Traductores con ANTLR
(listeners)

Felipe Restrepo Calle
ferestrepoca@unal.edu.co

Profesor Asociado
Universidad Nacional de Colombia

Actualizado: 18/04/2023

En esta guia se presenta como trabajar con ANTLR para construir aplicaciones de analisis
automatico de cddigo fuente usando el patron de disefio Listeners. De esta manera, se facilita
el desarrollo de traductores de una sola pasada del arbol sintactico.

Arboles sintacticos en ANTLR v4

A continuacion se presenta un ejemplo de un arbol sintactico generado por ANTLR v4 (con los
nombres de las clases):

StatContext
stat l
{ AssignContext
assign ‘/’/ \
Sp‘/= (’,\']>‘; p = ExprContext ;
1 TerminalNode TerminalNode l TerminalNode
100
100
TerminalNode
Parse tree Parse tree node class names

Observe que las hojas del arbol corresponden a nodos terminales y los demas nodos
corresponden a alguna regla de produccién de la gramatica. Estos ultimos objetos se conocen
en ANTLR v4 como contextos (context) porque almacenan todo lo que sabemos del
reconocimiento de una frase por una regla particular de la gramatica. Cada contexto conoce su
token inicial y final para la frase y proporciona acceso a todos los elementos de esa frase. Por
ejemplo, AssignContext (Assign: ID TK_EQUAL expr) proporciona los métodos: ID() y expr()
para acceder al nodo identificador y el subarbol de la expresion.

mailto:ferestrepoca@unal.edu.co

Con esta estructura de datos podriamos implementar a mano nuestros algoritmos para recorrer
el arbol sintactico en profundidad y programar las acciones requeridas durante el analisis, las
cuales seran ejecutadas a medida que se vayan visitando los nodos del arbol. Sin embargo,
para evitar tener que escribir estos métodos cada vez que implementemos un procesador de
lenguaje, ANTLR proporciona sus propios mecanismos para hacer esto por nosotros, mediante
dos patrones de disefio: Listenersy Visitors. En esta guia se detalla el primero.

Parse-tree Listeners

Por defecto, ANTLR genera una interfaz para un parse-tree listener que responde a los eventos
desencadenados por el objeto que recorre el arbol sintactico (walker). Los Listeners son como
los objetos manejadores de documentos SAX (Simple API for XML) para los analizadores de
XML. Estos reciben una notificacién de eventos como startDocument() y endDocument() y
ejecutan las acciones correspondientes. Los métodos de un Listener son simplemente
callbacks que responden a eventos que ocurren al recorrer el arbol sintactico. Pueden ser
comparados con los métodos que implementamos para responder a un evento de click en un
botén de una aplicacion con interfaz grafica (GUI).

Para recorrer el arbol y por ende desencadenar las llamadas a los métodos del Listener,
ANTLR proporciona la clase ParseTreeWalker. Para implementar una aplicacién, necesitamos
desarrollar una implementacién de ParseTreeListener que contenga el cédigo especifico de la
aplicacion. ANTLR genera automaticamente una subclase de ParseTreeListener para cada
gramatica especifica con los métodos enter y exit para cada regla. Cuando el walker llega al
nodo para la regla Assign, se dispara el evento enterAssign(), el cual recibe como parametro
toda la informacién almacenada en ese contexto (AssignContext). Asimismo, después de que el
walker ha visitado todos los hijos del nodo assign, se dispara el evento exitAssign().

StatContext
’

’
enterAssign() @ ASS|gn(ontext \eXItASSan()

R AN

= Expr(ontext .
~TermmaINode TerminalNode e » J EmunaINode
%

- o o o ® © g @ - o =

" P00 & o
‘TerminaINode I

A continuacion se presenta toda la secuencia de métodos desencadenados por el walker para
la sentencia de ejemplo (sp=100;):

AP|Is
stat enterStat(StatContext) ~ ========~-- :-+
‘ enterAssign(AssignContext) ~ ~---- -
assign . visitTerminal(TerminalNode) ~ ----- .:.* Rest of
/ / \\ Q WALKER ,:_:_, visitTerminal(TerminalNode) ~ ----- +.> Application
sp = expr “a EPTETEXPT(EXpr(onFext) >
visitlerminal(TerminalNode) ~ ----- T
l exitbxpr(ExprContext) ~ -~--m--mmn- 1y
100 visitlerminal(TerminalNode) ~ ----- +>
exitAssign(Assignontext) ~ -----—-L-»
exitStat(StatContext) —eeeemcemee- .

Lo mejor de este mecanismo de Listeners es que todo funciona automaticamente. No tenemos
que implementar el walker, y nuestros métodos de los Listeners no tienen que visitar
explicitamente a sus hijos. ANTLR proporciona esto.

Archivos generados por ANTLR

Si estuviéramos especificando la gramatica del lenguaje en un archivo llamado PRUEBA.g4, y
quisieramos trabajar con Listeners, ANTLR se encargara de generar automaticamente los
siguientes archivos (en el caso que se esté usando JAVA):

ArraylnitParser.java

Arraylnit.g4 ArraylnitLexer.java

grammar Arraylnit;

Arraylnit.tok

init - *{’ value (" valuel* '} rrayinit.tokens

value : init

[ONTR [) —

W - (\ane -> skip: ArraylnitLexer.tokens

ArraylnitListener.java

. —

ArraylnitBaseListener.javzi

e PRUEBALexer.java: codigo fuente del analizador Iéxico
PRUEBAParser.java: codigo fuente del analizador sintactico

PRUEBA.tokens: tokens para el analizador sintactico
PRUEBALexer.tokens: tokens para el analizador Iéxico
PRUEBAListener.java: Interface que describe los “eventos” que podemos llamar al
recorrer el arbol sintactico que genera ANTLR automaticamente

e PRUEBABaseListener.java: Clase con un conjunto de implementaciones vacias. Basta
con sobreescribir los métodos que nos interesan.

Ejemplo

Reconocedor de numeros enteros encerrados entre llaves -
Arraylnit

Vamos a construir una gramatica para desarrollar un reconocedor de conjuntos de numeros
enteros separados por comas y encerrados entre llaves (posiblemente anidados), como por
ejemplo: {1, 2, 3} vy {1, {2, 3}, 4}. Esto podria ser util para reconocer expresiones de
inicializacién de arreglos en Java, por ejemplo. Cuando hayamos desarrollado el reconocedor,
implementaremos un traductor de este tipo de cadenas basado en Listeners.

1. Especificacion de la gramatica

Archivo: Arraylnit.g4

/** Grammars always start with a grammar header. This grammar is called
* ArrayInit and must match the filename: ArrayInit.g4

*/

grammar ArrayInit;

// A rule called init that matches comma-separated values between {...}.
init : '{' value (',"' value)* '}' ; // must match at Least one value

// A value can be either a nested array/struct or a simple integer (INT)
value : init
| INT

s
// parser rules start with Lowercase letters, Llexer rules with uppercase
INT : [6-9]+ ; // Define token INT as one or more digits
WS : [\t\r\n]+ -> skip ; // Define whitespace rule, toss it out

2. Integrando el reconocedor generado con un programa en Java
(main)

Archivo: Test.java

import org.antlr.v4.runtime.*;
import org.antlr.v4.runtime.tree.*;
import java.io.File;

public class Test {
public static void main(String[] args) throws Exception {

try{

ArrayInitlLexer lexer;
if (args.length>0)
lexer = new
ArrayInitLexer(CharStreams.fromFileName(args[©]));
else
lexer = new
ArrayInitLexer(CharStreams.fromStream(System.in));

CommonTokenStream tokens = new
CommonTokenStream(lexer);

ArrayInitParser parser = new
ArrayInitParser(tokens);
ParseTree tree = parser.init();

System.out.println(tree.toStringTree(parser));

} catch (Exception e){
System.err.println("Error (Test):

+ e);

3. Especificacion de un traductor para este tipo de cadenas (usando
Listeners)

Vamos a traducir los elementos de inicializacion de un arreglo en Java como {99, 3, 451} (los
cuales ya reconocemos) a una cadena de constantes Unicode como: “lu0063\u0003\u01c3”,
donde cada uno de estos corresponde a la notacidon hexadecimal del valor original (por
ejemplo: 99d = 63h).

Ejemplo de traduccion:

shortarray: {99 , 3,

l \'\ \ \\

String form: " \u0063 \u0003 \uOlc3 "

De aqui podemos identificar las reglas de traduccion necesarias:

Traducir {a “.

Traducir } a “.

Traducir los numeros enteros a una cadena de 4 digitos con su representacion
hexadecimal, precedida de \u.

4. Implementacion de los métodos del traductor (en el Listener)

Para lograr el objetivo, lo Unico que tendremos que hacer es implementar algunos métodos en
una subclase de ArraylnitBaseListener. La estrategia basica consiste en que cada método del
Listener imprima una pequena parte de la traduccion correspondiente a la cadena de entrada
cuando sea llamado por el objeto (walker) que recorre el arbol sintactico, es decir,
implementaremos el Esquema de Traduccién Dirigido por la Sintaxis (ETDS).

A continuacién se presenta la implementacion del Listener de acuerdo a nuestras reglas de
traduccion:

Archivo: ShortToUnicodeString.java

public class ShortToUnicodeString extends ArrayInitBaselListener {
@Override

public void enterInit(ArrayInitParser.InitContext ctx) {
System.out.print('""');

}

@Override
public void exitInit(ArrayInitParser.InitContext ctx) {

System.out.print('"");
}

@Override
public void enterValue(ArrayInitParser.ValueContext ctx) {

int value = Integer.valueOf(ctx.INT().getText());
System.out.printf("\\u%e4x", value);

}

}

No es necesario sobreescribir todos los métodos enter/exit, sélo los que vamos a usar. La Unica
expresion poco familiar en este ejemplo es ctx.INT(), la cual le solicita al objeto del contexto el
token del numero entero INT (capturado por la regla value).

5. Crear la aplicacion (traductor)

Sélo nos falta crear la aplicacion que integre todo, basandonos en la clase Test mostrada
previamente.

Archivo: Translate.java

import org.antlr.v4.runtime.*;
import org.antlr.v4.runtime.tree.*;
import java.io.File;

public class Translate {
public static void main(String[] args) throws Exception {

ArrayInitlLexer lexer;

if (args.length>0)

lexer = new ArrayInitLexer(CharStreams.fromFileName(args[@]));
else

lexer = new ArrayInitLexer(CharStreams.fromStream(System.in));

CommonTokenStream tokens = new CommonTokenStream(lexer);
ArrayInitParser parser = new ArraylInitParser(tokens);
ParseTree tree = parser.init();

ParseTreeWalker walker = new ParseTreeWalker();

walker.walk(new ShortToUnicodeString(), tree);
System.out.println();

En este caso creamos un objeto walker de la clase ParseTreeWalker. Llamamos su método
walk(), el cual recorre el arbol sintactico retornado por el parser. A medida que se va
recorriendo el arbol, se van desencadenando los llamados a los métodos de nuestro Listener
(ShortToUnicodeString).

Finalmente, compilamos y probamos el traductor
Ejercicio
Crear un traductor (prueba de concepto) usando listeners con ANTLR para una de las

gramaticas de los lenguajes de programacion disponibles en:
https://github.com/antlr/grammars-v4

Documentacion (recursos recomendados)

e Parr Terence. The Definitive ANTLR 4 Reference. The pragmatic bookshelf. 2012. Ver

capitulo 4.
Tutorial ANTLR: http://www.xfront.com/ANTLR/

Tomassetti. The ANTLR mega tutorial. March 8, 2017. Disponible en:
https://tomassetti.me/antlr-mega-tutorial/

https://github.com/antlr/grammars-v4
https://drive.google.com/file/d/1cLTy_dDpzyAE3L9B-12SWZeH0zrrMUz0/view?usp=sharing
http://www.xfront.com/ANTLR/
https://tomassetti.me/antlr-mega-tutorial/

e Ver la clase de Terence Parr (creador de ANTLR) en la Universidad de San Francisco,
donde presenta ANTLR v4 - explica Listeners/Visitors y los analizadores ALL(*). En este

enlace: https://vimeo.com/59285751
e Ver la conferencia del profesor Terence Parr, creador de ANTLR, acerca de algoritmos

para la construccion de analizadores sintacticos: The Quest for the One True Parser.
e Listado de gramaticas disponibles para ANTLR: https://github.com/antlr/grammars-v4

Referencias

[1 Parr Terence. The Definitive ANTLR 4 Reference. The pragmatic bookshelf. 2012. Ver

capitulo 4.
2] Tutorial ANTLR: http://www.xfront.com/ANTLR/
[3] Tomassetti. The ANTLR mega tutorial. March 8, 2017. Disponible en:

https://tomassetti.me/antlr-meqga-tutorial/

https://vimeo.com/59285751
https://www.infoq.com/presentations/parsing-history/?utm_source=infoq&utm_medium=QCon_EarlyAccessVideos&utm_campaign=QConSanFrancisco2014
https://github.com/antlr/grammars-v4
https://drive.google.com/file/d/1cLTy_dDpzyAE3L9B-12SWZeH0zrrMUz0/view?usp=sharing
http://www.xfront.com/ANTLR/
https://tomassetti.me/antlr-mega-tutorial/

	Traductores con ANTLR (listeners)
	Árboles sintácticos en ANTLR v4
	Parse-tree Listeners
	Archivos generados por ANTLR
	Ejemplo
	Reconocedor de números enteros encerrados entre llaves - ArrayInit
	1.​Especificación de la gramática
	
	2.​Integrando el reconocedor generado con un programa en Java (main)
	
	3.​Especificación de un traductor para este tipo de cadenas (usando Listeners)
	4.​Implementación de los métodos del traductor (en el Listener)
	5.​Crear la aplicación (traductor)

	Ejercicio
	Documentación (recursos recomendados)
	Referencias

