

Traductores con ANTLR
(listeners)

Felipe Restrepo Calle

ferestrepoca@unal.edu.co

Profesor Asociado

Universidad Nacional de Colombia

Actualizado: 18/04/2023

En esta guía se presenta cómo trabajar con ANTLR para construir aplicaciones de análisis
automático de código fuente usando el patrón de diseño Listeners. De esta manera, se facilita
el desarrollo de traductores de una sola pasada del árbol sintáctico.

Árboles sintácticos en ANTLR v4
A continuación se presenta un ejemplo de un árbol sintáctico generado por ANTLR v4 (con los
nombres de las clases):

Observe que las hojas del árbol corresponden a nodos terminales y los demás nodos
corresponden a alguna regla de producción de la gramática. Estos últimos objetos se conocen
en ANTLR v4 como contextos (context) porque almacenan todo lo que sabemos del
reconocimiento de una frase por una regla particular de la gramática. Cada contexto conoce su
token inicial y final para la frase y proporciona acceso a todos los elementos de esa frase. Por
ejemplo, AssignContext (Assign: ID TK_EQUAL expr) proporciona los métodos: ID() y expr()
para acceder al nodo identificador y el subárbol de la expresión.

mailto:ferestrepoca@unal.edu.co

Con esta estructura de datos podríamos implementar a mano nuestros algoritmos para recorrer
el árbol sintáctico en profundidad y programar las acciones requeridas durante el análisis, las
cuales serán ejecutadas a medida que se vayan visitando los nodos del árbol. Sin embargo,
para evitar tener que escribir estos métodos cada vez que implementemos un procesador de
lenguaje, ANTLR proporciona sus propios mecanismos para hacer esto por nosotros, mediante
dos patrones de diseño: Listeners y Visitors. En esta guía se detalla el primero.

Parse-tree Listeners
Por defecto, ANTLR genera una interfaz para un parse-tree listener que responde a los eventos
desencadenados por el objeto que recorre el árbol sintáctico (walker). Los Listeners son como
los objetos manejadores de documentos SAX (Simple API for XML) para los analizadores de
XML. Estos reciben una notificación de eventos como startDocument() y endDocument() y
ejecutan las acciones correspondientes. Los métodos de un Listener son simplemente
callbacks que responden a eventos que ocurren al recorrer el árbol sintáctico. Pueden ser
comparados con los métodos que implementamos para responder a un evento de click en un
botón de una aplicación con interfaz gráfica (GUI).

Para recorrer el árbol y por ende desencadenar las llamadas a los métodos del Listener,
ANTLR proporciona la clase ParseTreeWalker. Para implementar una aplicación, necesitamos
desarrollar una implementación de ParseTreeListener que contenga el código específico de la
aplicación. ANTLR genera automáticamente una subclase de ParseTreeListener para cada
gramática específica con los métodos enter y exit para cada regla. Cuando el walker llega al
nodo para la regla Assign, se dispara el evento enterAssign(), el cual recibe como parámetro
toda la información almacenada en ese contexto (AssignContext). Asimismo, después de que el
walker ha visitado todos los hijos del nodo assign, se dispara el evento exitAssign().

A continuación se presenta toda la secuencia de métodos desencadenados por el walker para
la sentencia de ejemplo (sp=100;):

Lo mejor de este mecanismo de Listeners es que todo funciona automáticamente. No tenemos
que implementar el walker, y nuestros métodos de los Listeners no tienen que visitar
explícitamente a sus hijos. ANTLR proporciona esto.

Archivos generados por ANTLR
Si estuviéramos especificando la gramática del lenguaje en un archivo llamado PRUEBA.g4, y
quisiéramos trabajar con Listeners, ANTLR se encargará de generar automáticamente los
siguientes archivos (en el caso que se esté usando JAVA):

●​ PRUEBALexer.java: código fuente del analizador léxico
●​ PRUEBAParser.java: código fuente del analizador sintáctico

●​ PRUEBA.tokens: tokens para el analizador sintáctico
●​ PRUEBALexer.tokens: tokens para el analizador léxico
●​ PRUEBAListener.java: Interface que describe los “eventos” que podemos llamar al

recorrer el árbol sintáctico que genera ANTLR automáticamente
●​ PRUEBABaseListener.java: Clase con un conjunto de implementaciones vacías. Basta

con sobreescribir los métodos que nos interesan.

Ejemplo

Reconocedor de números enteros encerrados entre llaves -
ArrayInit
Vamos a construir una gramática para desarrollar un reconocedor de conjuntos de números
enteros separados por comas y encerrados entre llaves (posiblemente anidados), como por
ejemplo: {1, 2, 3} y {1, {2, 3}, 4}. Esto podría ser útil para reconocer expresiones de
inicialización de arreglos en Java, por ejemplo. Cuando hayamos desarrollado el reconocedor,
implementaremos un traductor de este tipo de cadenas basado en Listeners.

1.​ Especificación de la gramática

Archivo: ArrayInit.g4

/** Grammars always start with a grammar header. This grammar is called​
* ArrayInit and must match the filename: ArrayInit.g4​
*/​
grammar ArrayInit;​
// A rule called init that matches comma-separated values between {...}. ​
init : '{' value (',' value)* '}' ; // must match at least one value​
// A value can be either a nested array/struct or a simple integer (INT)​
value : init

 | INT​
 ;​
// parser rules start with lowercase letters, lexer rules with uppercase​
INT : [0-9]+ ; // Define token INT as one or more digits​
WS : [\t\r\n]+ -> skip ; // Define whitespace rule, toss it out

​ ​

2.​ Integrando el reconocedor generado con un programa en Java
(main)

Archivo: Test.java

import org.antlr.v4.runtime.*;​
import org.antlr.v4.runtime.tree.*;​
import java.io.File;​
 ​
public class Test {​
 public static void main(String[] args) throws Exception {​
​ try{​
 ​ // crear un analizador léxico​
 ​ ArrayInitLexer lexer;​
 ​ if (args.length>0)​
 ​ lexer = new

ArrayInitLexer(CharStreams.fromFileName(args[0]));​
 ​ else​
 ​ lexer = new

ArrayInitLexer(CharStreams.fromStream(System.in));​
 ​ // Identificar al analizador léxico como fuente de

tokens para el sintactico​
 ​ CommonTokenStream tokens = new

CommonTokenStream(lexer);​
 ​ // Crear el analizador sintáctico que se alimenta a

partir del buffer de tokens​
 ​ ArrayInitParser parser = new

ArrayInitParser(tokens);​
 ​ ParseTree tree = parser.init(); // comienza el

análisis en la regla inicial​
 ​ ​ System.out.println(tree.toStringTree(parser)); // imprime

el árbol en forma textual​
​ } catch (Exception e){​
 ​ System.err.println("Error (Test): " + e);​
​ }​
 }​
}

3.​ Especificación de un traductor para este tipo de cadenas (usando
Listeners)

Vamos a traducir los elementos de inicialización de un arreglo en Java como {99, 3, 451} (los
cuales ya reconocemos) a una cadena de constantes Unicode como: “\u0063\u0003\u01c3”,
donde cada uno de estos corresponde a la notación hexadecimal del valor original (por
ejemplo: 99d = 63h).

Ejemplo de traducción:

De aquí podemos identificar las reglas de traducción necesarias:

●​ Traducir { a “.
●​ Traducir } a “.
●​ Traducir los números enteros a una cadena de 4 dígitos con su representación

hexadecimal, precedida de \u.

4.​ Implementación de los métodos del traductor (en el Listener)

Para lograr el objetivo, lo único que tendremos que hacer es implementar algunos métodos en
una subclase de ArrayInitBaseListener. La estrategia básica consiste en que cada método del
Listener imprima una pequeña parte de la traducción correspondiente a la cadena de entrada
cuando sea llamado por el objeto (walker) que recorre el árbol sintáctico, es decir,
implementaremos el Esquema de Traducción Dirigido por la Sintaxis (ETDS).

A continuación se presenta la implementación del Listener de acuerdo a nuestras reglas de
traducción:

Archivo: ShortToUnicodeString.java

/** Convert short array inits like {1,2,3} to "\u0001\u0002\u0003" */​
public class ShortToUnicodeString extends ArrayInitBaseListener {​
@Override ​ /** Translate { to " */​
public void enterInit(ArrayInitParser.InitContext ctx) {​
System.out.print('"');​
}​
 ​
@Override ​ /** Translate } to " */​
public void exitInit(ArrayInitParser.InitContext ctx) {​
System.out.print('"');​
}​
 ​
@Override /** Translate integers to 4-digit hex strings prefixed with \\u */​
public void enterValue(ArrayInitParser.ValueContext ctx) {​
// Assumes no nested array initializers​
int value = Integer.valueOf(ctx.INT().getText());​
System.out.printf("\\u%04x", value);​
}​
}

No es necesario sobreescribir todos los métodos enter/exit, sólo los que vamos a usar. La única
expresión poco familiar en este ejemplo es ctx.INT(), la cual le solicita al objeto del contexto el
token del número entero INT (capturado por la regla value).

5.​ Crear la aplicación (traductor)

Sólo nos falta crear la aplicación que integre todo, basándonos en la clase Test mostrada
previamente.

Archivo: Translate.java

// import ANTLR's runtime libraries​
import org.antlr.v4.runtime.*;​
import org.antlr.v4.runtime.tree.*;​
import java.io.File;​
​
public class Translate {​
public static void main(String[] args) throws Exception {​
// create a CharStream that reads from standard input / file​
// create a lexer that feeds off of input CharStream​
ArrayInitLexer lexer;​

 ​
if (args.length>0)​
 lexer = new ArrayInitLexer(CharStreams.fromFileName(args[0]));​
else​
 lexer = new ArrayInitLexer(CharStreams.fromStream(System.in));​
// create a buffer of tokens pulled from the lexer​
CommonTokenStream tokens = new CommonTokenStream(lexer);​
// create a parser that feeds off the tokens buffer​
ArrayInitParser parser = new ArrayInitParser(tokens);​
ParseTree tree = parser.init(); // begin parsing at init rule​
 ​
➤ // Create a generic parse tree walker that can trigger callbacks​
➤ ParseTreeWalker walker = new ParseTreeWalker();​
➤ // Walk the tree created during the parse, trigger callbacks​
➤ walker.walk(new ShortToUnicodeString(), tree);​
➤ System.out.println(); // print a \n after translation​
}​
}

En este caso creamos un objeto walker de la clase ParseTreeWalker. Llamamos su método
walk(), el cual recorre el árbol sintáctico retornado por el parser. A medida que se va
recorriendo el árbol, se van desencadenando los llamados a los métodos de nuestro Listener
(ShortToUnicodeString).

Finalmente, compilamos y probamos el traductor

Ejercicio
Crear un traductor (prueba de concepto) usando listeners con ANTLR para una de las
gramáticas de los lenguajes de programación disponibles en:
https://github.com/antlr/grammars-v4

Documentación (recursos recomendados)
●​ Parr Terence. The Definitive ANTLR 4 Reference. The pragmatic bookshelf. 2012. Ver

capítulo 4.
●​ Tutorial ANTLR: http://www.xfront.com/ANTLR/
●​ Tomassetti. The ANTLR mega tutorial. March 8, 2017. Disponible en:

https://tomassetti.me/antlr-mega-tutorial/

https://github.com/antlr/grammars-v4
https://drive.google.com/file/d/1cLTy_dDpzyAE3L9B-12SWZeH0zrrMUz0/view?usp=sharing
http://www.xfront.com/ANTLR/
https://tomassetti.me/antlr-mega-tutorial/

●​ Ver la clase de Terence Parr (creador de ANTLR) en la Universidad de San Francisco,
donde presenta ANTLR v4 - explica Listeners/Visitors y los analizadores ALL(*). En este
enlace: https://vimeo.com/59285751

●​ Ver la conferencia del profesor Terence Parr, creador de ANTLR, acerca de algoritmos
para la construcción de analizadores sintácticos: The Quest for the One True Parser.

●​ Listado de gramáticas disponibles para ANTLR: https://github.com/antlr/grammars-v4

Referencias
[1]​ Parr Terence. The Definitive ANTLR 4 Reference. The pragmatic bookshelf. 2012. Ver
capítulo 4.
[2]​ Tutorial ANTLR: http://www.xfront.com/ANTLR/
[3]​ Tomassetti. The ANTLR mega tutorial. March 8, 2017. Disponible en:
https://tomassetti.me/antlr-mega-tutorial/

https://vimeo.com/59285751
https://www.infoq.com/presentations/parsing-history/?utm_source=infoq&utm_medium=QCon_EarlyAccessVideos&utm_campaign=QConSanFrancisco2014
https://github.com/antlr/grammars-v4
https://drive.google.com/file/d/1cLTy_dDpzyAE3L9B-12SWZeH0zrrMUz0/view?usp=sharing
http://www.xfront.com/ANTLR/
https://tomassetti.me/antlr-mega-tutorial/

	Traductores con ANTLR (listeners)
	Árboles sintácticos en ANTLR v4
	Parse-tree Listeners
	Archivos generados por ANTLR
	Ejemplo
	Reconocedor de números enteros encerrados entre llaves - ArrayInit
	1.​Especificación de la gramática
	
	2.​Integrando el reconocedor generado con un programa en Java (main)
	
	3.​Especificación de un traductor para este tipo de cadenas (usando Listeners)
	4.​Implementación de los métodos del traductor (en el Listener)
	5.​Crear la aplicación (traductor)

	Ejercicio
	Documentación (recursos recomendados)
	Referencias

