Getchl

Because why shouldn’'t we overuse getch()?

Getchl is an Esoteric Shell designed for WalrusOS, the world's first EsOS. Getchl's main source
of input is the stdin, using the getch() command to get info from the keyboard. This provides a
different way of interacting with the computer, through single keystrokes instead of full-length
commands terminated by returns.

Data Model

In one of my favorite data model families, the model behind Getchl is a both-sides-infinite tape
of byte stacks with a scalar accumulator.

Commands
Terminology
Term Meaning
Stack LIFO queuing mechanism
Queue FIFO queuing mechanism
Tape A right-infinite array with an index
Pop Take the value off the top of the stack and return it
Push Put a value on the stack

Accumulator

A scalar that holds a value

A null-terminated string on the stack (alternatively, if no null terminator is

Ognirts present, the entire stack as a string) (first character of string at top of stack for
technical reasons)
Mode Alternative interpreter modes
Default The standard interpreter mode
mode
String mode | The mode where commands are ord()ed and pushed on the stack
The mode where commands are saved to a block instead of executed (used
Block mode .
for evaluating groups of commands later)
Prime mode | The mode where commands are slightly different for control purposes

Safe mode

The mode where commands do not execute when the stack is too short,
instead returning 0

Notes

All values are modulo 256 (or not, for a unicode implementation)

Command List

All commands are subject to change. Feel free to suggest such changes yourself.

Hex Ch Name Meaning

20 "R NOP Do absolutely nothing

21 ! NOT Push the logical inversion of a popped value

22 " STR Enter string mode

23 # DEFINE Pop a value, map it to the previous command (or block)

24 $ DROP Pop a value and discard it

25 % MOD Pop a, pop b, push b%a

26 & AND Pop a, pop b, push b&a

27 ' PRIME Enter prime mode for the following character

28 (START BLOCK | Start forming a block

29) END BLOCK Terminate a block

2A * MULT Pop a, pop b, push b*a

2B + ADD Pop a, pop b, push b+a

2c INP Geta single.c.haracter as input and pop its ASCII value on
? the stack (fail if EOF)

2D - SUB Pop a, pop b, push b-a

2E PRINT Print the character whose ascii value is on the ToS

2F / DIV Pop a, pop b, push b//a

30 0 ZERO Push 0

31 1 ONE Push 1

32 2 TWO Push 2

33 THREE Push 3
34 FOUR Push 4
35 FIVE Push 5
36 SIX Push 6
37 SEVEN Push 7
38 EIGHT Push 8
39 NINE Push 9
3A DUP Pop a, push a, push a
3B TERMINATE End session
3C LT Pop a, pop b, push 1 if b<a, else push 0
3D EQ Pop a, pop b, push 1 if b=a, else push 0
3E GT Pop a, pop b, push 1 if b>a, else push 0
3F IF Pop a, pop b, pop c, if al=0 push b, else push c.
40 REDUCE Repeat the previous instruction (or block) until it fails
41 A Push 10
42 B Push 11
43 C Push 12
44 D Push 13
45 E Push 14
46 F Push 15
47 GLOBAL Create a variable (pop v, pop Ognirts name, map name to v)
48
Invert the stack
49 INVERT st2 = stack()

while len(stack) > ©:
st2.push(st.pop())
st = st2

TAPE RELATIVE

Pop n, go n-127 cells to the left on the tape

4A JUMP

4B

4c LEFT Go left on the tape
Pop a, set maximum stack size to a (pushes fail when

4D MAXIMIZE len(stack) = stack.max) (extraneous elements dropped) (0
means no bound)

4E

4F

50

cq QUEUE Toggle queuing mode (all PUSHes become ENQUEUEs, all
POPs become DEQUEUES)

52 RIGHT Go right on the tape

53

54

55

56

57

58

59

5A

5B ROT Pop a, pop b, pop ¢, push a, push ¢, push b

5C SWAP Pop a, pop b, push a, push b

5D ROTCC Pop a, pop b, pop c, push b, push a, push ¢

S5E ACCUMULATE | Pop a and put it in the accumulator

5F DECCUMULATE | Push value in the accumulator

60 APPLY/ EVAL Pop a value and evaluate it as ASCII

61

62

63

64 DIR g))hange the current working directory (pop a Ognirts s, cd to
65

66 FIND Pop tf, Repeatedly pop a until a==tf, push a

67 GET Inverse of G: Pop a Ognirts, push the global with that name
68

69 IDENTITY E(())plj ;/r]agjfeigtijngu;r;éte()NOP normally, but equivalent to
6A JUMP ;chi r(:gg;r:)s(;ij;]utmp back to that location and reexecute to
6B

6C LABEL Get a Ognirts, label this location as a jumpback location

6D

6E

6F OPEN :Sosr;)oii,agt:tif)vgvir;ihrt\s;;l]‘;o;n the stack, open the file s and

70

71

72 READ Pop a, read the content of the file associated with a

73 REPLACE E;):htr;[gf :r::i:?r?eosfi ::;E stack, replace s[1] with s[2] in s[0],
74

75

76

77 WRITE Pop a, pop Ognirts s, write s to the file associated with a

78 X

79 y

7A z

7B { COMMENT Stop executing commands (??? do | need this for a shell?)
7C | OR Pop a, pop b, push b|a

7D } DECOMMENT | Resume executing commands

7E ~ SAFE Toggle safemode

Prime Mode Commands

Prime mode is an interpreter mode where commands are executed with alternative meanings.
Unless otherwise specified, the interpreter returns to default mode after execution.

Single-prime mode

Character Name Meaning
' CONDITIONAL Pop value, pegate it, ex_ecute previous command (or bllock)
@ until a certain type of failure, fail if it fails on another failure
REDUCE)
(complicated, | know)

CONDITIONAL : : : :

'? I=
? EXECUTE Pop a, execute the previous instruction (or block) if a 1= 0
'3 FAIL Pop a value and fail with its negated value
" RUN Pop a value and execute the function defined to it
' CONTINUED | Enter continued prime mode (terminates on \)). All commands
PRIME are interpreted as prime (e.g. ' (abc) is equivalentto 'a'b'c).
' DOUBLE Enter double-prime mode (currently does nothing).
PRIME Does not return to default mode
. GLOBAL : . .
G STRING Pop a Ognirts name, pop a Ognirts s, map name to string s
'g GET STRING | Pop a Ognirts, push the Ognirts it's mapped to
. RELATIVE
L LEET JUMP Pop n, go n cells to the left on the tape

'R RELATIVE Pop n, go n cells to the right on the tape

RIGHT JUMP

' XOR Pop a, pop b, push b*a

Failure Codes
Some commands can return failure codes when executed under certain conditions. Failure
codes do not terminate the script. All failure codes are negative.

Value Meaning

-1 Not enough values on stack

-2 Attempted to push onto full stack

-3 Divide or modulo by 0

-4 No previous command (start of script or block)
-5 No input character

-6 Attempt to print null character

-7 Invalid varname

-8 Invalid filename

-9 Invalid label

Useful Constructs and Mnemonics

Construct Meaning
<op>@ Where. op is any operator (+, - * / % &,. |, "|), reduce the stack with that
operation (+ sums the stack, * multiplies it, etc)
,@ Get an input string, terminated by EOF
.@ Print a Ognirts
@ Clear the stack
@ Eval a Ognirts
&! NAND

| NOR

K XNOR

Fill the remainder of the stack with value n (exclude n for existing ToS)

<n>:@ (Make sure the stack has a max, or it will hang forever)

Execute coms n times (Push n on stack, then execute coms and push 1 and

o\/$)@ {I subtract 1 from n, push 1, swap, and divide it by n and drop. This means it

think this fails when n is equal to 0, thus terminating the loop) (note that commands

is right} must not change the stack, or at least must bury added values under the
existing control values.)

<n>(<coms>1-

	Getchl
	Data Model
	Commands
	Terminology
	Notes
	Command List
	Prime Mode Commands
	Single-prime mode

	Failure Codes
	Useful Constructs and Mnemonics

