32> <i32 3, i32 3>, <2 x i32> <i32 0, i32 1>, <2 x i32> <i32 0, 
i32 0>) 



 

 

llvm.tensor.transpose 

Overview: 
This intrinsic changes the layout of a given tensor by permuting the indices of its dimensions. 
This intrinsic is marked with the ‘readnone’ and ‘speculatable’ attributes to prevent it 
from inhibiting optimizations like redundancy elimination, dead code elimination, code motion, 
etc.  
 
 
<vector_ty> llvm.tensor.transpose(token %input, <n x i32> %new_layout) 
 

Operands: 

Operand Description 

%input Token value representing the input tensor 

%new_layout This is the new permutation of tensor layout 

Result: 

Result Description 

%output Output tensor expressed as a “flattened” LLVM vector 

Semantics: 
The ‘llvm.tensor.transpose’ intrinsic operates on the given tensor and produces an 
output tensor with the given layout. This operation changes the physical layout of the given 
tensor and leads to changes in the tensor shape and padding. Note that operation does not lead 
to any change in the number of dimensions. 
Note that this intrinsic does not read nor write memory, nor does it exhibit any kind of undefined 
behavior. 

Example: 
 
%input = call token @llvm.tensor.typeinfo(<240 x float> %tensor, <3 x 
i32> <i32 16, i32 5, i32 3>, <3 x i32> <i32 0, i32 1, i32 2>, <3 x 
i32> <i32 3, i32 2, i32 1>) 
 



 

; The first argument is the input virtual tensor register,  and the second argument is the new permutation 

of the layout of the input tensor. This operation produces a tensor of layout  <2, 0, 1>. 
%output = call <240 x float> @llvm.tensor.transpose(token %input, <3 x 
i32> <i32 2, i32 0, i32 1>) 
 
%typed_output = call token @llvm.tensor.typeinfo(<240 x float> 
%output, <3 x i32> <i32 3, i32 16, i32 5>, <3 x i32> <i32 2, i32 0, 
i32 1>, <3 x i32> <i32 1, i32 3, i32 2>) 

 
Design of Tensor Extensions in LLVM 
Tensor extensions we have added to LLVM are described in the document here. 
 
 

LLVM Tensor Intrinsics Frontend Equivalent Target Equivalent 

llvm.tensor.matmul​  XLA dot op  

llvm.tensor.contract XLA dot general op  

llvm.tensor.umma  Intel AMX mma instruction 
Power MMA instruction 

llvm.tensor.smma  Intel AMX mma instruction 
Power MMA instruction 

llvm.tensor.usmma  Intel AMX mma instruction 
Power MMA instruction 

llvm.tensor.summa  Intel AMX mma instruction 
Power MMA instruction 

llvm.tensor.convolution XLA convolution op NVDLA convolution instruction 

llvm.tensor.tanh XLA element-wise op NVDLA element-wise instruction 

llvm.tensor.sigmoid  NVDLA element-wise instruction 

llvm.tensor.relu​   NVDLA element-wise instruction 

llvm.tensor.broadcast​  XLA broadcast op Intel AMX fill instruction 

llvm.tensor.load​   Intel AMX load instruction 
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llvm.tensor.store​   Intel AMX store instruction 

llvm.tensor.reduce.max XLA reduce window op NVDLA pooling instruction 

llvm.tensor.reduce.min XLA reduce window op NVDLA pooling instruction 

llvm.tensor.reduce.add​  XLA reduce window op  

llvm.tensor.reduce.mul​  XLA reduce window op  

llvm.tensor.reduce.and​  XLA reduce window op  

llvm.tensor.reduce.or​  XLA reduce window op  

llvm.tensor.reduce.xor​  XLA reduce window op  

llvm.tensor.reshape.block​  OneDNN Layouts  

llvm.tensor.reshape.permute​  Tensorflow reshape op  

llvm.tensor.transpose Tensorflow transpose op NVDLA reshape instruction 

llvm.tensor.pad​  XLA pad op  

llvm.tensor.concat​  XLA concat op NVDLA reshape instruction 

llvm.tensor.tovector  Power unprime instruction 

llvm.vector.totensor  Power prime instruction 

 

Compatibility with and Benefits over Matrix Extensions 
The existing matrix extensions model vectors as matrices in LLVM can co-exist and can be used 
with the tensor extensions that we propose. We argue that our tensor extensions provide an 
extensible and flexible long-term solution that LLVM developers can experiment with and adopt 
overtime. We believe that our tensor extensions provide the following benefits over the existing 
matrix extensions: 

●​ Our tensor extensions support an arbitrary number of dimensions for tensors. This 
affords LLVM developers the flexibility to use higher-dimensional tensors as opposed to 
confining to rigidly supporting two dimensional tensors only. This support for generality 
also makes the tensor extensions more easy to maintain in the future. 

●​ Currently, information about matrix shapes and layouts is encoded within the matrix 
intrinsics in LLVM. They do not provide a separation between the matrix properties and 
matrix operations.  This makes the existing matrix extensions rigid and difficult to extend 
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in the future because if developers decide to encode more matrix properties in the IR, 
they would have to modify all matrix intrinsics and modify several lines of code using 
these matrix extensions. Our tensor extensions provide a separation between the tensor 
concept and tensor operations, thereby providing the flexibility of extending the tensor 
properties represented in the IR without having to modify all the tensor operations that 
operate on tensors. Note that this flexibility also allows supporting new kinds of tensors 
(such as sparse and ragged tensors) more easily in the future as well. 

●​ Matrix padding is modelled using vector shuffle instructions. This requires optimizations, 
analyses and transformations to infer padding information by carefully inspecting all the 
shuffle instructions and their masks. We encode tensor padding information as a set of 
tensor properties directly represented and readily available in the IR and we use an 
intrinsic to represent a padding operation. 

 

Methodology to Extend TLX 
Decoupling tensor type information and intrinsics for tensor operations, allows extending the 
tensor type information, if needed, without having to make any changes to other intrinsics for 
tensor operations. If sparse tensors need to  be supported, a new variant of typeinfo intrinsic 
with information relevant to sparse tensors could be introduced while continuing using the 
intrinsics for tensor operations.  
Note that if the typeinfo intrinsic described in this document needs to be modified, it can be 
modified without needing to modify other intrinsics for tensor operations.  

 

Current Status of the Implementation 
●​ Lowering of most high-level tensor operations to LLVM scalar and vector instructions is 

supported.  
●​ Tensor code generation framework is capable of targeting Intel AMX. Support for 

targeting NVDLA and NVIDIA tensor cores is in progress. 
●​ Lowering support to target Intel VNNI and Hexagon Vector Extension (HVX) is underway.  
●​ Example of lowering from Julia to the proposed tensor extensions is in the design 

document. 
 

Open Questions 
●​ How can the Relu class of operations be supported in a general way in LLVM? Is there a 

need/desire for these operations to be predicated? 
●​ How can vendors add custom types without making intrusive changes to LLVM’s type 

system and LLVM files? 

https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.17j13gwxto8i
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.17j13gwxto8i
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