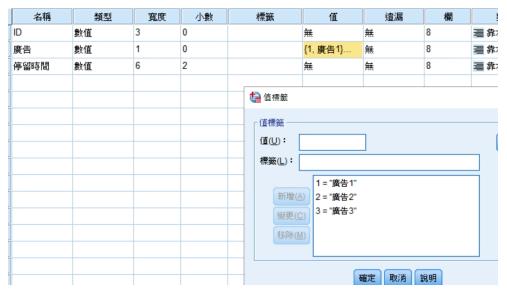

Chp69-1. Evaluating Customer Dwell Time for Three E-commerce Ads A/B/C: Handling Unequal Variances When Samples Follow a Normal Distribution (Using SPSS Software Analysis, Shapiro-Wilk Normality Test + Welch ANOVA Test + Games-Howell Post-hoc Test)

- (1). [Concept]: Complexities and Difficulties of One-Way ANOVA: It has 3 basic assumption limitations
- 3 Basic Assumptions of One-Way ANOVA:
- 1. Samples in each group are independent
- 2. Each sample comes from a normally distributed population
- 3. The variances of each population are equal
- (2). [Statistical Test Judgment Diagram]: Basic Diagram, Advanced Diagram
- 2-1 Basic Diagram

2-2 Advanced Diagram (ANOVA Test)


☑ 單因子變異數分析(One-Way ANOVA)檢定流程與事後檢定對照表

狀況	建議方法	事後檢定方式(Post Hoc Test)
母體≥3,常態分布、變異數相等	One-Way ANOVA	Tukey HSD (最常用)、Bonferroni、Scheffé
母體≥3,常態分布、變異數不等	Welch ANOVA	Games-Howell (適用變異數不齊)
母體≥3,非常態分布	Kruskal-Wallis Test	Dunn's Test (需 Bonferroni 或 Holm 校正)

(3). [SPSS Implementation]: Therefore, the first step in performing one-way ANOVA is to check: whether the samples conform to a normal distribution?

How to Perform the Shapiro-Wilk Normality Test in SPSS

1. Open SPSS and Load Data

2. Select Statistical Test Path

o Click Analyze → Descriptive Statistics → Explore.

3. Set Variables

- o In the Dependent List, select the numerical variable to be tested for normality.
- o In the Factor List, you can select a categorical variable (optional).

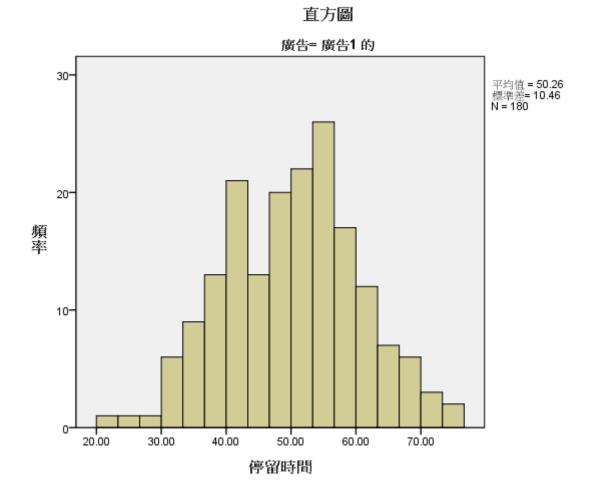
4. Enable Normality Test

- Click the Plots button.
- o On the Descriptive page, check Normality plots with tests.
- o Ensure the Shapiro-Wilk test is included (
- SPSS automatically calculates Shapiro-Wilk when the sample size is less than 50.
- o Kolmogorov-Smirnov test is provided when the sample size exceeds 50).

How to Interpret the Results

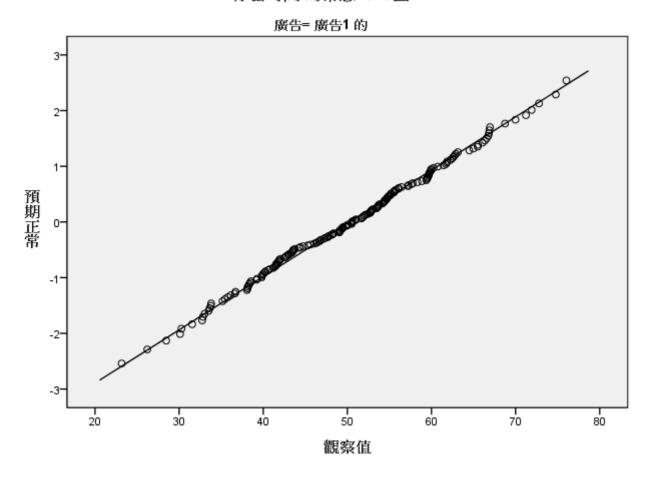
- In the output's Tests of Normality table:
 - Shapiro-Wilk's p-value (Sig.)
 - If p > 0.05, it indicates that the data conforms to a normal distribution.
 - If p ≤ 0.05, it indicates that the data significantly deviates from a normal distribution.

常態檢定

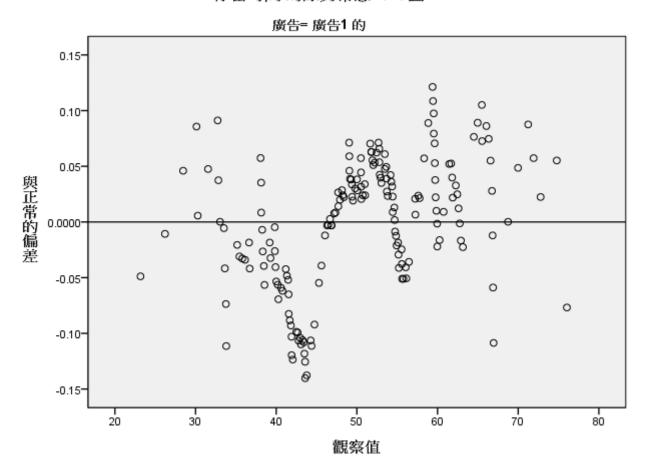

		Kolmogorov-Smirnov ^a				Shapiro-Wilk		
	廣告	統計量	自由度	顯著性		統計量	自由度	顯著性
停留時間	廣告1	.049	180	.200)*	.995	180	.805
	廣告2	.043	180	.200)*	.995	180	.827
	廣告3	.034	180	200	ر	.996	180	.932

Conclusion: Because the sample size is 450, refer to the

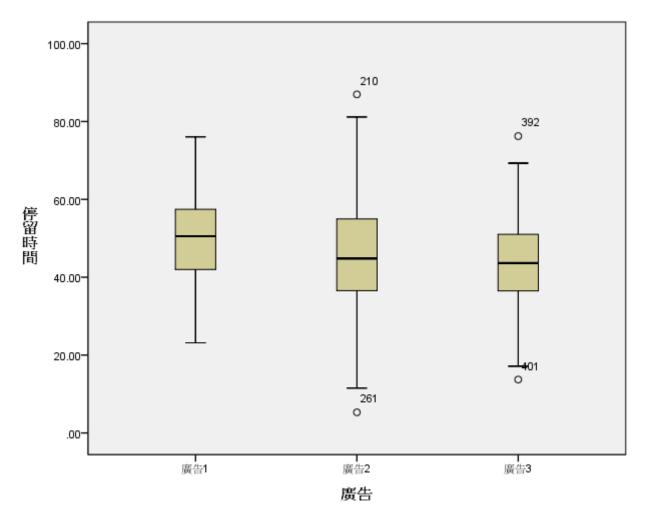
[Kolmogorov-Smirnov Test]


Significance p-value 0.2 > 0.05, so it indicates that the data conforms to a normal distribution

Graphical Proof 1: Histogram


Graphical Proof 2: QQ Plot (Data must be on a straight line to be normally distributed)

停留時間 的常態 Q-Q 圖



Graphical Proof 3: Detrended Normal QQ Plot (Data must be close to the horizontal 0 axis to be normally distributed)

停留時間 的除勢常態 Q-Q 圖

Graphical Proof 4: Box Plot (Data must have no outliers outside the quartiles to be normally distributed)

(4). [Concept]: If the data does not conforms to a normal distribution, and the variances are not equal, ANOVA test cannot be used; Welch ANOVA test must be used instead

- 3 Basic Assumptions of One-Way ANOVA:
- 1. Samples in each group are independent
- 2. Each sample comes from a normally distributed population
- 3. The variances of each population are equal

Advanced Diagram (ANOVA Test)

☑ 單因子變異數分析(One-Way ANOVA)檢定流程與事後檢定對照表

狀況	建議方法	事後檢定方式(Post Hoc Test)
母體≥3,常態分布、變異數相等	One-Way ANOVA	Tukey HSD (最常用)、Bonferroni、Scheffé
母體≥3,常態分布、變異數不等	Welch ANOVA	Games-Howell(適用變異數不齊)
母體≥3,非常態分布	Kruskal-Wallis Test	Dunn's Test (需 Bonferroni 或 Holm 校正)

(5). [SPSS Implementation]: Welch ANOVA Test

In SPSS, when dealing with 3 groups of population samples and wanting to perform one-way ANOVA, it is necessary to check whether the variances are equal (homogeneity of variance) before formal analysis.

This check is usually performed through Levene's Test.

SPSS Steps to Check if Variances are Equal (Levene's Test)

- SPSS Operation Steps:
 - 1. Open the Data File
 - 2. Click Menu: Analyze → Compare Means → One-Way ANOVA

- 3. In the pop-up window:
 - o Place the continuous variable in "Dependent List"
 - o Place the categorical variable in "Factor"

- 4. Click the [Options] button on the right
 - o Check "Homogeneity of variance test"
 - o You can also check "Descriptive"

Interpretation of Output Results (Levene's Test):

In the SPSS output table, you will see a section labeled: Test of Homogeneity of Variances

Which includes:

• F value, df1, df2, Sig. (p-value)

🤏 判讀原則:

Levene's Test 結果	判斷	說明
p ≥ 0.05	變異數相等 (等變異)	可使用 One-Way ANOVA
p < 0.05	變異數不等 (不齊性)	不宜使用傳統 ANOVA,建議改用 Welch ANOVA

Conclusion: Because the significance p-value is 0.003 < 0.05,

Therefore, it indicates: variances are unequal, ANOVA cannot be used,

Welch ANOVA must be used

(5). [SPSS Implementation]: Welch ANOVA Test

SPSS provides Welch ANOVA as an option for One-Way ANOVA.

Steps

- 1. Open SPSS and Load Data
- 2. Select Welch ANOVA
 - o Click Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA.

3. Set Variables

- o Dependent List: Select the continuous variable to be compared (e.g., test scores, income, etc.).
- o Factor: Select the categorical variable (e.g., groups).

4. Enable Welch Test

- o Click the Options button.
- o In the Statistics section, check Welch.

How to Interpret Welch ANOVA Results

In the output's "Robust Tests of Equality of Means" table:

- Welch test's p-value (Sig.)
 - o p > 0.05: No significant difference between groups.
 - o p ≤ 0.05: At least one group's mean is significantly different from the others.

平均值等式穩健檢定

停留時間]			
	統計量a	自由度1	自由度 2	顯著性
Welch	18.801	2	353.128	.000
a. 漸近分				

新折分佈上值。

Conclusion: Because the significance p-value is 0.00 < 0.05, Therefore, it indicates: at least one group's mean is significantly different from the others

- (6). [Implementation]: [Post-hoc Test: Games-Howell]
 - o Games-Howell Post-hoc Test
 - o If the Welch test is significant, it is recommended to use the

Games-Howell test for multiple comparisons (suitable when variances are unequal).

How to Perform the Games-Howell Test in SPSS

The Games-Howell post-hoc test can be performed through One-Way ANOVA.

Steps

- 1. Open SPSS and Load Data
- 2. Select One-Way ANOVA
 - o Click Analyze → Compare Means → One-Way ANOVA.

3. Select Variables

- Dependent List: Select the numerical variable to be compared (e.g., scores, measurements).
- Factor: Select the categorical variable used for grouping (e.g., different groups).

4. Enable Games-Howell Post-hoc Test

- o Click the Post Hoc button.
- In the Equal Variances Not Assumed area, check Games-Howell.
- o If you are unsure whether the variances are equal, it is recommended to check both Tukey (suitable for equal variances) and Games-Howell (suitable for unequal variances).

How to Interpret SPSS Games-Howell Test Results

SPSS will output a "Multiple Comparisons" table, where:

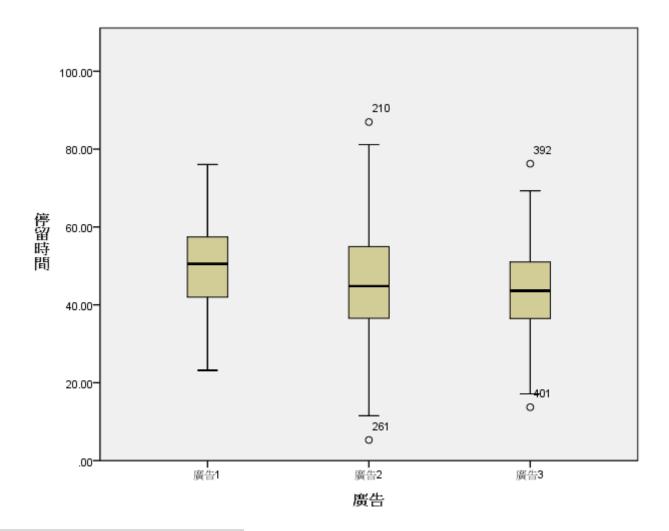
- Mean Difference: Shows the mean difference between two groups.
- Std. Error: Estimated error.
- Sig. (Significance p-value):
 - p > 0.05: No significant difference between the two groups.
 - o p ≤ 0.05: There is a significant difference between the two groups.

多重比較

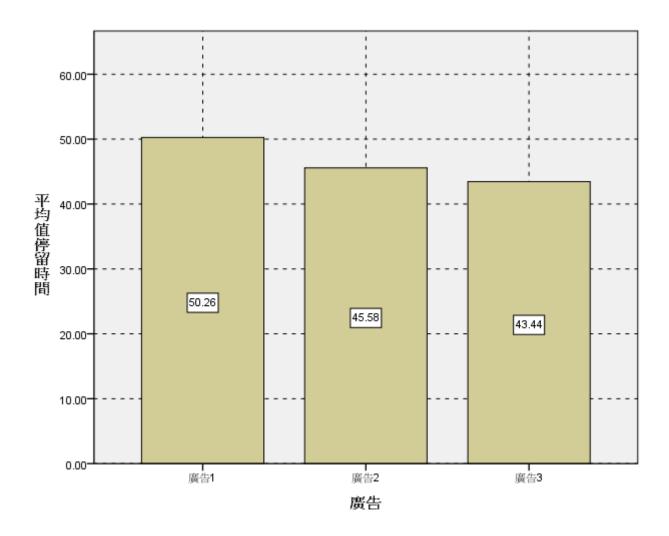
依變數: 停留時間 Games-Howell 檢定

		平均值差異 (I-				95% 信賴區間	
(I) 廣告	(J) 廣告	J)	標準誤	顯	著性	下限	上限
廣告1	廣告2	4.68167*	1.30763		.001	1.6031	7.7603
	廣告3	6.82050*	1.13391		.000	4.1518	9.4892
廣告2	廣告1	-4.68167	1.30763		.001	-7.7603	-1.6031
	廣告3	2.13883	1.33413		.246	-1.0018	5.2794
廣告3	廣告1	-6.82050 [*]	1.13391		.000	-9.4892	-4.1518
	廣告2	-2.13883	1.33413		.246	-5.2794	1.0018

^{*.} 平均值差異在 0.05 層級顯著。


Conclusion 1: Ad 1 vs. Ad 2, significance p-value 0.001 < 0.05, there is a significant difference between the 2 groups

Conclusion 2: Ad 1 vs. Ad 3, significance p-value 0.001 < 0.05, there is a significant difference between the 2 groups


Conclusion 1: Ad 2 vs. Ad 3, significance p-value 0.246 > 0.05, there is no significant difference between the 2 groups

比較組別 (I vs. J)	平均差異 (I-J)	p 值	顯著性	解釋
廣告1 vs 廣告2	4.68167	.001	✓ 顯著	廣告1的「停留時間」顯著高於廣告2
廣告1 vs 廣告3	6.82050	.000	✓ 顯著	廣告1的「停留時間」顯著高於廣告3
廣告2 vs 廣告3	2.13883	.246	🗙 不顯著	廣告2與廣告3的「停留時間」差異不顯著

(7). [Plotting]: Box Plot

(8). [Plotting]: Bar Chart

(9). Conclusion:

- 1. "Ad 1" has the highest appeal (significantly longer dwell time)
- 2. There is no significant difference between "Ad 2 and Ad 3"
- 3. It can be concluded that "ad content design" significantly affects customer dwell behavior, especially the difference between Ad 1 and the others is most obvious