“The budget is not just a collection of numbers, but an expression of our values and aspiratfions.”

- Jacoblew

“I think that’s what scares me: the randomness of everything. That the people who could be
important to you might just pass you by. Or you pass them by. " - Peter Cameron

Chapter 8
References, Randomization, Arrays and Filing

(Sorting, Binary Search, Statistical measures, and Electronic Voting)

Summary

This chapter takes you to build one of the most powerful constructs to store data called list or arrays. The sole
objective is to equip you with dealing with more real life problems where you actually need to work generically
on the list of data entries and access them for different types of measurements processing of real life datq,
which comes in abundance and storing it in some variables is impossible. This Array data structure will allow
you flexibility of accessing the data in such a way that it combines all the learnt constructs in the most
simplified manner with a lot of generalized versions of implementations. This construct will become the base of
solving so many amazing games like TicTactoe, Conway Game of life, Snakes and Ladders and Chess Game.

8.1 Aliasing/Reference Variable

e As we know that we can return only one value from a function, what if we needed to return multiple
values from a function?

e Until now we can not return multiple values from a function but from now on we will learn a new
concept or technique of aliasing a variable. We all know that a variable is a small place in a memory to
store data. It has a unique name, what if we name twice a single variable that is aliasing or referencing
a variable. We know the syntax of initializing a variable like int a, if we want to make an alias of a just
like this int&b this will make a second name for variable a that is b. From now on whatever the value of
a is the same value will be of b like we change value of a like a=16; and we output the value of b it will
show 16 on the console screen. Now if we change the value of b what will happen? As it is the second
name of b so the value of a will also changed. Now, we come to the point that returning multiple
values from a function actually there is no returning multiple value from a function. We just alias the
variable/s in function to operate them or change value there. It's actually like returning multiple value
from a function.

Type& refName = Variable

Here the pictorial view that what will happen if we reference a variable

a
inta; a
=> =>

int&b =a;

Now the variable a has another name b you can access this location by calling it a or b.

One more thing you can make reference to any kind of variable. Actually its main application is to access a
memory location outside its scope by making reference in other scope where we have to access.(We can also
call it a portal to another world(scope)).

Chapter 8

References and Arrays

2. Its Applications: 2-Example of multiple value returning function Such as Divide for returning two values
quotient and remainder.... Or any other example you want? That IFs chapter where 5 sections names and
Averages are passed and we needed to find which section got the highest Average/Aggregate and what

Average/Aggregate?
Code
1 | #include <iostream>
2 using namespace std;
3 int GCD(int n,int d);
4 int Smaller(int n1,int n2);
5 void ReduceFraction(int&n,int&d);
6 int main()
7 A
8 int numerator,denominator;
9 //this character is for saving the sign
10 char ch;
1" cout << >
12 cin>>numerator
13 >>ch
14 >>denominator;
15 ReduceFraction(numerator,denominator);
16 cout<< <<numerator<<
17 return O;
18 }
19 int GCD(int n,int d)
20 {
21 int result=0;
22 int limit=Smaller(n,d);
23 for(int cnt=1;cnt<=limit;cnt++)
24 {
25 if(n%cnt==0&&d%cnt==0)
26 {
27 result=cnt;
28 }
29 }
30 return result;
31}
32 void ReduceFraction(int&n,int&d)
33 {
34 int gcd=0;
35 gcd=GCD(n,d);
36 n=n/gcd;
37 d=d/gcd;
38 }
39 int Smaller(int n1,int n2)
40 {
41 if(n1<n2)
42 return n1;
43 return n2;
44 }

Link:http://codepad.org/gx33APSS

Output

Enter a equation i.e 3/6: 11/99
our reduced fraction is 1/9

Description

<<denominator<<endl;

http://codepad.org/qx33APSS

Chapter 8 References and Arrays

Remainder/Quotient
Code

1 | #include <iostream>

2 using namespace std;

3 void divide(int&dvdnt,int&dvsr,int&rem,int&quo);
4 int main(

5

6 int dividend,divisor,remainder,quotient;

7 cout << 2

8 cin>>dividend

9 >>divisor;

0 divide(dividend,divisor,remainder,quotient);

1" cout<< <<quotient<< <<remainder<<endl;
12 return O;

13 }

14 void divide(int&dvdnt,int&dvsr,int&rem,int&quo)
15 {

16 rem=dvdnt%dvsr;

17 quo=dvdnt/dvsr;

18 }

Link http://codepad.org/SWsU5egu
Output

Enter the dividend and quotient :25 5
answer is 5 and remainder is @

Description

8.2 Populating Randomization and experimentations

1. rand() - Function

rand() is a builtin function of C++, which returns a pseudo-random integral number in the range of 0 to
RAND_MAX is a constant defined in <cstdlib>. Header file for rand() function is #include<cstdlib> or
#include<time.h>. According to standard library implementation, RAND_MAX is ???7?. So, it is fixed that the
number which rand() function will return\generate is less than 32767. Random number is generated by an
algorithm that returns a sequence of apparently non-related numbers each time it is called.

0O
o
o
)

#include<iostream>

#tinclude<cstdlib>

using namespace std;

int main()

{
cout << rand() << end];
cout << rand() << end];
cout << rand() << endl;
return O;

OCVWONOUELWNAQ

-

f 1st run

http://codepad.org/SWsU5egu

Chapter 8 References and Arrays

1
18467
6334

Output of 2nd run
1

18467
6334

Output of 3rd run
1

18467
6334

Link:

Description
In above code, from line 1 to 3 we have used some c++ libraries. #include<cstdlib> is for rand() function. At

line 4 int main() starts. From line 6 to 8 we have displayed some randomly generated values at console
which rand() has returned, and at line 9 we used return 0 which terminates our program. As we see, every
time when we run the program it produce same output. We will discuss in a while why is this happening.

Here RAND_MAX whose value is library-dependent, but is guaranteed to be at least 32767 on any standard
library implementation. If we want to set a range in between our demand, which we will get a randomly
generated number then we will use mod(%), which is as followed:

1 #include<iostream>
2 #include<cstdlib>
3 using namespace std;
4 int mainQ)
5 {
6 int vl = rand() % 100; // v1in the range 0 to 99
7 int v2 = rand() % 100 + 1; // v2 in the range 1 to 100
8 int v3 =rand() % 30 + ; // v3in the range 1985-2014
9 cout<<"vi= "<<vi<<endl;
10 cout<<v2="<<v2<<endl;
1" cout<<'v3= ""<<v3<<endl;
12 return O;
13 }
Output
= 41
= 68
= 1989
Description

In above code, from line 1 to 3 we used header files as we used before. At line 4 int main() starts. At line 6,
we use rand() % 100 it means we give the limit to the program that will only produce any number in the range
of 0 to 99. At line 7, this will generate number range of 1 to 100 and on next line it will produce number range
of 1985-2014. We can generate any range of number just by some calculations as like as we did in above
code.

Algorithm of Rand()

http://www.cplusplus.com/RAND_MAX

Chapter 8 References and Arrays

(using polynomials)
When RAND function is called then On backend, one polynomial is generated e.g.
(f(x)*2+g(x)+c). Here, “x” is seed. “Seed” is an initial value to start the process of generating the random
numbers. After some calculations from polynomial, it generate a very large number. So, that's why compiler
Further takes mod of this large number that's the way compiler may gives us a small random number that
we want.

ints =0;

int eval(int x)

{
return f(x) = (43 x5 + 73x*4 + 91x"3 + 41)%(RAND_MAX+1)

}
int rand()
{
return s = eval(s);
}

2. srand(int Seed) Function

As we know that, rand() generates same sequence of random numbers at every time when we run our code
because of same seed stored in a program. So here, we can use srand(int seed) function by which we can
change seed for generating random numbers using same header file as we used before for rand() function.
srand() function takes one integer value called seed as a parameter and return one integer value which this
function will generated randomly. But now here the difference is that we can change the seed at run time or at
compile time.

Remember

The algorithm of generating random number uses seed to generate the number. But once seed is set
in a program then it can't be change after compile time but this is user choice wherever he gives the
seed to the function, at a compile time or at run time.

Code

Chapter 8 References and Arrays

#include <iostream>
#include <cstdlib>
#include <time.h>>
using namespace std;
int main()
{
int seed=0;
cout << ;
9 cin >> seed;
10 srand(seed) ;
1" int random_no = rand();

0O NN D WN

13 cout << << random_no << endl ;
14 return O;

Output of 1st run
Enter the seed : 5
Random Number = 54

Output of 2nd run
Enter the seed : 7

Random Number = 61

Output of 3rd run
Enter the seed : 2

Random Number = 45

Link:

Description
In above code, this program is just ask you the seed and generate random number on the base of seed which
is enter by the user and shows us on console. It is clearly shown that on every seed there is different number

is generated.

3. time(0) Function

For srand(int) function you have you provide seed for execution otherwise your code will not run, it will give
you compile time error and also there is sequence behind every seed. So what if someone already knows the
sequence behind the seed. For example, you write a code for game in which dice is used, then what if
someone already knows that on which seed he wins then he will definitely choose that seed and will win
everytime. So by avoiding that kind of unfair thing C++ allow us to generate truly a random number by time(0)
function.

time(0) function generates the random number which is unpredictable but you can get whatever number you
want, by taking mod as like as we did before in rand() function topic . Actually, time(0) function return us the
time of system in seconds. When you mention srand(time(0)) on the top of the int main then you don't need
to enter seed every time when you run the code, it will calculate automatically “seed” for generating random
number. Now you will not get the same sequence at every time of execution because time function will not give
you the same time when you run your code again; time changes after every second so it is impossible that you
will get the same time as seed again and again. If you think a little bit then you will know that time(0) function
makes your life so easy for generating random numbers.

Remember

Chapter 8 References and Arrays

For use time(0) you must have to add a prototype #include<ctime> or #include<time.h> at start of
code where other prototypes are used.

Example of time(0) is as followed:
Code

#include <iostream>
#include<cstdlib>
#include<time.h>
using namespace std;
int main()
{

srand(time(0));

int random_no;
9 random_no = rand();

O NN DA WN

1 cout << << random_no << endl ;
12 return O;

Output of 1st run
Random number

28345

Output of 2nd run
‘Random number

28606

Output of 3rd run

‘Randum number 28701

Link:

Description

In this program, at line 9, this statement generates randomly seed for generating random number. And after
that we assign the random number to “random_no” called integer. At line 14, this statement gives us the
number to the console. so, you can see that at every time when we run the program it gives us the different
number and make our code much easier than before.

Code

Chapter 8 References and Arrays

1 | #include <iostream>

2 | #include <cstdlib>

3 | #include <time.h>

4 using namespace std;
5 void wait_sec(int sec);
6

7

8

int main()
{
int sec=0;
9

10 cout <<
1" cin >>sec;
12
13 cout << <<
14 wait_sec(sec) ;
15 cout << <<

17 return O;
18 }

20 void wait_sec(int sec)

21 {

22 int Start_Time=time(0);

23 while((time(0) - Start_Time) < sec)
24 {

25 }

26 }

Output for 1st run

After how many seconds you want to terminate the program : 2
Program starts ...!!

Program terminated ...!!

Process returned © (0x8) execution time : 2.585 s
Press any key to continue.

Output for 2nd run

fter how many seconds you want to terminate the program : 5
Program starts ...!!
Program terminated ...!!

Process returned © (0x0) execution time : 5.169 s
Press any key to continue.

Output for 3rd run

After how many seconds you want to terminate the program : 7
Program starts ...!!

Program terminated ...!!

Process returned @ (0x0) execution time : 7.181 s
Press any key to continue.

Chapter 8 References and Arrays

Link:

Description

In above code we use time(0) to make wait_sec() function. First this function asks you time in seconds for
execution of program by that you can see whether time(0) function give you correct time or not. When you give
time in seconds then present time will be stored in the “Start_time” named integer. Then at next line, this
statement calculate that, current_time(continuous time) -(minus) start_time(stored time when program starts)
is less than or greater than seconds(which user input). If less, than this loop will be continued but if greater,
than the while loop will break and termination message shows on console and your program will terminate. On
console, you can see that user inputed seconds is mostly equal to the program execution time.

8.3 Arrays

Simple Representations

In programming, what if we have to store a bulk of data of same type. For example if we have to store the
marks of 10 students or may be more, first method is you can make 10 variables of same data types which is
very painful method, another method is you can use Array. In C++ the syntax used to declare an array is given
below

Datatype array_name[const_int_size];

An array is collection of data of same type and same name. For example

float marks[10];

Here, we declared an array, marks, of float type and size is 10. Meaning, it can hold 10 floating-point values.

Types of Array

e Single Dimensional Array
e Multi Dimensional Array

In this chapter you are going to learn single dimensional array and the rest are in next chapters.

Accessing the Elements of Array

There are many methods to access the elements of array but in this chapter we are going to access it by
indices of array. As you see above we declared an array marks. The first element is marks[0] , second
element is marks[1] and so on.

Chapter 8 References and Arrays

Marks array have not any valve, it have garbage value at
every element because we didn't initialize the array. See
initializing array topic.

marks[0]

marks[1]

marks[9]

\

Mame of Index of array
array (Position of
element)

Remember

In C++ the first index of array is always zero not 1, as you see above marks[0] is the first element and
the last value will be at index size-1, like marks[9] is last value. We can think about these indices as
the offset (how long you have to move further) from the base address which the array name is
pointing towards.

Different Initializing methods

Using a Loop to Initialize the Array's Elements and Printing

Code
1 //Declaring an Array and Using a Loop to Initialize the Array’s Elements with zero
2 #include<iostream>
3 using namespace std;
4 int main()
5
6 int marks[10]; //array declaration
7 for(int a=0; a<10; a++)
8 {
9 marks[a] = 0; //using for loop to initialize the elements with zero
10 }
1" for(int b=0; b<10; b++)
12 {
13 cout << "[" << b << "] =" << marks[b] << end|I;
14 }
15 return O;
16 3}
Link

Chapter 8 References and Arrays

[e]
[1]
[2]
[3]
[4]
[5]
[€]
[7]
[8]
[2]

Description
In this program an array named marks is declared with 10 elements at line 6. At line 9 in place of index, we

pass variable a and it is replaced by its value when the loop iterates and all the elements declared zero. At line
13 we simply display the values of array again by using its indexes.

Initializing the elements of an array(with zero) with a declaration

Code
1 | //Program A. Declaring an Array and Initialize the Array's //Program B. Declaring an Array without Size and Initializing
2 | Elements with zero #include<iostream>
3 | #include<iostream> using namespace std;
4 | using namespace std; int main()
5 | int main() {
6|1 int marks[] = {55, 89, 54, 87, 100}; //array
7 int marks[10] = {0}; //array declaration declaration
8 for(int b=0; b<10; b++) for(int b=0; b<5; b++)
9 { {
1 cout << "[" << b << "] =" << marks[b] << endl; cout << "[" << b << "] =" << marks[b] << end];
0 } }
1 return O; return O;
1} }
2
Output A Output B
[e] =© [@] = 55
[1] =@ [1] = 89
[2] = @ [2] = 54
[3] =9 [3] = 87
[4] =@ [4] = 1le@
[5] =@
[6] =@
[7] =@
[8] = o
[°] =@

Description A
This program is same as above but with a little change you see on line 6 array marks is declared and
initialized all the elements with zero during deceleration

Remember
In C++ if you use any other number than zero during declaration it will not initialize all the elements
with that number, only zero is the special number in C++ which initialize all the elements with zero.

Description B

Chapter 8 References and Arrays

In this program array marks is declared at line 6 without giving the size and initialized few elements of array.
At line 7 we use for loop upto 5 iteration because elements in array are 5. We use 5 iteration to display
elements because we know we initialize total 5 elements inside parenthesis { }

Remember

In C++ if you not mention array size the compiler automatically detect the the size with it elements.
As you see above we didn’t mention the size of array and initialize 5 elements in array the compiler
automatically detect the size of array is 5.

Passing Arrays to Function

Write a function that print the elements of array upto it’s size

Code
1 //Passing an array to function and display
2 #include<iostream>
3 using hamespace std;
4 void PrintArray(int A[], int Size)
5
6 for(int a=0; a<Size; a++)
7 {
8 cout << "[" << a << "] =" << A[a] << endl;
9 }
10 }
11 int mainQ
12 {
13 int size = 5;
14 int marks[size] = {55, 89, 54, 87, 100}; //array declaration
15 PrintArray(marks, size);
16 return O;
17 }
18
ink:
Output
[e] = 55
[1] = 89
[2] = 54
[3] = 87
[4] = 1ee
Description

In this program function named PrintArray is created at line 4 and passed it an array and size of array, inside
this function for loop is used which iterated up to less than size because last index of array is always one less
than actual number. As you see at line 14 size variable is used in place to array size, it is another method to
give size to an array.

8.3.1 Initializing Different Lists

Write a program which displays a menu and Initialize the array with the following different values,
depending upon which option the user wants to test.

T1: Initialize with all array values to be zeroes {0,0,0,0,0, }
T2: {0,1,2,34,5........... }
T3: {1,2,3,4,5, ... }

T4: {2,4,6,8,10, ccccerrn.... }

Chapter 8 References and Arrays

T5: {10, 15, 20, 25, 30, 35, } Starting from 10 with 5 more than the previous value.
T6: {T*0, T*1, T*2, T*3, } where T is entered by the user
T7: {T"1, T*2, T*3, T4, } where T is entered by the user
T8: {2,3,5,7,11,13,17,19, } Save all the prime numbers

T9: {Assigning random values}

T10: {Assigning random Even numbers}

T11: {Assigning random numbers within a range}

*T12: {Assigning random prime numbers between first 1000 prime numbers}

Chapter 8

W O NONUN D WN

N aaoama a0 aga | =
OCwvoNOTULbd,WUNMIO

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
M
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

//Declaration and Initialization of Array
#include<iostream>
#tinclude<conio.h>
using namespace std;
void T1(int A[], int size);
void T2(int A[], int size);
void T3(int A[], int size);
void T4(int A[], int size);
void T5(int A[], int size);
void Té(int A[], int size);
void T7(int A[], int size);
bool IsPrime(int N);
void T8(int A[], int size);
void T9(int A[], int size);
void T10(int A[], int size);
void TN(int A[], int size);
void T12(int A[], int size);
void Menu();
void PrintArray(int A[], int Size);
int mainQ)
{
const int size = 10;
int Choice; bool Exit = false;
int arrayT[size]; //array declaration

do
{

Menu();

cin >> Choice;

switch (Choice)

{

case 1:
T1(arrayT, size);
break;

case 2:
T2(arrayT, size);
break;

case 3:
T2(arrayT, size);
break;

case 4:
T2(arrayT, size);
break;

case 5:
T2(arrayT, size);
break;

case 6:
T2(arrayT, size);
break;

case 7:
T2(arrayT, size);
break;

case 8:
T2(arrayT, size);
break;

case 9:
T2(arrayT, size);
break;

case 10:
T2(arrayT, size);

References and Arrays

Chapter 8 References and Arrays

61 break;
62 case 0:
63 Exit = true;
64 break;
65 }
66 PrintArray(arrayT, size);
67 cout << ;
68 _getch();
69 }
70 while (Exit != true);
71
72 return O;
73}
74 void Menu()
75 {
76 system();
77 cout << << endl
78 << << endl|
79 << << endl|
80 << << endl|
81 << << endl|
82 << << end|
83 << << endl|
84 << << end|
85 << << end|
86 << << end|
87 << << end|
88 << << endl|
89 << <<end|
90 << ;
91 }
92
93 void PrintArray(int A[], int Size)
94 {
95 for (int ai = 0; qi<Size; qi++)
96 {
97 cout << << Qi << << A[ai] << endl;
98 }
99 }
100 void T1(int A[], int size)
101 {
102 for (int ai = 0; ai<size; qi++)
103 A[ai] = 0;// we have done this before do it yourself
104 }
105 void T2(int A[], int size)
106 {
107 for (int a = 0; a<size; a++)
108 Ala] = a;
109 }
110 void T3(int A[], int size)
m {
12 for (int a = 0; a<size; a++)
113 Ala]l=a+1;
14 }
115 void T4(int A[], int size)
116 {
17 for (int a = 0; a<size; a++)
118 {
119 Alal=(a+1)*2;

120 }

Chapter 8

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
M
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

}

void T5(int A[], int size)

{

}

for (int a = 0; a<size; a++)
{

A[a]l=(5*a) +10;
}

void Té(int A[], int size, int num)

{

}

for (int a = 0; a<size; a++)
{
A[la] =num * qa;

}

void T7(int A[], int size, int num)

{

}

for (int a = 0; a<size; a++)
{
Ala] =num *(a +1);

}

bool IsPrime(int N)

{

}

if (N<=1)
{

return false;
}
for(intd=2;d<=N/2;d++)
{

if (N%d == 0)

{

return false;

}

}

return true;

void T8(int A[], int size)

{

}

intk=0;
for (int i = 0; i<size; i++)
{
for (int j = k; true; j++)
{
if (IsPrime(j))
{
Alill =j;
k=j+1;
break;
}
}

}

void T9(int A[], int size)

{

for (int i = 0; i<size; i++)
{

A[i] = rand();
}

References and Arrays

Chapter 8 References and Arrays

181 }

182 void T10(int A[], int size)

183 {

184 int z;

185 for (int i = 0; i<size; i++)

186 {

187 while (1)

188 {

189 z = rand();

190 if(z% 2==0)
191 {

192 Ali] =z;
193 break;
194 }

195 }

196 }

197 }

198 void T1(int A[], int size, int start, int end)
199 {
200 int z, rangeSize = start-end+1;
201 for (int i = 0; i<size; i++)
202 {

203 z = rand()%rangeSize + start;
204 Ali] =z;
205 }

206 }

Here are the possible selections of initialization which will initialize the array accordinly.

T T2 T3 T4 T5

[e] = @ [e] =@ [e] =1 [@] = 1@ enter any number of your choice: 65
[1]1=© [1] =1 [1] =2 [1] =15 [e] =@

[2] =@ [2]=2 [2]=3 [2] =20 [1] =65

[31=e [3]=3 [3]=4 [3]=25 [2]=130

[4]=0 [4] =4 [4]=5 [4] =30 [3] =755

[s1=0 [s]=5 [5]=6 [5]=35 L4=7%

[6] =0 [g] =6 [6]=7 [61=48 0 <o

[71=0 [7]=7 [71=8 [71=45 1.0 i

[8] =@ [g] =8 [8] =9 [B]l=50 [0 op

[9]1 =8 [9] =9 [9] =10 [9] = 55 [s] = 585

T6 T7 T8 T9 and so on.
enter any number of your choice: 15 [@e] = 2 ['B] = 41 [e] = 6334
[e] = 15 [1] =3 [1] = 18467 [1] = 26580
[1] = 38 [2] =5 [2] = 6334 [2] = 15724
E:} f':; [3] =7 [3] = 26500 [3] = 11478
[4] = 75 [4] = 11 [4] = 19169 [4] = 29358
[5] = 9@ [5] = 13 [5] = 15724 [5] = 26962
[6] = 1e5 [6] = 17 [6] = 11478 [6] = 24464
[7] = 120 [7] =19 [7] = 29358 [7] = 11942
[8] = 135 [8] = 23 [8] = 26962 [8] = 5436
[9] = 15e [9] = 29 [9] = 24464 [9] = 14684
Description

In this program two function is created first T1, it is used to initialize the array and second function PrintArray

Chapter 8 References and Arrays

is used to print the values of array as you see in output. In int main these two functions is called and passed
them array and size.

Description
In this program we have to initialize all the elements of array with whole numbers up to size, so that why at line

25 iteration variable a is used to store, when the loop iterates from 0 to size these values store in array one by
one. As you see the output, array stores whole numbers up to 9.

Description
In this program we have to initialize all the elements of array with integer numbers up to size, so that why at

line a + 1 is used to store, when the loop iterates from 0 to size these values store in array with addition one
because first iteration starts from zero. As you see the output, array stores integers 10.

Description
In this program we have to initialize all the elements of array with even numbers up to size, so that why at line

(a + 1) * 2 is used to store, when the loop iterates from O to size these values store in array with addition one
and multiply by two because first iteration starts from zero. As you see the output, array stores even integers
from 2 to 20.

Description
In this program we have to initialize first element with 10 and rest are with addition 5 up to size, so that why at

line (5 * a) + 10 is used to store, when the loop iterates from O to size these values store in array with addition
ten and multiply a with five because first iteration starts from zero. As you see the output above.

Description

In this program we have take input(number) from user and multiply it with whole numbers one by one, so that
at line num * a is used to store in array, when the loop iterates from 0 to size these user entered number(num)
multiply with a(loop iteration) and store in array. As you see the output above.

Description
In this program we have take input(number) from user and multiply it with whole numbers one by one, so that

at line 25 num * a is used to store in array, when the loop iterates from O to size these user entered
number(num) multiply with a(loop iteration) and store in array. As you see the output above.

D ription

Description
In this program at line 27 we are assigning random values to every element(index) of array arrayT9. The rest

of the code are same as previous programs.

Description
In this program we are assigning even random values to every element(index) of array arrayT10. Inside for

loop at line 24 an infinite loop is applied which iterate until z do not store even random number which checked
using condition(z%2 == 0) at line 27, when the even random value is stored in array the infinite while loop
breaks. This process is repeated until for loop is finished.

Remember
In C++ when array is passed to function than it is actually passed by reference, which means if you
change something in array in function it is automatically changed in int main too. Altheugh-this-is-a

Chapter 8 References and Arrays

Chapter 8 References and Arrays

8.3.2 Bubble Sort

Before starting Bubble Sort Algorithm, first we have to learn about Swap Algorithm.

8.3.2.1 Swap

In this algorithm we change the value of both variables. Firstly we declare a new variable t and assign value of
first variable a to this newly declared variable t and then assign value of second variable b to first variable a
and then assign value of newly declared variable t to second variable b. Thus without losing any value we
exchange values of both variables a and b.

Code
1 #include<iostream>
2 using namespace std;
3 void swap(int &a,int &b);
4 int main()
5 {
6 int V1=20,V2=
7 cout<<"before swap : "<<"V1="<<VI<" V2="<<V2<<endl;
8 swap(V1,V2);
9 cout<<"after swap : "<<"Vi="<<VI<" V2="<<V2<<endl;
10 return O;
1 }
12 void swap(int &a,int &b)
13 {
14 int t=q;
15 a=b;
16 b=t;
17 }
Output

before swap : V1= 20 V2=38
after swap : V1= 30 V2=20

Link

Description
In above code at line 1 and 2 we have used some C++ libraries. At line 3 we have declared function swap and

from line 4 to 11 int main() of this program is written. At line 6 we have declared two variables V1 and V2, and
assigned them values 20 and 30 respectively. At line 7 we have displayed values of these variables on console
and at line 8 we have passed these variables to swap() which exchanges their values. At line 9 we displays
the exchanged values of variables V1 and V2 on console and at line 10 we terminates the program by return
0. At line 12 we have placed code of swap(), whose algorithm is described in initial description of this topic.

8.3.2.2 Bubble Sort

In this topic we will describe how to sort in ascending order. Let’s find methods to sort numbers. One way to
sort a series of numbers is by using Bubble Sort Method. This method is related to bubbles formed while
boiling water. As we know while boiling water, the molecules whose kinetic energy is high is converted to
bubbles first. Similarly in this method the biggest number is placed first at last position. In this method first we
compare two numbers from starting positions. If first number is bigger than second numbers we exchange their
positions (can be done by using swap() function) else it is confirmed that first number is smaller than second
number so we do nothing. We have to do comparison between these till total numbers -1 size because we
have to compare between two numbers, if we do this comparison till total numbers then at last comparison we
will have only one number and we cannot do comparison. When we have done with this comparison first time
till total numbers -1 time then we have placed biggest number at last position. We have to repeat the same

Chapter 8 References and Arrays

steps for other numbers i.e. total numbers -2 because when we have placed second smallest number at its
right position than smallest number is already placed at its right position.
Code of Bubble Sort Algorithm is given below:

Code
1 #tinclude<iostream>
2 using namespace std;
3 int init(int A[],int a_size);
4 void swap(int &a,int &b);
5 void bubble_up(int A[1,int a_size);
6 void sort(int A[],int a_size);
7 void print_array(int A[],int size_of_array);
8 int main()
9 {
10 int A[5];
1" int a_size=5;
12 init(A,a_size);
13 cout <<"before sort : ";
14 print_array(A,a_size);
15 cout <<endl;
16 sort(A,a_size);
17 cout <<"after sort : ";
18 print_array(A,a_size);
19 cout <<endl;
20 return 0;
21 }
22 void swap(int &a,int &b)
23 {
24 int t=q;
25 a=b;
26 b=t;
27 }
28 void bubble_up(int A[,int a_size)
29 {
30 for(int i=0;i<a_size-1;i++)
31 {
32 if(A[I]>ALi+1])
33 swap(A[il,AL[i+1]);
34 }
35 }
36 void sort(int A[],int a_size)
37 {
38 for(int i=0;i<a_size;i++)
39 bubble_up(A,a_size);
40 }
41 void print_array(int A[1,int size_of_array)
42 {
43 for(int i=0;i<size_of_array;i++)
44
45 cout <<A[i]<<"";
46 }
47 }
48 int init(int A[],int a_size)
49
50 cout<<"enter "<<a_size<<" numbers : ";
51 for(int i=0;i<a_size;i++)
52 {
53 cin>>A[i];
54 }
55 }
Output

nter 5 numbers : 5 3
before sort : 5§ 3 6 9
after sort : 1 3 56 9

691
1

Chapter 8 References and Arrays

Link:

Description

In above code from line 1 to 7 we have defined some library functions and some prototypes of function we will
use in this function. From line 8 to 21 int main() is written. At line 10 we initialize an array A of 5 elements. At
line 11 we declared an integer a_size and initialize its value by 5 which we use as size of array when passing
array A to a function. Ata line 12 we call init() which initialize array by getting inputs from users. At line 12 we
display a message at console and at line 13 we call print_array which displays value of array on console. At
line 16 we call sort() which sorts array A using Bubble Sort Algorithm, as described above. At line 17 we
display a message on console and at line 8 we again call print_array which at this time displays sorted array
on console and then we termite our program by return O.

Exercise
Your task is to initialize array with random values using rand(), by making changing in init()
function.

8.3.4 Selection Sort

In this type of sorting we check the smallest number from given numbers and place that smallest number at
first position i.e. swap the position of smallest number with first number. Then we will find the second minimum
number and place it at second position(here again we call swap function). We will continue this process till
total numbers -1 because when we place second biggest number at its correct position then biggest number is
already placed at its right position. For this we need a Selection_Sort function which will get array of numbers
and its size and then it will call further call swap function after determining index of array where minimum
number is saved. We will also need print_array, init functions which we already used in Bubble Sort
algorithm for same purpose.

Code

Chapter 8

1 #include<iostream>

2 using namespace std;

3 void print_array(int A[1,int size_of_array);
4 void swap(int &a,int &b);

5 int init(int A[],int a_size);

6 void Selection_Sort(int A[],int size);

7 int Find_min_Inx_Range(int A[1,int si,int ei);
8 int main O

9 {

10 int A[5];

1" int a_size=5;

12 init(A,a_size);

13 cout <<"before sort : ";

14 print_array(A,a_size);

15 cout <<endl;

16 Selection_Sort(A,a_size);

17 cout <<"after sort : ";

18 print_array(A,a_size);

19 cout <<endl;

20 return O;

21 }

22 void print_array(int A[],int size_of_array)
23

24 for(int i=0;i<size_of_array;i++)
25

26 cout <<A[i]<<" ";

27 }

28 }

29 int init(int A[],int a_size)

30

31 cout<<"enter "<<a_size<<" numbers : ";
32 for(int i=0;i<a_size;i++)

33 {

34 cin>>A[i];

35 }

36 }

37 void Selection_Sort(int A[],int size)

38 {

39 int min;

40 for(int i=0;i<size-1;i++)

4 {

42 min=Find_min_Inx_Range(A,i,size-1);
43 swap(A[il,A[min]);

44 }

45 }

46 void swap(int &a,int &b)

47 {

48 int t=q;

49 a=b;

50 b=t;

51 }

52 int Find_min_Inx_Range(int A[1,int si,int ei)
53 {

54 int min=A[si];

55 int min_index=si;

56 for(int i=si;i<=ei;i++)

57 {

58 if(min>A[i])

59 {

60 min=A[i];

61 min_index=i;

62 }

63 }

64 return min_index;

65 }

References and Arrays

Chapter 8 References and Arrays

enter 5 numbers : 3 2
before sort : 3 2 9 6
after sort : 1 2 3 6 9

961
1l

Link:

Description

In above code from line 1 to 7 we have defined some c++ library functions and some prototypes of function
which we will use in our code. From line 8 to 21 int main() of this program is described. In int main() at line
10 we have declared an array of size 10 and line 11 we declared a_size which represents size of array. At line
11 we call init() which initializes this array. At line 13 we print a message on console and at line 14 we call
print_array which print numbers stored in array at console. At line 16 we call Selection_Sort() which sorts
array according to above described algorithm using for loop,Find_min_Inx_Range() and swap(). And at
line 17 we display a message on console and at line 19 we again call print_array which displays sorted
array on console.

8.3.5 Finding Extreme Values

Write and test the following function that returns through its reference parameters both the maximum and
the minimum values stored in an array:
void getExtremes(int & min, int & max, int a[], int n);

Code
/*

Declaration, Random Initialization and finding minimum
and maximum value from an Array

*/

#tinclude<iostream>

#tinclude<stdlib.h>

using namespace std;

void init(int A[], int size);

int minValue(int A[], int size);

10 int maxValue(int A[], int size);

11 void getExtremes(int & MIN , int & MAX, int a[], int size);
12 void PrintArray(int A[], int size);

13 int main(Q)

OV OONONUVDAWN A

14 {

15 int size;

16 cout << "enter array size: ";

17 cin >> size;

18 int A[size];

19 init(A, size);

20 PrintArray(A, size);

21 int min=0, max=0;

22 getExtremes(min, max, A, size);

23 cout << endl << endl << "minimum value is:" << min << endl;
24 cout << "maximum value is:" << max << endl;
25 return O;

26 }

27 void init(int A[], int size)

28 {

29 for(int i=0; i<size; i++)

30 {

31 A[i] = rand()%100;

32 }

33 }

34 int minValue(int A[], int size)
35 {

Chapter 8 References and Arrays

36 int min = A[0];
37 for(int i=1; i<size; i++)
38 {
39 if(A[i]J<min)
40 {
4 min=A[i];
42 }
43 }
44 return min;
45
46 int maxValue(int A[], int size)
47 {
48 int max = A[0];
49 for(int i=1; i<size; i++)
50 {
51 if(A[i]>max)
52 {
53 max=A[i];
54 }
55 }
56 return max;
57 }
58 void getExtremes(int & MIN , int & MAX, int a[], int size)
59
60 MIN = minValue(a,size);
61 MAX = maxValue(a,size);
62 }
63 void PrintArray(int A[], int size)
64 {
65 for(int b=0; b<size; b++)
66 {
67 cout <<endl<< "["<<b<<"] =" << A[b];
68 }
69 }
Output
enter array size: 18
[e] = 41
[1] = 67
[2] = 34
[3] =@
[4] = &9
[5] = 24
[6] = 78
[7] = 58
[8] = 62
[9] = 64

minimum value is:@
maximum value is:78

Link:
Description

8.3.6 Removing a number from an array

Write and test the following function that removes an item from an array
void remove(float a[], int& n, int i);

Chapter 8 References and Arrays

The function removes a([i] by shifting all the elements above that position are down and decrementing n.

Actually, In this algorithm we just have to remove a number from an array. Now firstly to initialize an array we
will take size of an array from the user and then we will take number of inputs in an array at size times. Then
we will ask user to enter the number which he/she wants to remove. Then we will check that number from the
array and if the number found we will remove it by just assigning the value at the current position of that
number which is very next to it and will do this same thing at size-current_position time and at last decrease
one from the size.

After that we will again check the array and again if the number is found then we will do the same steps as
above to remove the number from array and we will check array at the size times.

Code
1 #tinclude <iostream>
2 using namespace std;
3 void init(float a[J,int n);
4 void ShiftArray(float a[1,int& n,int x);
5 void RemoveNumber(float q[], int& n, int i);
6 void PrintArray(float a[],int n);
7 int mainQ)
8 {
9 int n=0;
10 float num=0;
1" cout<<"Enter size of array:";
12 cin>>n;
13 float array[n];
14 init(array,n);
15 cout<<"enter number to remove”;
16 cin>>num;
17 RemoveNumber(array,n,num)
18 m);
19 PrintArray(array,n);
20
21 void init(float a[], int n)
22 {
23 cout<<"Enter Size Values: ";
24 for(int i=0;i<n;i++)
25 {
26 cin>>a[i];
27 }
28 }
29 void ShiftArray(float a[1,int& n,int x)
30 {
31 for(int i=x;i<n-1;i++)
32 {
33 al[i]=a[i+1];
34 }
35 n--;
36 }
37 void RemoveNumber(float q[], int & n, int i)
38 {
39 for(int x=0;x<n;x++)
40 {
41 if(a[x]==i)
42 {
43 ShiftArray(a,n,x);
44 }
45 }
46 }
47 void PrintArray(float a[],int n)
48 {
49 cout<<"\nArray after removing:";
50 for(int i=0;i<n;i++)
51 {
52 cout<<ali];
53 }

Chapter 8 References and Arrays

Output

Enter size of array:5
Enter values of array:

wioBwW ke

enter number to remove:3
Array after removing:1245

Description
In above code from line 1 to 6 we have defined some library functions and some prototypes of function we will

use in this program and from 7 to 19 int main() is written. In int main() at line 14 we have call a function Init
and send an array and n as a parameter to it. This function initializes the array by the numbers entered by the
user. And then at line 16 we have ask user to enter the number which he wants to remove from array. Now to
remove a number from the array. we have call a function RemoveNumber at line 17 and send array, n and
that number num as parameter to this function. Now this function will check that if any of the array element
match with that number then it will call a further function ShiftArray at line 42 and send a,n and x as a
parameter to it. This function will assign the value at current position which is very next to its address at line 32
at n-1 times starting from x. And at last decreases one from the n.

8.3.7 Rotating inside an array

Write and test the following function

void rotate(int a[], int n, int k);

The function “rotates” the first n elements of the array a, k positions to the right (or —k positions to the left if k
is negative). The last k elements are “wrapped” around to the beginning of the array. For example, the call
rotate(a,8,3) would transform the array {22,33,44,55,66,77,88,99} into {77,88,99,22,33,44,55,66}. The call
rotate(a,8,-5)would have the same effect.

Code

Chapter 8 References and Arrays

1 #include <iostream>

2 using namespace std;

3 void Print(int Array[1,int Size)//It will Print Array Values on the screen
4 A

5 for(int i=0;i<Size;i++)

6 {

7 cout<<Arrayl[i]<<"";

8 }

9 cout<<endl;

10

1" void LeftRotate(int Array[1,int Size)//It Will rotate left the array values
12 {

13 int temp=Array[0];

14 for(int i=0;i<Size-1;i++)

15 {

16 Array[i]=Array[i+1];

17 }

18 Array[Size-1]=temp;

19 1}

20 void RightRotate(int Array[1,int Size)//It will rotate right the values of array
21 {

22 int temp=Array[Size-1];

23 for(int i=0;i<Size-1;i++)

24 {

25 Array[Size-1-i]=Array[Size-2-i];

26 }

27 Array[0]=temp;

28

29 void MainRotator(int Array[],int Size,int K)//It is the main function in which we mainly rote values
30 {

31 if(K>=0)

32 {

33 for(int i=0;i<K;i++)

34 {

35 RightRotate(Array,Size);
36 }

37 }

38 else

39 {

40 for(int i=K;i<0;i++)

4 {

42 LeftRotate(Array,Size);
43 }

44 }

45 Print(Array,Size);

46

47 int main()

48 {

49 int Size=0;

50 cout<<'enter size: ";

51 cin>>Size;

52 int Array[Size];

53 cout<<'enter "<<Size<<" values: ";
54 for(int i=0;i<Size;i++)

55 {

56 cin>>Array[il;

57

58 int K=0;

59 cout<<"enter how many times YOu want to Rotate :"<<endl;
60 cout<<"enter Positive value for rotating right and negative to rotate left:";
61 cin>>K;

62 MainRotator(Array,Size,K);

63 return O;

Chapter 8 References and Arrays

Link

Description

In it we firstly enter values from user then we enter our main function MainRotator in it there are further two
more functions first the left rotate and right rotate these function rotate our array left or right once in left
rotate function we save first value in temp then we move all our values using for loop to left and at last
assign temp to the last value on array and in the same but opposite way to move right in right rotate
function. Then at last came our main rotate function in it we rotate the array using MainRotator function k
times or according to the value entered of k. And at last we print the result on the screen using the print
function.

Output

Ienter size: §

enter 5 values: 123 45

jenter how many times YOu want to Rotate :

ienter Positive wvalue for rotating right and negative to rotate left: 3

34512

8.3.8 Appending an Array

Write and test the following function

void append(int a[], int & m, int b[], int n);

The function appends the first n elements of the array b onto the end of the first m elements of the array a. It
assumes that a has room for at least m + n elements. Note that it must also change the size of the first array
to m+n. For example, if a is {22,33,44,55,66,77,88,99} and b is {20,30,40,50,60,70,80,90} then the call
append(a,5,b,3) would transform a into {22,33,44,55,66,20,30,40}. Note that b is left unchanged and only n
elements of a are changed.

Code

Chapter 8

VONOULAWN =

#tinclude <iostream>
#tinclude<stdlib.h>
using namespace std;
void Print_Array(int A[],int Size)
{

for(int i=0;i<Size;i++)

{

COUt<<"A"<<"[”<<i<<"]\t";

}

cout<<end|;
for(int i=0;i<Size;i++)

COUt<<A[i]<<" \t";
]
void Initialize(int A[],int size,int r)
{

for(int i=0;i<size;i++)

A[i]=rand ()%r;

}
void Append(int A[],int B[],int x,int y)

{

int size;

size=x+y;

int C[size];

for(int j=0;j<x;j++)
Chi1=ALl;

for(int i=0;i<y;i++)

C[x+i]=B[i];

Print_Array(C,size);

int main()

{ . .
int size,n;
cout<<"Enter Array size: ";
cin>>size;

int A[size],B[size];
cout<<"Enter range: ";
cin>>n;
Initialize(A,size,n);
Initialize(B,size,n);
Print_Array(A,size);
cout<<endl;
Print_Array(B,size);
cout<<endl;

int x,y;

cout<<"Enter any two values: ";

cin>>x>>y;
Append(A,B,x,y);
cout<<endl;
return O;

References and Arrays

Chapter 8 References and Arrays

Output

Enter Array size: 11

Enter range: 11

Ale] A[1] A[2] A[3] A[4] A[5] Ale] A[7] A[8] A[9] A[le]

8 9 9 1 7 5 5 10 1 0 7
A[@] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[1e]
7 5 8 6 7 3 7 9 2 7 7

Enter any two values: 5 3
Ale] A[1] A[2] A[3] A[4] A[5] A[6] A[7]
8 9 9 1 7 7 5 8

Description
In this code first we have to make 2 arrays. Than we will pass the arrays one by one to a function named

initialize. This function will take 3 parameters. First one is array and the second one is array size. The third
one is the range of numbers in that array. After returning from this function both arrays will be initialized with
some random values. From line number 52 to 54 we are asking the user to enter 2 values (x and y). We are
actually asking the user that how many numbers he wants to get from Array1 and Array2 to display it on
Array3. Than we will pass both of these values and oth Arrays to the function named Append. In this function
first we will make an array of size x+y. After that we will create a for loop which will iterate up to x and copy the
first x elements of Array1 to Array3. Than we will create another for loop which will iterate up to y but this time
we will copy the elements of Array2 to Array3 and we will copy the values to the next index where we left at the
first loop. That why we have written C[x+i]=B[i] at line 34.

8.3.9 Frequency of an element Inside an array, Mode/Median of Population

Write and test the function

int frequency(float q[], int n, int x);

This function counts the number of times the item x appears among the first n elements of the array a and
returns that count as the frequency of x in a.

Finding the Mode

Code
1 #include <iostream>
2 using namespace std;
3
4 void init(float a[],int n);
5 int frequency(float a[], int n, int x);
6 int FindingMode(float a[],int n);
7 int main()
8 {
9 int n=0;
10 int value=0;
1" int count=0;
12 int mode_value=0;
13 cout<<"Enter size of array:”;
14 cin>>n;
15 float array[n];
16 init(array,n);
17 mode_value=FindingMode(array,n);
18 if(mode_value==
19 cout<<”"None";
20 else
21 cout<<”"Mode of the array is:"<<mode_value;
22 }
23 void init(float a[], int n)
24 {
25 cout<<"Enter values of array:";

26 for(int i=0;i<n;i++)

Chapter 8

27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62

Output

}

int frequency(float a[], int n, int x)

{

}

{

cin>>ali];

}

int count=0;
for(int i=0;i<n;i++)
{

if(a[i]==x)

{

count++;

}
}

return count;

int FindingMode(float a[],int n)

{

int mode=0;

int count=0;

int count2=0;
for(int i=0;i<n;i++)

{

count=frequency(a,n,a[i]);

if(count>=count2)

{
mode=a[i];
count2=count;

}

if(count2==

{

return count2;

}

return mode;

Enter size of array:5
Enter values of array:

1l

2
3
2
2

Mode of the array is:2

Description
Finding the most repetitive number from the given data is simply known as Mode. Now in this program we he

References and Arrays

to find the mode of the given data in an array. Hence for that in code we have make a function FindindMode
from line 43 to 61 and send q[](array) and n(size) as a parameter to that function. This function checks the
frequency of every element of an array and stores it in a variable, Now to for checking the frequency he have

further called a function frequency at line 50 and send a[], n and element of array a[i] as parameter and as

a result this function return the frequency in a variable count, and if the count greater than or equal to the
count2 than mode will be equal to the a[i] at line 53 and count2 will be equal to count at line 54 and the
same thing will happens for n times in loop. Now if the count2 will equal to 1 than it means there will be
repetition in the array’s element and function will return count2 to the main ,but if it is not equal to 1 than it

will return the number which is in the variable mode.

Finding the Median

Code

Chapter 8

VONOUNDHDWN=

#include <iostream>
using namespace std;

void init(float a[],int n);

void swap(float& a,int& b);

void bubble_up(float A[1,int a_size);
void sort(float A[1,int a_size);

void PrintArray(float a[],int n);

int FindMedian(float q[], int n);

int main()

{
int n=0;
cout<<"Enter size of array:";
cin>>size;

float array[n];
init(array,n);
PrintArray(array,n);
cout<<"\nMedian of array is:"<<;
}
int FindMedian1(float a[], int n);
{
Sort(a, n); // This will change the original Array
return a[n/2];

}

int LessThanFrequency(int a[], int n, int T)

{
int count = 0;
for(int i=0; i<n; i++)

if(a[i]<T) count++;

}

return count;

}

int FindMedian2(float a[], int n);

References and Arrays

// This assumes that all the elements in an array are unique or the Median doesn’t repeat.

for(int i=0;i<n; i++)

{

if(LessThanFrequency(a, n, a[i]) == (n+1)/2-1) // This algo will use the array for read-Only purpose.

return ali];

}
}
void init(float a[], int n)
{
cout<<"Enter values of array:";
for(int i=0;i<n;i++)
{
cin>>a[i];
}
}
void PrintArray(float a[J,int n)
{
for(int i=0;i<size;i++)
{
cout<<ali];
}
}

Chapter 8 References and Arrays

Enter size of array:5

Enter values of array:

LI R TR X]

12345

Pedian of array is:3

Description
Finding the Middle value from the sorted data is simply knows as Median. Now in this program we have to

find the median of the data given an array. The data is entered by the user so it may be not sorted. Hence for
that we will first sort our data and for sorting, In code we have already makes a function sort which will sort the

given data in decreased numerical order itself by calling some further function as explained in 8.3.2.2and
send array and n as a parameter to it on line 16. Now as we have to find the middle value of this function now
forthat will fill just,

8.3.10 Is the given date symmetric

Write and test the following function:

bool isSymmetric(int a[], int n);

The function returns true if and only if the array obtained by reversing the first n elements is the same as the
original array. For example, if a is {22,33,44,55,44,33,22} then the call isSymmetric(a,7) would return true,
but the call isSymmetric(a,4) would return false. Warning: The function should leave the array unchanged.

Code

bool IsSymmetric(int Array[1,int Size)//it will check if the function is symmetric

Chapter 8
1 #include <iostream>
2 using namespace std;
3
4 A
5 for(int i=0;i<Size/2;i++)
6 {
7 if(Array[i]'=Array[Size-i-1])
8 {
9 return false;
10 }
n }
12 return true;
13 }
14 int main()
15 {
16 int Size=0;
17 cout<<'enter size: ";
18 cin>>Size;
19 int Array[Size];
20 cout<<’enter "<<Size<<" values: ";
21 for(int i=0;i<Size;i++)
22
23 cin>>Arrayl[il;
24 }
25 if(IsSymmetric(Array,Size))
26 {
27 cout<<"Array is Symmetric’<<endl;
28 }
29 else
30 {
31 cout<<"Array is not Symmetric'<<end|;
32 }
33 return O;
34 }
Link
Output
enter size: &

enter 5 values: 1 2 3 2 1
Array is Symmetric

enter size:

6

enter 6 values: 1 2 3 4 3 2
Array is not Symmetric

Description
We have to write a program which will enter numbers from user and store them in an array and tell whether

the data enter by user is symmetric or not in other words if we read from both side left or right the data will
remain same as for e.g 121. In it firstly we take all inputs from user in an array then we pass that array to our
main function IsSymmetric Which will return true or false if the array or entered values are symmetric then
true else false. Now we start designing that function as we know the symmetric number is same when read
from both sides so we use a for loop in which we start from one end and goto the center of array checking
that the values on the both end or on the i and size -i -1 indexes are same or not if they all are same then it

References and Arrays

return true else it return false. Then according to the function result we gave our final output on the screen.

8.3.11 Plotting the histogram

Code

Chapter 8
1 #include <iostream>
2 using namespace std;
3 void PrintingHistogram(int Array[],int Size,char Symbol)//it will print histogram
4 {
5 for(int i=0;i<Size;i++)
6 {
7 for(int x=0;x<Array[i];x++)
8 {
9 cout<<Symbol;
10 }
1" cout<<endl<<endl;
12 }
13}
14 int main()
15 {
16 int Size=0;
17 cout<< ;
18 cin>>Size;
19 int Array[Size];
20 cout<< <<Size<< o
21 for(int i=0;i<Size;i++)
22
23 cin>>Arrayl[il;
24
25 char Symbol=-37; // the ascii value of filled character
26 PrintingHistogram(Array,Size,Symbol);
27 return O;
28)
Link
Output
enter size: 10
enter 10 values: 20 30 40 50 20 10 20 3@ 20 10

Description

In this problem we have to write a program which will enter inputs from user and make a histogram graph of it
so firstly we have have to enter values then we enter in the PrintingHistogram in it we use a for loop of size
of array and an inner for loop which will print the symbol in screen in a row until the value enter by the user
then a double endline to move toward the 2nd next line in this way at the end of loop our histogram will be

printed.

References and Arrays

Chapter 8 References and Arrays

8.4 String (Character Arrays)

Just like the integer array we also have character array in which we can store multiple characters in our
character array. There are three basic ways to fill up our character array. First is the same as we fill up our
integer array but the character array must be initialized and it is initialized by null character in coding you will
write it as

Char array{ }={"\0"} you can see the code given below as an examples.

Type 1 Using for loop

Example

You have to check whether the user entered data is Palindrome or not in other words you have to check that
the data is Symmetric or not.

Code
1 #tinclude <iostream>
2 using namespace std;
3 int LenghtOfArray(char Array[J,int Size);
4 bool IsPalindrome(char Array[1,int Size);
5 int main()
6 {
7 int Size=5;
8 char Array[Size]={'\0"};
9 cout<<"Array Values: ";
10 for(int i=0;i<Size;i++)
1"
12 cin>>Arrayl[il;
13 }
14 if(IsPalindrome(Array,Size))
15 {
16 cout<<"data is palindrome”<<endl;
17 }
18 else
19 {
20 cout<<"data is not palindrome”<<endl;
21 }
22 return O;
23 }
24 int LenghtOfArray(char Array[1,int Size)
25
26 for(int i=0;i<Size;i++)
27 {
28 if(Array[il=="\0")
29 {
30 return i;
31 }
32 }
33 }
34 bool IsPalindrome(char Array[],int Size)
35 {
36 int Length=LenghtOfArray(Array,Size);
37 for(int i=0;i<Length/2;i++)
38 {
39 if(Array[i]'=Array[Length-i-1])
40
41 return false;
42 }
43 }
44 return true;

Chapter 8 References and Arrays

Link

Description

In this problem we have to check that whether the data enter is palindrome or not in other words we have to
check that the word enter is symmetric or not we use the same is symmetric code in it. We firstly as you see
in the main to take input as we do in the integer Array. Then we find out the size of array using for loop we
initialize the char array as \0 and we use null to get the size then we check the Palindrome using the size

then gave the output on the screen.

Output
rray Values: madam
ata is palindrome

Type 2 Using only cin
You can also cin a complete word using cin>> without loop but using it you can not enter a sentence.

Example
You have to check whether the word enter by the user are equal or not

Code
1 #include <iostream>
2 using namespace std;
3 int LenghtOfArray(char Array[1.int Size);//It will Return the length of Array
4 bool IsEqual(char A[],char B[],int Size);//It will check if arrays are equal
5 int main()
6 {
7 int Size=10;
8 char A[Size]={'\0'};
9 char B[Size]={'\0'};
10 cout<<"enter Words: ";
1" cin>>A>>B;
12 if(IsEqual(A,B,Size))
13 {
14 cout<<"Words are equal’<<endl;
15 }
16 else
17 {
18 cout<<"Words are not equal”<<endl;
19 }
20 return O;
2 }
22 int LenghtOfArray(char Array[],int Size)
23
24 for(int i=0;i<Size;i++)
25 {
26 if(Array[i]=="\0")
27 {
28 return i;
29 }
30 }
31 }
32 bool Isequal(char A[],char B[],int Size)
33 {
34 int Length1=LenghtOfArray(A,Size);
35 int Length2=LenghtOfArray(A,Size);
36 if(Length1==Length2)
37 {
38 for(int i=0;i<Length1;i++)
39 {
40 if(ALi]'=B[i])
41
42 return false;
43 }
44 }
45 return true;
46

47 return false;

Chapter 8 References and Arrays

48 }

Link

Description
In this we see the 2nd way to input in which you see we use a cin without a loop this input is used to enter the

single word. In it we have to check that the enter both words are equal or not we start by first checking that
whether there length is same or not if same return true else return false then if true we use a for loop to
check whether the all values in the array are same or not if same then true else false and at end we gave
output on the screen.

Output

enter Words: Zuraiz

Zuraiz

Words are equal

Type3 entering data in the program using single quotation marks

Code
1 #include <iostream>
2 using namespace std;
3 int LenghtOfArray(char Array[1,int Size);//It will return Length of the array
4 void ReverseCopy(char A[],char B[1,int Size);//It will reverse copy A data in B
5 bool IsEqual(char A[],char B[1,int Size);//It will tell if arrays are equal
6 int main()
7 {
8 int Size=100;
9 char A[Size]="This Is This\0";
10 char B[Size]={'\0'};
1" ReverseCopy(A,B,Size);
12 if(IsEqual(A,B,Size))
13
14 cout<<"Data Entered Is Palindrome''<<endl;
15 }
16 else
17 {
18 cout<<"Data Entered Is not Palindrome'<<endl;
19 }
20 return O;
2 }
22 int LenghtOfArray(char Array[1,int Size)
23 {
24 for(int i=0;i<Size;i++)
25 {
26 if(Array[i]=="\0")
27 {
28 return i;
29 }
30 }
31 }
32 void ReverseCopy(char A[],char B[],int Size)
33 {
34 int Length=LenghtOfArray(A,Size);
35 int Re=Length;
36 int End=0;
37 int Ce=Re-1;
38 while(End!=Length)
39 {
40 for(Ce;A[Ce]!=' '&&Ce>=0;Ce--)
41 {
42 }
43 Ce++;
44 for(int C=Ce;A[C]!=' '&&C<Length;C++)

45 {

Chapter 8 References and Arrays

46 if(End>=Length)

47 {

48 break;

49 }

50 B[End]=A[C];

51 End++;

52 }

53 if(End>=Length)

54 {

55 break;

56 }

57 B[End]="";

58 End++;

59 Ce=Ce-2;

60 }

61 }

62 bool IsEqual(char A[],char B[],int Size)
63 {

64 int Length1=LenghtOfArray(A,Size);
65 int Length2=LenghtOfArray(A,Size);
66 if(Length1==Length2)

67 {

68 for(int i=0;i<Length1;i++)
69 {

70 if(A[i]'=B[i])

7 {

72 return false;

73 }

74 }

75 return true;

76 }

77 return false;

78 }

79

Link

Description

In this program we have used third technique to enter the data in it we hard code it as using single quotation
we put our array equal to the data written in single quotation then after the data is entered we start building our
program in which we use the logic that we first copy the sentence reverse in the other array and then only
check if the both arrays are equal or not the reverse copy example is as follows enter data is equal to the
Hello world and the reversed copy in B will be world Hello. For it we use a function Reverse copy in which
firstly we use a for loop to move to our word start position then we copy it in other array start using another
for loop and in this way we copy whole sentence using same technique in that Array after copying we check
if both the arrays are equal or not and gave output on screen according to it.

Output

Data Entered Is Palindrome

Chapter 8 References and Arrays

8.5 File-streaming (Reading and Writing from file)

Till now we are getting input from user using console screen i.e. user enter from keyboard. There is another
way to get input and store output in C++, which is called filing. In this method almost everything is same. The
only change is that you have to include a C++ library #include<fstream> (file streaming) at start of program
where you include other libraries. While taking input from console or displaying something on console we use
cin and cout respectively, in file streaming we have to declare some variables using ifstream and ofstream
data type which plays role like cin and cout in our program but this is used for filing.

Data Type Description
ifstream Itis called input file stream. It is used to read data
from file.
ofstream It is called output file stream. It is used to create file

and write data on file.

operator fstream variables
<< fout
>> fin

Getting input from file

If we want to get input from file, then we have to declare any variable like fin of data type ifstream. ifstream
is similar to any other data type in C++ like int. It is only used to tell compiler that we want to read from file.
There is a complete syntax on which we can read from file which is described in below example.

Code

1 #include <iostream>

2 #include <fstream>

3 using hamespace std;

4 int main(

5

6 ifstream fin("input.txt");

7 if(! fin)

8 {

9 cout <<""file not open”;
10 return 0O;

1 }
12 else
13 {
14 int a,b,c;
15 fin >>a>>b>>c;
16 cout<<"inputs from file are: \n";
17 cout<<"a= "<<a<<" b= "<<b<<" c= "<<c<<endl;
18 return O;
19 }

Chapter 8

Input

Mj input - Motepad

File Edit Format View Help

123

Output

inputs from file are:
a= 1l b=2c=3

Program folder
bin
obj
Mj main
=] input
H- test
| | test.layout

Link:

Description

In above code from line 1 to 3 we have defined some c++ libraries. From line 4 int main() starts. At line 6 we
have declared an ifstream variable fin which is used to get input from a file. At line 7 we have used an if()
check which become true if file is not open and then program terminates by displaying a message at console
that file is not open. At line 12 we use else() condition which get input from file and display that input on

console.

Writing data to file

If we want to write data to file, then we have to declare any variable like fout of data type ofstream.
ofstream is similar to any other data type in C++ like int. It is only used to tell compiler that we want to write
data to file. There is a complete syntax on which we can write data to file which is described in below example.

Remember

If you want to store data in file and file is not available, then ofstream will make a file for you, but this
facility is only available for ofstream, if you want to read data using ifstream then it is must that file

is already available.

E

ttinclude <iostream>
#tinclude <fstream>
using namespace std;
int main()

{

inta, b, c;

-

O WVWONOUVPAWNAQ

L =TT = RV~ T T = B V= T

77
£33

Sy
77

2272017 12:29 PM
F2017 12:29 PM
F2017 12:29 P
2017 12:29 PM
F2017 12:29 P
F2017 12:29 P

File folder

File folder

CPP File

Text Docurment
project file
LAYOUT File

cout << "enter any three numbers(space separated): ";

cin>>a>>b>c;
ofstream fout("output.txt");

fout<<"a="<<a<<"b="<<b<<"c="<<c<<endl;

References and Arrays

1KE
1KE
2 KB
1KE

Chapter 8

1" cout << "data is saved in a file.” << endl;
12 return O;
13 }

Output
enter any three numbers(space separated): 10 20 39

data is saved in a file.

Output file
Mj output - Motepad

File Edit Format Wiew Help

h=10b=20¢c=30

Program folder

bin 0/22/201712:29PM File folder
chj 922200171229 PM File folder
Mj main 9/22/201712:29 PM CPP File
=| output 9227201712229 PM Text Document
M test 9/22/2017 12:29 PM project file
|| testlayout 0/22/201712:29 PM - LAYOUT File
Link
Description

In above code from line 1 to 3 we have declared some c++ libraries. From line 4 int main() starts. At line 6 we
have declared three integers a, b, ¢. At line we display a message on console and at line 8 we get input from
user in these declared variables. At line 9 we have declared an ofstream variable fout which is used to save
data in a file. From line 10 and 11 we save a message and these variables in a file using fout variable. At line

12 we uses return 0 statement to terminate this program.

8.5 Project: Electronic Voting

References and Arrays

| KB
1KB
2 KB
| KB

the General Election. Read the data from Votes.txt file.

Election happened in a country with 8 parties fighting inside the election. Make a program to check who won

O
o
o
)

#tinclude<iostream>

#tinclude<fstream>

using namespace std;

void read(ifstream & fin, int voters, int vote_cast[]);

void computeResult(int parties[], int vote_cast[], int voters);
int winnerCheck(int parties[1);

void displayResult(int parties[], char party_namel[J[5]);

void resultPlot(int parties[], char party_name[][5]);

int main()

{

VWONONAWNQ

-
-
S0

ifstream fin("votes.txt");
int voters;

fin >> voters;

int vote_cast[voters];
int parties[9] = {0};

- e e -
NoubhwN

read(fin, voters, vote_cast);

char party_name[9][5] = {"\0", "PPP", "PMLN", "PTI", "ANP", "JIP", "JUI", "MQM", "PAT"};

Chapter 8

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
Al
72
73
74

computeResult(parties, vote_cast, voters);
displayResult(parties, party_name);
resultPlot(parties, party_name);

return O;

void read(ifstream & fin, int voters, int vote_cast[])

{
for(int a=0; a<voters; a++)
{
fin >> vote_cast[a];
}
}

void computeResult(int parties[], int vote_cast[], int voters)
{

for(int b=0; b<voters; b++)

{

int currentVote = vote_cast[b];

parties[currentVote] = parties[currentVote] + 1;

}
}
int winnerCheck(int parties[])
{
int max = parties[0];
int index = 0;
for(int a=1; a<9; a++)
{

if(parties[a] > max)

max = parties[a];
index = q;

}
}

return index;

void displayResult(int parties[], char party_name[][5])

{
cout << "Party Name" << "\t” << "Parties” << "\t\t" << "Votes" << endl;
for(int p=1; p<=8; p++)
{
cout << party_name[p] << "\t\t" << p << "\t\t" << parties[p] << end|;
}
cout << endl;

}

void resultPlot(int parties[], char party_name[1[5])

References and Arrays

{

char sym = -37;

for(int plot=1; plot<=8; plot++)

{

cout << party_name[plot] << " ";

for(int p=0; p<parties[plot]; p++)

{

cout << sym;

}

cout << endl << endl;

}

cout << endl| << party_name[winnerCheck(parties)] << " party won the election.” << endl;
}

Chapter 8 References and Arrays

Description

Chapter 8 References and Arrays

Practice Exercise
1. In the 20x20 grid below (read from file), four numbers along a diagonal line have been

marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

The product of these numbers is 26 x 63 x 78 x 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down,
left, right, or diagonally) in the 20x20 grid?

	Chapter 8
	References, Randomization, Arrays and Filing
	8.1 Aliasing/Reference Variable
	8.2 Populating Randomization and experimentations
	1. rand() - Function
	int s = 0;
	int eval(int x)​{​ return f(x) = (43 x^5 + 73x^4 + 91x^3 + 41)%(RAND_MAX+1)
	2. srand(int Seed) Function
	3. time(0) Function

	8.3 Arrays
	Simple Representations
	Types of Array
	Accessing the Elements of Array
	Different Initializing methods
	Using a Loop to Initialize the Array's Elements and Printing
	Initializing the elements of an array(with zero) with a declaration
	Passing Arrays to Function

	8.3.1 Initializing Different Lists
	
	8.3.2 Bubble Sort
	8.3.2.1 Swap
	8.3.2.2 Bubble Sort

	8.3.4 Selection Sort
	8.3.5 Finding Extreme Values
	8.3.6 Removing a number from an array
	8.3.7 Rotating inside an array
	8.3.8 Appending an Array
	8.3.9 Frequency of an element Inside an array, Mode/Median of Population
	8.3.10 Is the given date symmetric
	8.3.11 Plotting the histogram

	8.4 String (Character Arrays)
	
	8.5 File-streaming (Reading and Writing from file)
	Getting input from file
	Writing data to file

	8.5 Project: Electronic Voting

