

Arduino Final Project
EEL3003 Elements of Electrical Engineering

Ethan Dunton
11/23/24

I.​ Introduction

This project is essentially an extremely simple keyboard in that it is an instrument with properties

of both a piano and a guitar. Its core function is that there are four buttons, each being assigned to a
different note - specifically, D, E, G, and A. When pressed, each button plays that note on the piezo. This
uses simple pull down resistors to ensure that the correct values are read at all times, and if the button is
pressed, the pin it’s connected to reads “High” which, from the code, sends a PWM signal to the piezo to
play that note. There is some additional functionality here as well - there is a potentiometer “octave
switch” that varies between three ranges. The low range keeps the notes at the original octave, the middle
range raises them one octave higher, and the high range raises them two octaves higher. The current
octave is indicated by the RGB switch, which is red at the basic octave, green at the middle octave, and
blue at the high octave. Lastly, there is an additional “power chord mode” activated when the
phototransistor is covered. When this is activated, any notes played will make not only the original note
be played by the piezo, but also the note a fifth above. For example, playing an E in power chord mode
will make both E and the B above it be played. When these are played together, it’s difficult to hear that
it’s two notes and not just the fifth as even on real instruments, fifths sound very similar to the root note.
However, when compared to just the fifth being played at the original frequency (as in, a D in power
chord mode playing a D and an A versus just an A in regular mode), the power chord has a thicker sound
which is shown in the video. An LED also lights up when in power chord mode.

II. Part List
Highlighted parts are component types for project requirement.

Part Quantity

USB Cable 1

Arduino UNO Controller 1

Breadboard 1

Wire 19

10k Ohm Resistor 5

220 Ohm Resistor 3

Pushbutton 4

RGB Variable Color Switch 1

Potentiometer 1

LED 1

Piezo Speaker 1

Phototransistor 1

III. Schematic

IV. Flowchart

V. Final Code
Note: It’s likely obvious in this code that ChatGPT was used heavily for help coding. That being said, I
walked it through my process step by step and had it help generate code piece by piece, and all the ideas
and wiring were original.

// Pin assignments

int button1 = 2; // Button for note D

int button2 = 4; // Button for note E

int button3 = 5; // Button for note G

int button4 = 6; // Button for note A

int piezo = 3; // Piezo buzzer

int potPin = A1; // Potentiometer pin (reversed input)

int photoPin = A0; // Phototransistor pin

int ledPin = 8; // LED indicator for power chord mode

int redPin = 9; // RGB red pin

int greenPin = 10; // RGB green pin

int bluePin = 11; // RGB blue pin

// Base frequencies for notes (Hz)

int baseNoteD = 294;

int baseNoteE = 330;

int baseNoteG = 392;

int baseNoteA = 440;

// Variables for octave adjustment and power chord mode

int octaveOffset = 1; // Default octave is raised by +1

bool powerChordMode = false; // Power chord mode status

void setup() {

 // Set button pins as input

 pinMode(button1, INPUT);

 pinMode(button2, INPUT);

 pinMode(button3, INPUT);

 pinMode(button4, INPUT);

 // Set piezo pin as output

 pinMode(piezo, OUTPUT);

 // Set LED pins as output

 pinMode(ledPin, OUTPUT);

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

}

void loop() {

 // Read the potentiometer value and reverse its direction

 int potValue = analogRead(potPin); // Read value (0-1023)

 potValue = 1023 - potValue; // Reverse the potentiometer input

 // Determine the octave based on the reversed potentiometer value

 if (potValue < 341) {

 octaveOffset = -1; // Low octave

 } else if (potValue < 682) {

 octaveOffset = 0; // Default octave

 } else {

 octaveOffset = 1; // High octave

 }

 // Check the phototransistor to activate/deactivate power chord mode

 int photoValue = analogRead(photoPin);

 powerChordMode = (photoValue < 500); // Threshold for covered

phototransistor

 // Update LED based on power chord mode

 digitalWrite(ledPin, powerChordMode ? HIGH : LOW);

 // Update RGB LED based on octave

 updateRGB(octaveOffset);

 // Adjust note frequencies based on octave offset

 int noteD = adjustOctave(baseNoteD, octaveOffset + 1); // Default octave

raised by 1

 int noteE = adjustOctave(baseNoteE, octaveOffset + 1);

 int noteG = adjustOctave(baseNoteG, octaveOffset + 1);

 int noteA = adjustOctave(baseNoteA, octaveOffset + 1);

 // Play notes based on button presses

 if (digitalRead(button1) == HIGH) {

 playPowerChord(noteD); // Play D

 } else if (digitalRead(button2) == HIGH) {

 playPowerChord(noteE); // Play E

 } else if (digitalRead(button3) == HIGH) {

 playPowerChord(noteG); // Play G

 } else if (digitalRead(button4) == HIGH) {

 playPowerChord(noteA); // Play A

 } else {

 noTone(piezo); // Stop playing if no button is pressed

 }

}

// Function to play a single note or power chord

void playPowerChord(int baseFrequency) {

 if (powerChordMode) {

 // Power chord: play the base note and its fifth

 int fifthFrequency = baseFrequency * pow(2, 7.0 / 12.0); // Fifth =

base * 2^(7/12)

 tone(piezo, baseFrequency);

 delay(10); // Small delay to overlap notes

 tone(piezo, fifthFrequency);

 delay(300); // Hold the chord

 } else {

 // Single note mode

 tone(piezo, baseFrequency, 300);

 delay(300); // Hold the note

 }

}

// Function to adjust frequency for the selected octave

int adjustOctave(int baseFrequency, int offset) {

 return baseFrequency * pow(2, offset); // Multiply by 2^offset

}

// Function to update RGB LED color based on the octave

void updateRGB(int octaveOffset) {

 if (octaveOffset == -1) {

 // Low octave: Red

 digitalWrite(redPin, HIGH);

 digitalWrite(greenPin, LOW);

 digitalWrite(bluePin, LOW);

 } else if (octaveOffset == 0) {

 // Default octave: Green

 digitalWrite(redPin, LOW);

 digitalWrite(greenPin, HIGH);

 digitalWrite(bluePin, LOW);

 } else if (octaveOffset == 1) {

 // High octave: Blue

 digitalWrite(redPin, LOW);

 digitalWrite(greenPin, LOW);

 digitalWrite(bluePin, HIGH);

 }

}

VI. References
“Arduino Piano Code” prompt. ChatGPT, 11/23/24, OpenAI, chat.openai.com.

	I.​Introduction
	II. Part List
	III. Schematic
	IV. Flowchart
	V. Final Code
	VI. References

