

Proposal for ​
TLX: Tensor LLVM eXtensions

Rationale
Diverse hardware vendors are developing new hardware support for (mostly dense) tensor
computations, which have become increasingly important for machine learning applications.
These include both ISA extensions on CPUs and GPUs (such as Intel AMX, Power MMA,
NVIDIA’s tensor cores, AMD’s matrix cores, and Qualcomm’s HVX vector ISA) and dedicated
accelerators for compute offload (such as NVIDIA’s NVDLA, Amazon’s Inferentia and Trainium,
and numerous ML accelerators from smaller companies). While ML workloads are the primary
motivation and likely to be the dominant use cases, other tensor-intensive application domains,
such as image processing, scientific computing, quantum simulations, financial modeling, and
others can benefit from this hardware support as well, via languages like C++, DPC++, Julia,
Fortran, Halide, CUDA, OpenCL, and others.

LLVM can play a crucial role in making it easier for these vendors to create optimizing compiler
back-ends for their emerging hardware (if the existing vector and matrix support in LLVM were
generalized to support tensor operations). LLVM is already widely-used today by many of the
vendors that develop these tensor architectures, e.g., to target CPUs and GPUs. LLVM is highly
retargetable, by design. For the CPU targets, LLVM allows an integrated code generation
framework for tensor operations with optimized intermixing of scalar, 1-D vector and 2-D matrix
operations in the same code section (e.g., loop body). And LLVM has front-ends for a wide
range of high-level languages, including essentially all the languages used widely for relevant
application domains today.

No existing infrastructure we know of meets these needs. MLIR is likely the best option, and we
believe it is entirely complementary to LLVM. MLIR provides strong support for high-level tensor
operations in TOSA, relevant optimizations in Affine and Linalg, and lowering paths to
accelerators, GPUs and (via the LLVM dialect) CPUs. Crucially, however, MLIR does not have a
low-level code generation framework that is retargetable to diverse hardware: it relies on LLVM
for this purpose. If LLVM could be extended with tensor operations and a corresponding
retargetable tensor code generation framework, MLIR could leverage this as well. Moreover,
there are enough vendors and also languages that rely heavily on LLVM (but don’t use MLIR)
that it seems worthwhile to have a high-quality tensor code generation framework in both LLVM
as well as in MLIR. Ideally, both systems would largely share the same code.

The broad goal of our project is to add a retargetable tensor code generation framework to
LLVM. We are currently working on a prototype implementation with our collaborators at
Amazon AWS, Intel, IBM and Qualcomm. This RFC focuses on the first stage: extending the
LLVM IR with tensor operations which we refer to as TLX (Tensor LLVM eXtensions).

Overall Project Objectives
●​ A unified retargetable code generation and optimization framework for LLVM to target

diverse tensor architectures with a common set of IR extensions, instead of using
target-specific solutions.

●​ (Subject of this RFC.) A single set of target-agnostic tensor extensions in LLVM IR that
higher-level tensor code generation frameworks such as XLA, Halide, TVM, MLIR, etc.
can target, instead of lowering to target-specific intrinsics in LLVM, while retaining the
optimizations in these high-level frameworks.

●​ A pathway for LLVM-based languages such as C/C++, DPC++, Fortran, Rust, Julia, etc.
that do not have front ends for compiler systems like MLIR, TVM, XLA, etc. to target
modern tensor architectures by lowering to our tensor extensions in LLVM.

●​ Target-independent optimizations (e.g. peephole optimizations and generic SSA-based
optimizations) and also flexible code generation capabilities in LLVM that could involve
mixing instructions operating on vector and rectangular registers, and involve developing
cost models which could help reduce register spills and maximize usage of available
hardware resources.

●​ Contribute our tensor extensions (this RFC) and retargetable code generation framework
(as a followup) to the LLVM project for the community to experiment with and provide
feedback.

RFC: Introduction of Tensor Concept in LLVM
To achieve our objectives, we need to introduce the concept of tensors in LLVM, which are
currently missing. To do this, we need to add a tensor type (i.e., an N-dimensional data type),
generalizing 1-D vectors and 2-D matrices. We also need crucial tensor operations which
front-ends for high-level languages can target, and which represent or can be implemented via
ISAs of different tensor architectures.

Implementation of Tensor Type in LLVM

Overview:
The concept of dense tensors can be implemented as a new, first-class n-dimensional vector
type in LLVM. However, doing this would be extremely intrusive since it will require changes to
hundreds of files in LLVM. While this may be the correct option in the long term, once the design
has been properly evaluated and refined, the effort required to do so for an initial prototype and
evaluation is not justified. So we propose to implement the tensor concept as an LLVM intrinsic
called llvm.tensor.typeinfo, while representing tensor data in “flattened” form as ordinary
LLVM vector types. The intrinsic takes as operands a “flattened” LLVM vector, together with
shape, layout and padding vectors, and returns a value of LLVM token type. By returning a
value of token type, this intrinsic avoids the risk of being eliminated by optimizations (especially,

dead code elimination) when it has uses. This intrinsic is marked with the ‘readnone’ and
‘speculatable’ attributes so that it does not inhibit optimizations like redundancy
elimination, dead code elimination, code motion, etc.

 token llvm.tensor.typeinfo(<llvm-vector-type> %tensor,
<n x i32> %shape, <n x i32> %layout, <n x i32> %padding)

Operands:

Operand Description

%tensor n-dimensional tensor value represented as a “flattened” vector

%shape Vector of dimension values of a tensor

%layout Vector of permutation of dimension indices ranging from 0 to n-1

%padding Vector of padding values along every dimension of a tensor

Result:

Result Description

token value LLVM value of token type associated with a tensor value

Semantics:
The ‘llvm.tensor.typeinfo’ intrinsic is used to produce a unique token value associated
with a tensor value represented as a “flattened” vector. The layout operand of this intrinsic is
expressed as a permutation of dimension indices (from 0 to n-1 for an n-dimensional tensor).
This represents tensor layouts in LLVM in a generic way. The number of elements in shape,
layout and padding vectors must be the same and equal to the number of dimensions of the
given tensor.
Note that this intrinsic is only meant to hold information such as shape, layout and padding of a
tensor value in LLVM IR. It does not read nor write memory nor perform any computations, and
it does not exhibit any kind of undefined behavior.

Example:

; The first argument (%tensor) is the tensor that is being modeled as a flattened vector. The second

argument is the shape (16 x 5 x 3), the third argument is layout (<0, 1, 2>) and the fourth argument is

padding (<3, 2, 1> along the corresponding dimensions) for the given tensor.

input = call token @llvm.tensor.typeinfo(<240 x float> %tensor, <3 x
i32> <i32 16, i32 5, i32 3>, <3 x i32> <i32 0, i32 1, i32 2>, <3 x
i32> <i32 3, i32 2, i32 1>)

; The first argument is the input virtual tensor register, and the second argument is the new permutation

of the layout of the input tensor. This operation produces a tensor of layout <2, 0, 1>.
%output = call <240 x float> @llvm.tensor.transpose(token %input, <3 x
i32> <i32 2, i32 0, i32 1>)

; The first argument (%output) is the output tensor that is being modeled as a flattened vector. The

second argument is the new shape (3 x 16 x 5), the third argument is layout (<2, 0, 1>) and the fourth

argument is the new padding (<1, 3, 4> along the corresponding dimensions) for the output tensor.
%typed_output = call token @llvm.tensor.typeinfo(<240 x float>
%output, <3 x i32> <i32 3, i32 16, i32 5>, <3 x i32> <i32 2, i32 0,
i32 1>, <3 x i32> <i32 1, i32 3, i32 2>)

Tensor Operations in LLVM

llvm.tensor.load

Overview:
This operation loads a tensor or sub-tensor with the given shape, layout and padding from
memory into a register. This operation is strided, unlike the existing load instruction in LLVM, to
be able to load sub-tensors from memory. This intrinsic is marked with ‘speculatable’
attribute to prevent it from inhibiting optimizations like redundancy elimination, dead code
elimination, code motion, etc.

token llvm.tensor.load(<element_type>* %mem_ptr, <n x i32> %shape, <n
x i32> %layout, <n x i32> %pad, <n xi32> %strides)

Operands:

Operand Description

%mem_ptr Starting address of a tensor/subtensor in memory

%shape Vector of dimension values of the loaded tensor/sub-tensor

%layout Vector of permutation of dimension indices ranging from 0 to n-1

%padding Vector of padding values along every dimension of the loaded

tensor/sub-tensor

%strides Vector of strides in memory along every dimension of the loaded
tensor/sub-tensor

Result:

Result Description

%output token value representing the output tensor

Semantics:
The ‘llvm.tensor.load’ intrinsic loads a tensor or subtensor with the given shape, layout
and padding from memory into a register. This operation is strided based on %strides, unlike
the existing load instruction in LLVM, to be able to load subtensors from memory since
sub-tensors are not laid out contiguously in memory. This intrinsic reads from memory, but does
not write to memory.

Example:
; This loads a sub-tensor from the memory location pointed to by %mem_ptr. The sub-tensor has the

shape <16 x 6 x 4> (second argument), layout <0, 1, 2> (third argument) and zero padding (fourth

argument). The strides in memory along every dimension are <0, 0, 8>, which means that the rows of the

loaded sub-tensor have a distance of 8 bytes in memory. This produces a unique token %tensor..
%tensor = call token @llvm.tensor.load(i8* %mem_ptr, <3 x i32> <i32
16, i32 6, i32 4>, <2 x i32> <i32 0, i32 1, i32 2>, <3 x i32> <i32 0,
i32 0, i32 0>, <3 x i32> <i32 0, i32 0, i32 8>)

llvm.tensor.store

Overview:
This operation stores a tensor or subtensor from a register into memory. This operation is
strided, unlike the existing store instruction in LLVM, to be able to store sub-tensors into
memory. This intrinsic is marked with ‘readnone’ attribute to prevent it from inhibiting
optimizations like redundancy elimination, dead code elimination, code motion, etc.

void llvm.tensor.store(<element_type>* %mem_ptr,token %tensor, <n
xi32> %strides)

Operands:

Operand Description

%mem_ptr Starting address in memory where tensor is stored

%tensor Stored tensor/subtensor

%strides Vector of strides in memory along every dimension of the stored
tensor/subtensor

Result:
Intrinsic does not return anything.

Semantics:
The ‘llvm.tensor.store’ intrinsic stores a tensor or subtensor from a register into memory.
This operation is strided based on %strides, unlike the existing store instruction in LLVM, to
be able to store sub-tensors to memory since sub-tensors are not laid out contiguously in
memory. This intrinsic writes to memory, but does not read from memory.

Example:

%tensor = call token @llvm.tensor.typeinfo(<240 x float> %tensor, <3 x
i32> <i32 16, i32 6, i32 4>, <3 x i32> <i32 0, i32 1, i32 2>, <3 x
i32> <i32 0, i32 0, i32 0>)

; This stores a tensor from the memory location pointed to by %mem_ptr and the second argument is the

stored tensor itself. The strides in memory along every dimension are <0, 12, 10> (third argument), which

means that the rows of %tensor are stored 10*sizeof(float) bytes apart and columns of %tensor are

12*sizeof(float) bytes apart in memory.
call void @llvm.tensor.store(float* %mem_ptr, token %tensor, <3 x i32>
<i32 0, i32 12, i32 10>)

llvm.tensor.matmul

Overview:
This intrinsic performs batched matrix multiplication between the inner dimensions of two
multidimensional tensors. This intrinsic is marked with the ‘readnone’ and ‘speculatable’
attributes to prevent it from inhibiting optimizations like redundancy elimination, dead code
elimination, code motion, etc.

<vector_ty> llvm.tensor.matmul(token %input1, token %input2)

Operands:

Operand Description

%input1 Token value representing the first input tensor

%input2 Token value representing the second input tensor

Result:

Result Description

%output Output tensor expressed as a “flattened” LLVM vector

Semantics:
The ‘llvm.tensor.matmul’ intrinsic performs batched matrix multiplication between two
input tensors. The inner two dimensions of the input tensors must have valid matrix
multiplication dimensions, and any further outer dimensions must be of matching batch size.
This intrinsic does not read nor write memory, nor does it exhibit any kind of undefined behavior.

Example:

%input1 = call token @llvm.tensor.typeinfo(<12 x float> %tensor1, <2 x
i32> <i32 3, i32 4>, <2 x i32> <i32 0, i32 1>, <2 x i32> <i32 0, i32
0>)
%input2 = call token @llvm.tensor.typeinfo(<12 x float> %tensor2, <2 x
i32> <i32 4, i32 3>, <2 x i32> <i32 0, i32 1>, <2 x i32> <i32 0, i32
0>)

%output = call <9 x float> @llvm.tensor.matmul(token %input1, token
%input2)

%typed_output = call token @llvm.tensor.typeinfo(<9 x float> %output,
<2 x i32> <i32 3, i32 3>, <2 x i32> <i32 0, i32 1>, <2 x i32> <i32 0,
i32 0>)

llvm.tensor.transpose

Overview:
This intrinsic changes the layout of a given tensor by permuting the indices of its dimensions.
This intrinsic is marked with the ‘readnone’ and ‘speculatable’ attributes to prevent it
from inhibiting optimizations like redundancy elimination, dead code elimination, code motion,
etc.

<vector_ty> llvm.tensor.transpose(token %input, <n x i32> %new_layout)

Operands:

Operand Description

%input Token value representing the input tensor

%new_layout This is the new permutation of tensor layout

Result:

Result Description

%output Output tensor expressed as a “flattened” LLVM vector

Semantics:
The ‘llvm.tensor.transpose’ intrinsic operates on the given tensor and produces an
output tensor with the given layout. This operation changes the physical layout of the given
tensor and leads to changes in the tensor shape and padding. Note that operation does not lead
to any change in the number of dimensions.
Note that this intrinsic does not read nor write memory, nor does it exhibit any kind of undefined
behavior.

Example:

%input = call token @llvm.tensor.typeinfo(<240 x float> %tensor, <3 x
i32> <i32 16, i32 5, i32 3>, <3 x i32> <i32 0, i32 1, i32 2>, <3 x
i32> <i32 3, i32 2, i32 1>)

; The first argument is the input virtual tensor register, and the second argument is the new permutation

of the layout of the input tensor. This operation produces a tensor of layout <2, 0, 1>.
%output = call <240 x float> @llvm.tensor.transpose(token %input, <3 x
i32> <i32 2, i32 0, i32 1>)

%typed_output = call token @llvm.tensor.typeinfo(<240 x float>
%output, <3 x i32> <i32 3, i32 16, i32 5>, <3 x i32> <i32 2, i32 0,
i32 1>, <3 x i32> <i32 1, i32 3, i32 2>)

Design of Tensor Extensions in LLVM
Tensor extensions we have added to LLVM are described in the document here.

LLVM Tensor Intrinsics Frontend Equivalent Target Equivalent

llvm.tensor.matmul​ XLA dot op

llvm.tensor.contract XLA dot general op

llvm.tensor.umma Intel AMX mma instruction
Power MMA instruction

llvm.tensor.smma Intel AMX mma instruction
Power MMA instruction

llvm.tensor.usmma Intel AMX mma instruction
Power MMA instruction

llvm.tensor.summa Intel AMX mma instruction
Power MMA instruction

llvm.tensor.convolution XLA convolution op NVDLA convolution instruction

llvm.tensor.tanh XLA element-wise op NVDLA element-wise instruction

llvm.tensor.sigmoid NVDLA element-wise instruction

llvm.tensor.relu​ NVDLA element-wise instruction

llvm.tensor.broadcast​ XLA broadcast op Intel AMX fill instruction

llvm.tensor.load​ Intel AMX load instruction

https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit?usp=sharing
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.m3ypmduywnj1
https://www.tensorflow.org/xla/operation_semantics#dot
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.ywmafyfopkt4
https://www.tensorflow.org/xla/operation_semantics#dotgeneral
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.viett1eonh5p
https://en.wikichip.org/wiki/x86/amx#Tile_matrix_multiply_unit_.28TMUL.29
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.xmyxq55z5fui
https://en.wikichip.org/wiki/x86/amx#Tile_matrix_multiply_unit_.28TMUL.29
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.l1fmhe7ibl5u
https://en.wikichip.org/wiki/x86/amx#Tile_matrix_multiply_unit_.28TMUL.29
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.bdx77uhhs1q3
https://en.wikichip.org/wiki/x86/amx#Tile_matrix_multiply_unit_.28TMUL.29
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.1szhjhqzvkgh
https://www.tensorflow.org/xla/operation_semantics#convwithgeneralpadding_convolution
http://nvdla.org/primer.html#convolution
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.3nebnucrus9o
https://www.tensorflow.org/xla/operation_semantics#element-wise_unary_functions
http://nvdla.org/primer.html#single-data-point-processor
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.q8fzs7yuj2ls
http://nvdla.org/primer.html#single-data-point-processor
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.7wpbm73wxy10
http://nvdla.org/primer.html#single-data-point-processor
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.w7pct3hi6lmc
https://www.tensorflow.org/xla/operation_semantics#broadcast
https://en.wikichip.org/wiki/x86/amx#Instructions
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.44587bluuadl
https://en.wikichip.org/wiki/x86/amx#Instructions

llvm.tensor.store​ Intel AMX store instruction

llvm.tensor.reduce.max XLA reduce window op NVDLA pooling instruction

llvm.tensor.reduce.min XLA reduce window op NVDLA pooling instruction

llvm.tensor.reduce.add​ XLA reduce window op

llvm.tensor.reduce.mul​ XLA reduce window op

llvm.tensor.reduce.and​ XLA reduce window op

llvm.tensor.reduce.or​ XLA reduce window op

llvm.tensor.reduce.xor​ XLA reduce window op

llvm.tensor.reshape.block​ OneDNN Layouts

llvm.tensor.reshape.permute​ Tensorflow reshape op

llvm.tensor.transpose Tensorflow transpose op NVDLA reshape instruction

llvm.tensor.pad​ XLA pad op

llvm.tensor.concat​ XLA concat op NVDLA reshape instruction

llvm.tensor.tovector Power unprime instruction

llvm.vector.totensor Power prime instruction

Compatibility with and Benefits over Matrix Extensions
The existing matrix extensions model vectors as matrices in LLVM can co-exist and can be used
with the tensor extensions that we propose. We argue that our tensor extensions provide an
extensible and flexible long-term solution that LLVM developers can experiment with and adopt
overtime. We believe that our tensor extensions provide the following benefits over the existing
matrix extensions:

●​ Our tensor extensions support an arbitrary number of dimensions for tensors. This
affords LLVM developers the flexibility to use higher-dimensional tensors as opposed to
confining to rigidly supporting two dimensional tensors only. This support for generality
also makes the tensor extensions more easy to maintain in the future.

●​ Currently, information about matrix shapes and layouts is encoded within the matrix
intrinsics in LLVM. They do not provide a separation between the matrix properties and
matrix operations. This makes the existing matrix extensions rigid and difficult to extend

https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.gw4y0di8fkk8
https://en.wikichip.org/wiki/x86/amx#Instructions
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.j3i23wh48jqv
https://www.tensorflow.org/xla/operation_semantics#reducewindow
http://nvdla.org/primer.html#planar-data-processor
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.dx8gvnvhrwkr
https://www.tensorflow.org/xla/operation_semantics#reducewindow
http://nvdla.org/primer.html#planar-data-processor
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.cuit5n5scvqv
https://www.tensorflow.org/xla/operation_semantics#reducewindow
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.mvbst2gc32bp
https://www.tensorflow.org/xla/operation_semantics#reducewindow
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.dmia535o82ie
https://www.tensorflow.org/xla/operation_semantics#reducewindow
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.5mffbk65kke9
https://www.tensorflow.org/xla/operation_semantics#reducewindow
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.ndt40wtj4gja
https://www.tensorflow.org/xla/operation_semantics#reducewindow
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.es1rvkmzd07j
https://oneapi-src.github.io/oneDNN/dev_guide_understanding_memory_formats.html
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.ccft12ctjafo
https://www.tensorflow.org/api_docs/python/tf/reshape
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.aonsf5qp76x7
https://www.tensorflow.org/api_docs/python/tf/transpose
http://nvdla.org/primer.html#data-reshape-engine
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.33gy4664d6c2
https://www.tensorflow.org/xla/operation_semantics#pad
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.uhvve45niyfj
https://www.tensorflow.org/xla/operation_semantics#concatenate
http://nvdla.org/primer.html#data-reshape-engine
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.x9hg978yqfw0
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.js222l7u7ute
https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf

in the future because if developers decide to encode more matrix properties in the IR,
they would have to modify all matrix intrinsics and modify several lines of code using
these matrix extensions. Our tensor extensions provide a separation between the tensor
concept and tensor operations, thereby providing the flexibility of extending the tensor
properties represented in the IR without having to modify all the tensor operations that
operate on tensors. Note that this flexibility also allows supporting new kinds of tensors
(such as sparse and ragged tensors) more easily in the future as well.

●​ Matrix padding is modelled using vector shuffle instructions. This requires optimizations,
analyses and transformations to infer padding information by carefully inspecting all the
shuffle instructions and their masks. We encode tensor padding information as a set of
tensor properties directly represented and readily available in the IR and we use an
intrinsic to represent a padding operation.

Methodology to Extend TLX
Decoupling tensor type information and intrinsics for tensor operations, allows extending the
tensor type information, if needed, without having to make any changes to other intrinsics for
tensor operations. If sparse tensors need to be supported, a new variant of typeinfo intrinsic
with information relevant to sparse tensors could be introduced while continuing using the
intrinsics for tensor operations.
Note that if the typeinfo intrinsic described in this document needs to be modified, it can be
modified without needing to modify other intrinsics for tensor operations.

Current Status of the Implementation
●​ Lowering of most high-level tensor operations to LLVM scalar and vector instructions is

supported.
●​ Tensor code generation framework is capable of targeting Intel AMX. Support for

targeting NVDLA and NVIDIA tensor cores is in progress.
●​ Lowering support to target Intel VNNI and Hexagon Vector Extension (HVX) is underway.
●​ Example of lowering from Julia to the proposed tensor extensions is in the design

document.

Open Questions
●​ How can the Relu class of operations be supported in a general way in LLVM? Is there a

need/desire for these operations to be predicated?
●​ How can vendors add custom types without making intrusive changes to LLVM’s type

system and LLVM files?

https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.17j13gwxto8i
https://docs.google.com/document/d/1A3xbrtouckRsPz94v2XttjoaTSqQlz1pSzVe80-Jmro/edit#heading=h.17j13gwxto8i

	Proposal for ​TLX: Tensor LLVM eXtensions
	Rationale
	Overall Project Objectives
	
	RFC: Introduction of Tensor Concept in LLVM
	Implementation of Tensor Type in LLVM
	Overview:
	Operands:
	Result:
	Semantics:
	Example:

	Tensor Operations in LLVM
	llvm.tensor.load
	Overview:
	Operands:
	Result:
	Semantics:
	Example:

	
	llvm.tensor.store
	Overview:
	Operands:
	Result:
	Intrinsic does not return anything.
	Semantics:
	Example:

	
	llvm.tensor.matmul
	Overview:
	Operands:
	Result:
	Semantics:
	Example:

	
	llvm.tensor.transpose
	Overview:
	Operands:
	Result:
	Semantics:
	Example:

	
	Design of Tensor Extensions in LLVM
	Compatibility with and Benefits over Matrix Extensions
	Methodology to Extend TLX
	
	Current Status of the Implementation
	Open Questions

