
Getchl

Because why shouldn't we overuse getch()?

Getchl is an Esoteric Shell designed for WalrusOS, the world's first EsOS. Getchl's main source
of input is the stdin, using the getch() command to get info from the keyboard. This provides a
different way of interacting with the computer, through single keystrokes instead of full-length
commands terminated by returns.

Data Model

In one of my favorite data model families, the model behind Getchl is a both-sides-infinite tape
of byte stacks with a scalar accumulator.

Commands

Terminology

Term Meaning

Stack LIFO queuing mechanism

Queue FIFO queuing mechanism

Tape A right-infinite array with an index

Pop Take the value off the top of the stack and return it

Push Put a value on the stack

Accumulator A scalar that holds a value

0gnirts
A null-terminated string on the stack (alternatively, if no null terminator is
present, the entire stack as a string) (first character of string at top of stack for
technical reasons)

Mode Alternative interpreter modes

Default
mode

The standard interpreter mode

String mode The mode where commands are ord()ed and pushed on the stack

Block mode The mode where commands are saved to a block instead of executed (used
for evaluating groups of commands later)

Prime mode The mode where commands are slightly different for control purposes

Safe mode The mode where commands do not execute when the stack is too short,
instead returning 0

Notes

●​ All values are modulo 256 (or not, for a unicode implementation)

Command List

All commands are subject to change. Feel free to suggest such changes yourself.

Hex Ch Name Meaning

20 ' ' NOP Do absolutely nothing

21 ! NOT Push the logical inversion of a popped value

22 " STR Enter string mode

23 # DEFINE Pop a value, map it to the previous command (or block)

24 $ DROP Pop a value and discard it

25 % MOD Pop a, pop b, push b%a

26 & AND Pop a, pop b, push b&a

27 ' PRIME Enter prime mode for the following character

28 (START BLOCK Start forming a block

29) END BLOCK Terminate a block

2A * MULT Pop a, pop b, push b*a

2B + ADD Pop a, pop b, push b+a

2C , INP Get a single character as input and pop its ASCII value on
the stack (fail if EOF)

2D - SUB Pop a, pop b, push b-a

2E . PRINT Print the character whose ascii value is on the ToS

2F / DIV Pop a, pop b, push b//a

30 0 ZERO Push 0

31 1 ONE Push 1

32 2 TWO Push 2

33 3 THREE Push 3

34 4 FOUR Push 4

35 5 FIVE Push 5

36 6 SIX Push 6

37 7 SEVEN Push 7

38 8 EIGHT Push 8

39 9 NINE Push 9

3A : DUP Pop a, push a, push a

3B ; TERMINATE End session

3C < LT Pop a, pop b, push 1 if b<a, else push 0

3D = EQ Pop a, pop b, push 1 if b=a, else push 0

3E > GT Pop a, pop b, push 1 if b>a, else push 0

3F ? IF Pop a, pop b, pop c, if a!=0 push b, else push c.

40 @ REDUCE Repeat the previous instruction (or block) until it fails

41 A A Push 10

42 B B Push 11

43 C C Push 12

44 D D Push 13

45 E E Push 14

46 F F Push 15

47 G GLOBAL Create a variable (pop v, pop 0gnirts name, map name to v)

48 H

49 I INVERT

Invert the stack

st2 = Stack()
while len(stack) > 0:
 st2.push(st.pop())
st = st2

4A J
TAPE RELATIVE

JUMP
Pop n, go n-127 cells to the left on the tape

4B K

4C L LEFT Go left on the tape

4D M MAXIMIZE
Pop a, set maximum stack size to a (pushes fail when
len(stack) = stack.max) (extraneous elements dropped) (0
means no bound)

4E N

4F O

50 P

51 Q QUEUE Toggle queuing mode (all PUSHes become ENQUEUEs, all
POPs become DEQUEUEs)

52 R RIGHT Go right on the tape

53 S

54 T

55 U

56 V

57 W

58 X

59 Y

5A Z

5B [ROT Pop a, pop b, pop c, push a, push c, push b

5C \ SWAP Pop a, pop b, push a, push b

5D] ROTCC Pop a, pop b, pop c, push b, push a, push c

5E ^ ACCUMULATE Pop a and put it in the accumulator

5F _ DECCUMULATE Push value in the accumulator

60 ` APPLY/ EVAL Pop a value and evaluate it as ASCII

61 a

62 b

63 c

64 d DIR Change the current working directory (pop a 0gnirts s, cd to
s)

65 e

66 f FIND Pop tf, Repeatedly pop a until a==tf, push a

67 g GET Inverse of G: Pop a 0gnirts, push the global with that name

68 h

69 i IDENTITY Pop a value and push it (NOP normally, but equivalent to
ROLL in queueing mode)

6A j JUMP Pop a 0gnirts, jump back to that location and reexecute to
the current point

6B k

6C l LABEL Get a 0gnirts, label this location as a jumpback location

6D m

6E n

6F o OPEN Pop a, get 0gnirts s from the stack, open the file s and
associate it with value a

70 p

71 q

72 r READ Pop a, read the content of the file associated with a

73 s REPLACE Pop three strings off the stack, replace s[1] with s[2] in s[0],
push s[0] onto the stack

74 t

75 u

76 v

77 w WRITE Pop a, pop 0gnirts s, write s to the file associated with a

78 x

79 y

7A z

7B { COMMENT Stop executing commands (??? do I need this for a shell?)

7C | OR Pop a, pop b, push b|a

7D } DECOMMENT Resume executing commands

7E ~ SAFE Toggle safemode

Prime Mode Commands

Prime mode is an interpreter mode where commands are executed with alternative meanings.
Unless otherwise specified, the interpreter returns to default mode after execution.

Single-prime mode

Character Name Meaning

'@
CONDITIONAL

REDUCE

Pop value, negate it, execute previous command (or block)
until a certain type of failure, fail if it fails on another failure
(complicated, I know)

'?
CONDITIONAL

EXECUTE Pop a, execute the previous instruction (or block) if a != 0

'; FAIL Pop a value and fail with its negated value

'` RUN Pop a value and execute the function defined to it

'(
CONTINUED

PRIME
Enter continued prime mode (terminates on \)). All commands
are interpreted as prime (e.g. '(abc) is equivalent to 'a'b'c).

''
DOUBLE
PRIME

Enter double-prime mode (currently does nothing).
Does not return to default mode

'G
GLOBAL
STRING Pop a 0gnirts name, pop a 0gnirts s, map name to string s

'g GET STRING Pop a 0gnirts, push the 0gnirts it's mapped to

'L
RELATIVE

LEFT JUMP Pop n, go n cells to the left on the tape

'R RELATIVE Pop n, go n cells to the right on the tape

RIGHT JUMP

'| XOR Pop a, pop b, push b^a

Failure Codes

Some commands can return failure codes when executed under certain conditions. Failure
codes do not terminate the script. All failure codes are negative.

Value Meaning

-1 Not enough values on stack

-2 Attempted to push onto full stack

-3 Divide or modulo by 0

-4 No previous command (start of script or block)

-5 No input character

-6 Attempt to print null character

-7 Invalid varname

-8 Invalid filename

-9 Invalid label

Useful Constructs and Mnemonics

Construct Meaning

<op>@
Where op is any operator (+, -, *, /, %, &, |, '|), reduce the stack with that
operation (+ sums the stack, * multiplies it, etc)

,@ Get an input string, terminated by EOF

.@ Print a 0gnirts

$@ Clear the stack

`@ Eval a 0gnirts

&! NAND

|! NOR

'|! XNOR

<n>:@
Fill the remainder of the stack with value n (exclude n for existing ToS)
(Make sure the stack has a max, or it will hang forever)

<n>(<coms>1-
0\/$)@ {I
think this
is right}

Execute coms n times (Push n on stack, then execute coms and push 1 and
subtract 1 from n, push 1, swap, and divide it by n and drop. This means it
fails when n is equal to 0, thus terminating the loop) (note that commands
must not change the stack, or at least must bury added values under the
existing control values.)

	Getchl
	Data Model
	Commands
	Terminology
	Notes
	Command List
	Prime Mode Commands
	Single-prime mode

	Failure Codes
	Useful Constructs and Mnemonics

