

This draft is old. Here is the new one:
https://docs.google.com/document/d/1b25gpDx0bC4
KJ1RWIDOvrQhBrxkRPCIbMuTxpF9YPa0/edit

In 2012, Holden Karnofsky wrote the article Thoughts on the Singularity

Institute (SI), from which this is an excerpt:

One of the things that bothers me most about SI is that there is

practically no public content, as far as I can tell, explicitly addressing the

idea of a "tool" and giving arguments for why AGI is likely to work only

as an "agent."

And here is an excerpt from Eliezer Yudkowsky’s response:

Tool AI wasn't the obvious solution to John McCarthy, I.J. Good, or

Marvin Minsky. Today's leading AI textbook, Artificial Intelligence: A

Modern Approach - where you can learn all about A* search, by the way

- discusses Friendly AI and AI risk for 3.5 pages but doesn't mention

tool AI as an obvious solution. For Ray Kurzweil, the obvious solution is

merging humans and AIs. For Jurgen Schmidhuber, the obvious

solution is AIs that value a certain complicated definition of complexity

in their sensory inputs. Ben Goertzel, J. Storrs Hall, and Bill Hibbard,

among others, have all written about how silly Singinst is to pursue

Friendly AI when the solution is obviously X, for various different X.

Among current leading people working on serious AGI programs labeled

as such, neither Demis Hassabis (VC-funded to the tune of several

million dollars) nor Moshe Looks (head of AGI research at Google) nor

Henry Markram (Blue Brain at IBM) think that the obvious answer is

Tool AI. Vernor Vinge, Isaac Asimov, and any number of other SF

writers with technical backgrounds who spent serious time thinking

about these issues didn't converge on that solution.

https://docs.google.com/document/d/1b25gpDx0bC4KJ1RWIDOvrQhBrxkRPCIbMuTxpF9YPa0/edit
https://docs.google.com/document/d/1b25gpDx0bC4KJ1RWIDOvrQhBrxkRPCIbMuTxpF9YPa0/edit
https://www.lesswrong.com/posts/6SGqkCgHuNr7d4yJm/thoughts-on-the-singularity-institute-si
https://www.lesswrong.com/posts/6SGqkCgHuNr7d4yJm/thoughts-on-the-singularity-institute-si
https://www.lesswrong.com/posts/sizjfDgCgAsuLJQmm/reply-to-holden-on-tool-ai

This exchange reminds me that it’s hard to know what other people see as

“obvious”. Trying to properly understand the perspective of others can be a lot

of work, and although I have put in many hours reading the thoughts of

alignment experts, I am very far away from having a full overview and

understanding of people’s opinions and ideas. My reason for mentioning this

is that I find if various ideas are new/interesting/helpful, or old/obvious or

wrong/misguided.

Trying to understand another person's perspective in detail is not a trivial

task, and whereas AI alignment is concerned I am a hobbyist. I suspect there

may be some overlap between stuff written here and Eric Drexler's writings on

Comprehensive AI Services, but I don't know how much or little. And I also

suspect overlap with the ideas of Paul Cristiano, but I'm not sure to which

degree. I am aware of there being concepts with names such as AI safety by

debate and Iterated Distillation and Amplification, and I have been able to

find posts with titles such as Bootstrapped Alignment, but - well, anyway, I'll

just get on with it. I suspect there may be some interesting stuff in here, but if

I am repeating other peoples ideas without adding anything substantial, or in

some other way missing the mark, then sorry about that.

A lot of AI alignment theory is sort of concerned with the question of "how

might we align an AI-system before/at the stage when it becomes

superintelligent?", while the focus of this text is a bit different. It is more

focused on "presuming that we have a superintelligent AI-system, which isn't

necessarily aligned but does at least pretend to be aligned, how might this

AI-system be used to set up a more safe system?". It seems to me that in such

situation there would be some very powerful techniques at our disposal, and

that ways to proceed and make full use of these techniques might be very

worthy of more deep/careful/comprehensive analysis. Even if the initial AGI is

assumed to really be aligned (a much more desirable and less risky situation!)

it would be advisable to use techniques such as these as an additional level of

security/alignment-confirmation.

Section 1: Describing hypothetical preconditions (with

anthropomorphic framing)

https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://scholar.google.com/citations?user=B7oP0bIAAAAJ&hl=en
https://www.lesswrong.com/tag/debate-ai-safety-technique-1
https://www.lesswrong.com/tag/debate-ai-safety-technique-1
https://www.alignmentforum.org/search?terms=Iterated%20Distillation%20and%20Amplification
https://www.lesswrong.com/posts/teCsd4Aqg9KDxkaC9/bootstrapped-alignment?_ga=2.28237244.1434218801.1655524787-483593772.1655524787

I'm not familiar with deep learning at a technical level, but my impression is

that a lot of modern machine learning is a bit like this:

And the hypothetical situation I imagine is a situation where we have

developed a superintelligent AGI, but that we don't really understand how it's

work - I'll assume that it's pretty much a "black box".

I assume that maybe the capabilities of the system went quite quickly from

"wouldn't be able to empty a dishwasher or reliably drive a car" to

"superintelligent along more or less any dimention we care about" (my

intuitions about FOOM are probably more Yudkowsky-like than

Hanson/Christiano-like, but I don't really know, and I feel more unsure than I

used to).

This superintelligence is able to understand us well (when instances of the

system are given sufficient data/input). And in a superficial sense it seems

perfectly aligned. If it is asked to for example give us ideas about AI alignment,

it will provide lots of valuable insight. And if it is asked to write code that is

optimized with human readability in mind, it will provide really well-written

code. It isn't evasive, and the answers it gives (if/when it is allowed to answer

in free-form) will seem as if they are crafted to be more or less maximally

helpful and non-deceptive.

So it is a powerful tool that we have at our disposal, to put it mildly (in the

hypothetical situation I'm assuming). But as explained in detail by Eliezer

Yudkowsky and others - just because it seems as if it is aligned, does not mean

that it is aligned (or even that it is likely to be so). And banking on not being

tricked by an intelligence that is vastly more intelligent than ourselves, even

though being tricked in just one subtle way could mean the death of everyone

on Earth (and maybe also increased s-risks) - well, that's a risky activity.

We dealing with an instance of an AI-system, we choose what info/input we

give it, what we ask it to do/answer, and last but not least: within which

limitations in expressivity it may answer. And thus there are huge differences

in risk between different ways of using an AI-system. We could imagine there

being a sort of "scale". Towards one end of the scale would be to give the AI

access to the internet, or to implement complex machinery based on the AIs

instructions. Towards the other end of the scale would be e.g. only giving it

multiplication-questions (“Is 3*3=9?”), and letting its only line of

communication be to answer “Yes” or “No”.

https://centerforreducingsuffering.org/research/intro/

The avenues for an unaligned oracle/genie to attempt trickery depends on the kinds of

questions asked and on the restrictions in expressivity when answering questions (and also

on the security of the environment where the code is run, but that's outside the scope of this

text).

One of the main themes in this text is whether there might be sequences of

steps by which we might use plausibly-unaligned AIs so as to greatly reduce

total risk. Might there for example be relatively safe ways of using an

uninterpretable superintelligence to create superintelligences that are much

less "black box"-like? Might there be ways of creating aligned

superintelligences in a relatively short span of time with the help of a

superintelligence, even if the superintelligence we start out isn't really

aligned? And if so, to which degree would it be possible to minimize the risk

involved in such a process? I don't properly answer any of these questions in

this text, but I do brainstorm and try to provide pointers for further analysis.

There are huge degrees of freedom for how AI-systems can be used, and the

question of "which possible uses of AGI-systems in which sequence might

minimize total risk?" seems to me like a question that is worthy of more

analysis (and where we can do much useful analysis without knowing the

specifics of how the initial AGI would work).

Some security-tips that I feel like mentioning, even though I consider them

mostly outside the scope of this text:

●​ Never letting a machine that runs that AI-system (or has run the AI

system previously) have access to the internet or receive USB-sticks,

and also not letting it network with machines that do.

●​ Not forgetting that digital machines also are a part of the physical

world, and try to take into account (e.g. considering to only run

computers containing AI-system code inside a faraday cage).

●​ Valuing security mindset, and hiring people with security mindset into

the organization. Instill into the people that "too paranoid" is better

than "not paranoid enough".

●​ Having a group of people with security mindset needing to manually

approve queries that are asked of the AI-system, and whether the

response should be sent on to the rest of the team (+ having

https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia
https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia
https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia

narrow/specialized AI-systems label responses that seem like they

might be suspect).

●​ Trying to keep in mind that the AI-system doesn't just learn from what

you explicitly tell it, but from pretty much anything that it can make

use of in Bayesian-like inference.

●​ Not taking for granted that the AI-system isn't hiding its capabilities,

and thinking that security protocols that presume plausibility of

superintelligent capabilities are much better to start with too early

than too late!

●​ NSA-like procedures from preventing code and design secrets from

being shared with less scrupulous actors.

●​ Attempting to consolidate different teams at the forefront (Open AI,

DeepMind, etc) into one cohesive entity, as a way to make strong arms

race dynamics less likely.

●​ Trying insofar as possible to ensure that the AI-systems code is

theoretically unable to "hack itself" out of the "box", regardless of the

specifics of the code being run, and attempting to ensure this through

multiple assurances.

●​ Taking into account that account execution-times (of calls to memory,

etc) and that sort of thing can be a potential source of Bayesian-like

inference for an AI-system.

●​ Think deeply about the question of whether there might be ways for an

AI-system to find "deleted" data on the computer (e.g. from previous

AI-instances).

●​ Using "mathematical" proofs to verify as much as possible of the

behavior of the operating system, CPU, hard drive, memory, etc, etc.

●​ Not using the same "instance" of the AI-system for all questions (that

is to say, by default the AI-system should not have direct or indirect

access to previous question-history or input).

The above is not an attempt at an exhaustive list, and as mentioned I

consider these kinds of things to be mostly outside the scope of this text.

Section 2: Getting help with code (modification, review, generation,

etc)

Getting help from from an AI-system to create code is much safer than using

an AI-system to e.g. create nanofactories (presuming that the code that is

generated will be run under the same hopefully safe conditions as the ones

already in use for the initial superintelligence).

Also when it comes to coding-assistance there is a "scale" in regards to how

much of an avenue a superintelligence would have for committing "malice".

One of the safer examples of code-assistance is to refactor code, but in ways

that provably doesn't change behavior. The AI-program could be required to

provide “proofs” that a given change does not change behavior. A format for

specifying such "proofs" is something that humans could provide, but it is also

something that the AI could provide (but with humans outlining what the kind

of format they want). Any "inference-rule" for "proof-steps" in such a format

would need to make intuitive sense, and both humans and other AI-systems

could try to find counterexamples (examples of pieces of code that are

"proven" to behave the same, but where they actually have different output

given input x, or make non-trivially different use of computer resources in

ways not advertised by the proof result). A superintelligence could also make

proofs about what exactly what is the "difference" in behavior between 2

pieces of code (e.g., "function x and function y will behave the same, except if

the input is c", or "if code piece a was added here to function b, then function

b would always have the same output as function c").

One purpose of rewriting code might be to make it much faster (and at some

stage, if a group of people with security mindset trusts it to be sufficiently safe,

maybe even writing directly in assembly or making specialized computer chips

based on an AI system's design). Another purpose of rewriting code could be

to make it more easy to read and understand for humans. A superintelligence

could be able to deduce well based on unstructured/vague specification what

makes code more readable to humans. So one might imagine just telling an

AI-system: "Refactor the code to make it better organized, easier to

understand, and harder to misunderstand or not notice bugs". But it would

also be possible to set up more explicit ways in which the

readability/understandability of code is "scored".

Another way AI-systems could help with code would be to point out potential

bugs/issues with the code. And in cases where it was put to such a purpose,

https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia

the people controlling the AI would be able to choose the limits within which

the expressivity of the AI-system is restricted. One could imagine the

AI-system not being allowed to write text at all, but instead pointing out

potential issues through other means. For example, it could highlight 1 or

more passages of code that the user should look at, and/or it could point out

example-inputs and the corresponding outputs (either for the system as a

whole or certain sub-sections of the code). If it was allowed to use text to

explain, then the text could be strictly limited in terms of

length/content/structure. On the scale between "safe" and "less safe", I'm

thinking that any help from the AI to point out bugs probably gives more

opportunity for mischief than e.g. rewriting code in ways that provably don't

change behavior. But there would be a lot less room for mischief compared

with many other tasks.

An AI-system can also be asked to create code entirely by itself. Smaller pieces

of code, or larger pieces of code - everything from simple functions, to big

sub-components, to entire code-bases. And the specifications for the code it is

asked to write - those may be detailed or they may be short - they may be

precise or they may be vague (or some of both). And another axis of variability

is how easy the code is to review - how hard or easy it is to verify that the code

does what it is said to do, and that it has been properly optimized for the

qualities that humans want in it (in terms of understandability, the possibility

for scalable oversight, consistently following design principles that make it as

hard as possible to "hide" malicious behavior, etc).

When generating pieces of code, it may be best to not output one "piece of

code", but rather a datastructure where different alternative code-bases are

distributed along multi-dimensional space, where each axis represents things

we value (how easy it is to understand for humans, how "powerful" it is, how

fast it runs, how easy certain properties/aspects are to test/confirm/prove,

etc).

Section 3: "Adversarial" review

I am of the perspective that having "adversarial" AI-systems that review the

work of other AI-systems often may be useful (not "the solution" by itself, but

potentially a very useful technique when practiced well). Whereas review is

concerned, the review can be done both by superintelligences or by more

narrow/specialized systems (or both!). Best of all are tasks that specified in

such a way that it is clear/unambiguous to see if it is broken, and even a

narrow/specialized system will be able to find all examples of the specification

being broken (if it is broken anywhere).

How we can ask for things (e.g. pieces of code) in such a way that it is easy to

verify, and hard to "cheat", is IMO an area that is worthy of plenty of

brainstorming and analysis.

If we have access to narrow intelligences that we more easily can confirm to be

aligned (at the task in question), then the scope of what can be reviewed in an

exhaustive way may increase greatly.

And even review where the success of the reviewer at noticing problems is

probabilistic can make it much harder for a superintelligence to "cheat". Texts

describing what (large or small) pieces of code do, is one thing that can be

reviewed. And it's an example of something where a narrow/specialized

reviewer may be able to reliably notice some types of problems, while other

types of problems may be hard/infeasible to notice reliably.

Section 4: Asking oracles/genies for narrow/specialized "generators"

("reviewers", "answer-generators", "simulation-generators",

"simulation-generator-generators", etc)

You could ask an oracle/genie to look for inconsistencies between a piece of

code and a description of what that piece of code is supposed to do. But

instead of (or in addition to) asking instances of the oracle to do that task

directly, you may ask it to provide you a general-purpose function/system for

doing that.

As mentioned, we may want to use narrow/specialized systems to review the

work of superintelligent AI-systems (sometimes in addition to other

superintelligent AI-systems). And one way to obtain such systems would be to

have an AGIs make them. The distinction between a narrow/specialized

system, and a system that has "general" intelligence, may be blurry, but at the

same time we do have clear ideas of many of the things/aspects to be on the

lookout for. And as mentioned, a code base (which more or less is what a

"reviewer" would be) can absolutely be "scored" for clarity/readability

(although not with complete accuracy that covers any type of issue in an

exhaustive way).

Videos such as this one show that as humans we have limited ability to absorb

everything we see in a precise/comprehensive way. But at the same time, there

are limits to what we can be made to not notice. If a superintelligence provides

a narrow/specialized reviewer - in very well-written source code, and coupled

with textual and schematic descriptions of what the reviewer does - then that

probably gives it a lot of rooms for shenanigans - but there are probably also

lots of avenues/methods for comprehensive review.

A desirable property of "reviewers" is if they can be tested, and the more

reliably they can be tested the better. Both testing with lots of examples (so as

to see if reliably notices instances of x from training data), and testing other

AI-systems (including superintelligent ones) are asked to search for examples

of input that can "fool" the reviewer.

Another desirable property is that is may make it harder (but not necessarily

impossible) to "fool" us intentionally. Whether a general-purpose (but

narrow/specialized) reviewer does what it should do may be easier to evaluate

than evaluating an object-level answer coming directly from an AGI. And it

can also help make it harder for different superintelligences to "collude"

(compared to when one superintelligence is asked to evaluate the source code

of another superintelligence, as opposed to being asked to evaluate a

narrow/specialized "reviewer").

These desirable properties hold more generally for when asking an AGI to

answer something, design something, or code something. For example, rather

than being asked to simulate the structure of a machine that would result from

a step-by-step process (involving things like e.g. DNA synthesis and/or

peptide sequencing and/or 3D printing), it may be asked for a

"simulation-generator". Such a generator may then be evaluated (like, you can

look at the code and the principles the code makes use of, and see if they make

sense), and it can be backtested against things that already have been made in

the real world.

https://www.youtube.com/watch?v=vJG698U2Mvo

Maybe it sometimes also could have merit to ask for

"answer-generator-generators". The purpose of that could be to make it harder

to "hide" shenanigans by increasing generality and including less specific

information. For example, a "simulation-generator-generator" could be

agnostic to laws of physics (and could be asked of AI-systems where we have

minimized the amount of info we give them about the universe).

Sometimes it may make sense that the "generators" are "stacked". For

example, maybe a "simulator" uses a lot of compute, and that therefore we

want a more approximate version that runs faster. Instead of (or in addition

to) directly having the AI make the approximate version, we may have AIs

generate "generators" for doing "approximation", and feed the

high-fidelity/high-compute "generator" that takes on the role of an

"approximator".

Maybe often one would be faced by questions such as «should I use this or this

answer-generator?», «should this or that AGI-architecture be asked to

provide the "reviewer"?», «should set A or set B be the training-data of the

AGI-architecture-instance I ask to provide the "generator"?», etc. To such

questions a good answer may often be: Why not both?

Compute may be a practical consideration, and another consideration (that I

won't cover much in this text) may in some instances be the possibility of

suffering subroutines. But besides concerns, a good attitude when it comes to

"generators" and "reviewers" is probably "the more the merrier". Trying lots of

stuff (bonus if they are based on widely different architectures and principles),

and checking the degree to which their output converges.

One avenue of further thinking/brainstorming/analysis might be the question

of which properties of "generators" that affect how hard/easy it is for

Section 5: Argument-trees with a new type of more expressive

formalism/"logic"

If this section is draining to read, you could skip it and come back to it

later.

https://reducing-suffering.org/what-are-suffering-subroutines/

So maybe in some sense higher-order predicate logics are "structurally

equivalent" to the kind of thing I have in mind in terms of what theoretically

can be done with it, and maybe that also is the case for proof assistants based

on dependent type theories such as Coq and Agda. Nontheless, these formats

(based on my far-from-comprehensive understanding of them) feel limited to

me, at least when it comes to representing real-world concepts that aren't

purely about "mathematical" things:

Changing code to make it more easy to understand/read for humans is more

safe when it can be done in ways where it is "mathematically" proven that the

behavior of the code remains unchanged:

●​ They stray unnecessarily far from human language and other forms in

which the human brain is comfortable with having things presented (by

"unnecessarily" I mean "in ways where AFAIK no

precision/clarity/specificity is gained)

●​ As far as I can see (and my familiarity is limited) they don't seem to be

built to handle really complex types

●​ A lot of the concepts that we deal with natively as humans, and that can

be stated relatively crisply, are concepts that these formalisms seem to

not be designed to express (so expressing them becomes - well, if not

impossible, then at least awkward/"hacky")

Meanwhile, human language certainly also has it's limitations for users where

we want to express arguments/statements/beliefs/questions/etc as precisely

as is feasible:

●​ Clauses are not made explicit/visible (and how to parse them is often

ambiguous), and the same goes for "variables" like "he", "she", "it", etc

●​ No languages are really designed for nuance/detail/precision, making

the tradeoff between nuance/detail/precision and brevity/complexity of

text is unnecessarily "costly"

●​ It is not made easy to disambiguate, and describe as well as you can the

concept (often a fuzzy and "cluster-like") that you have in your mind

●​ It is not made obligatory (or even default) to specify the

"inference-rules" that is used for each "argument-step" when you argue,

https://en.wikipedia.org/wiki/Coq
https://en.wikipedia.org/wiki/Agda_(programming_language)
https://www.lesswrong.com/posts/WBw8dDkAWohFjWQSk/the-cluster-structure-of-thingspace

and the same goes for even providing all the relevant "argument-steps"​

I think - partly based on hunch/intuition - that it might have merit to have

some kind of a formalism that is made to make formal arguments (where each

argument-step uses an explicit inference-rule that can compute

conclusion/output from assumptions/input), but in a way that is more

tailored towards trying to be able to represent more or less anything that

logically inclined humans can say in human language while they are trying to

be as precise as they can. And with functionality that is tailored towards

specifying the meaning of and disambiguating human concepts (including

vague "cluster-concepts"). And made from the "ground up" with the intention

that inference-steps and various other things are to be computable, and with

the intention that it is to be easy to understand (while avoiding

misunderstandings insofar as possible) when shown on a screen/GUI - as

opposed to e.g. predicate logic, where the starting point is writing things on

paper, or Coq, where the starting point is a programming-language that can be

written/read as plain strings in any text-editor.

The concept I have in mind (insofar as my thoughts are crystalized), is

inspired by a system that I wrote about in my masters thesis. Despite being a

master thesis it is a shoddily written document full of spelling mistakes that

was put together in a hurry. But nonetheless it could be looked at by those who

are especially interested.

https://docs.google.com/document/d/1f2MlQdC-uDQ4nNxS6rWVUJkThSkPvEGyQOH5P04MVQo/edit

Screenshot from thesis

Other screenshot from thesis

I am not under the illusion that human concepts can be made totally explicit.

That is to say, for many/most human concepts I don't think we specify some

function/definition that clearly defines whether or not (or the degree to

which) any instance would belong to that concept or not. But basically, the

more you specify about what you mean to refer to when you are referring to a

specific concept in some statement, the more precise your are being. Can you

mention some examples of things that more-or-less clearly belong to the

concept you currently mean to refer to? Cool. Can you you mention some

examples of things that more-or-less clearly don't belong in the concept? Cool.

Do you have like 127 propositional statements that don't clearly define the

borders of the concept in question, but are relevant to the assumed likelyness

of fitting within the concept? Awesome. Do you have some description of a

space of "thing-space" (perhaps by itself a complicated description) that you

actively don't want to be labeled inside/outside the concept? That helps as

well. Etc, etc.

From my perspective it feels like an analogy of sorts can be made between

logics/formalisms that incorporate probability and logics/formalisms that

incorporate ambiguity/concept-specification. A possible "ethos" for using

formalisms that represent probability within them could be that probabilities

are a part of what constitutes good reasoning, and that therefore there is merit

to incorporate it into the formalism (instead of ignoring it, and having the

formalism sort of "pretend it doesn't exist"). My hunch is that maybe it could

be fruitful to sometimes have a similar attitude towards formalisms that try to

incorporate ambiguity/concept-specification, and try to make more of the

process of specifying mapping between "variables" and real-world objects be

sort of incorporated within the the formalism itself.

One way to use these kinds of formalisms could be to have AI-systems use

them when presenting arguments/"proofs". Also, if AI-systems sometimes ask

for clarifications of questions/requests/etc - or receive questions/requests/etc

in a "disambiguated" format to begin with - then maybe some ways of doing

that may involve this kind of a formalism.

When using explicit and argument-trees where each argument-step is

"computable", then presumably several of the desirable properties that we

associate with formal proofs follow. And it may be easier to show in an explicit

way when reasoning is inconsistent. If ambiguity is involved in such a

formalism, then maybe also proofs can be made in regards to ways of

classifying also - showing e.g. that a given set of propositions (some of which

are "inference-rules") are inconsistent with how humans think about those

concepts / can result in use of concepts that is deceptive or not in accordance

with what humans would find reasonable/sensical.

When arguments/"proofs" are constructed, how those are scored may also be

determined based on how easy they are for humans to

understand/follow/verify.

One thing that could be made use of is "predictors" (specialized and preferably

"narrow" functions, generated based on principles alluded to in the section

about "generators") that try to predict the degree to which argument-steps and

propositions will be accepted by humans (not just humans generally of course,

but specific types of humans in specific types of contexts - and sometimes even

specific events with specific humans). If the correctness of these "predictors"

seems to be accurate, then they could also be used to try estimating how easily

humans can be tricked (into believing things that are clearly false, and into

believing things that are inconsistent). They may also identify best practices

for making it as hard as possible to lead humans astray (which can be used

when "scoring" argument-trees along that direction).

I am not sure how fruitful the sort of approaches I vaguely outline here in this

section would be, but it seems to me like one type of approach that probably

(as far as I know) is worthy of attention/consideration.

Another thing to attempt might be to design AI-systems where this kind of

format forms the "core" of all reasoning that the system does - with more

"messy" and "black box"-like reasoning/processing being something that is

used in a function-call like way from the "core" reasoning thread, and with

attempts to label what these more "messy" and "black-box" components do

and what they wont do. For example, making sure that if function-calls are

an image classifier, then that image classifier only does image classification

in a straight-forward and narrow/specialized way, without any part of its

functionality where complex agent-like behavior is plausible. One question is

whether we could try making something like that directly (I would not rule

that out, but the idea of doing so feels daunting to me). Another question is

whether a superintelligence could help us make something like this, with us

specifying the kinds of "lego-blocks" we want the system to be constructed

from, and the kinds of properties we want it to have (and the easier to verify

these properties the better). Seems quite plausible to me that something like

that could work, but I'm not sure. And regardless of whether AGIs can have

such an architecture, maybe more narrow/specialized systems might.

Section 6: Brain emulation approximations

There are various types of brain emulations we could imagine. Does it

simulate from birth/prenatal, or does it start at a point where the

person/animal in question already has memories/etc? Does it simulate one

specific possible path, or does it calculate/estimate more of a

probability-distribution-space of possible outcomes/states? Does it simulate

details of everything that would happen in the brain, or does it also/instead

use other methods to make predictions? What kind of environment is the

brain simulated to be in? (High welfare environments I would hope, especially

in the case of algorithms that have similarities in structure/function to brain

function!)

If we did try to get help from a superintelligence to make brain emulations,

there are are various approaches we could take, and we would not have to stick

to one only. Maybe techniques like the ones alluded to in the section about

"generators" could be utilized extensively.

One thing one might ask already now is what kind of experimental data that

could useful - not just to generate emulations, but also to test their accuracy.

For example, if some AI makes a "generator" that can generate simulations of

mice (based simply on being given their DNA, and without being given much

other information about mice), might there be some (high welfare)

experiments that we might want to do to generate helpful high-fidelity data to

test the simulation-generator against? Or do we probably have enough

existing data that would be equally helpful? What about experiments where

aspects of brain-state are measured in a high-fidelity way before/while/after

doing activities such as evaluating arguments, coding, reading other people's

code, etc, etc? Could that be useful, or probably not?

Section 7: "Counsel" of "siloed" AI-systems

I would think that probably it is beneficial to generate a sort of "counsel" of

"siloed" superintelligent systems, and have those be used in the process

somehow. Widely different architectures and widely different approaches to

AI alignment could be tried, and instances of these different AI-systems could

be used for both providing answers/ideas/code/instructions/etc, and looking

over the stuff that other AI-systems provide. Some of these AI-systems (in this

system of systems of systems etc) could be made with humans doing much of

the highest-level work, but with with lots of AI-assistance in the

implementation (and in the iterative process of verification/modification).

Other AI-systems included in the "coucil" could be made in one "swoop" by

other AI-systems, or based with the help of very high-level queries.

Here are a few examples of types of approaches that various architectures

could be based on (very much not an attempt at an exhaustive list!):

●​ Machine learning through debate (clustering around / building upon

ideas by Paul Cristiano and others)

●​ Trying to crystalize the principles that make human brains aligned, and

make use of similar principles but in an idealized form

●​ Guesses (based on various methodologies for guessing performed by

"siloed" systems - including potentially high-fidelity simulations in

high-welfare conditions) about alignment methodologies that different

specific AI researchers and AI researcher teams might have converged

on if they had thousands of years to work on the problem (in

high-welfare conditions)

One merit of a system of systems, where sub-systems are based on different

alignment techniques, is that we can see if the different "siloed" sub-systems

come up with different solutions/answers, or if they converge on similar ones

(including when they review answers/solutions/argumentation/"generators"

from other sub-systems).

Taking why-not-both-ing one step further?

A recurring theme in this text is that often it good to try various

solutions/architectures for generating answers, searching for issues/problems,

aligning AI-systems, etc, and then see if the output of these system converges.

And as a general principle I'd suggest a "more the merrier" approach (though

costs are a factor, and the possibility of suffering sub-routines should be

avoided/minimized.

I also mentioned that one of the easier things to verify may be "proofs" that 2

programs are equivalent in terms of input/output (and/or other properties we

care about). And perhaps (I guess we'll see) superintelligent AI-systems may

be quite good at rewriting code and proving equivelance.

https://reducing-suffering.org/what-are-suffering-subroutines/

Often there may be parameters/choices where we might unsure of which to

pick:

●​ What "info" should the AI-system be given?

●​ There are are many parameters/choices where we might unsure of

which to pick:​
What "info" should the AI-system be given?

●​ What parts of previous history (questions given, info about human

operators, etc) should AI-system be given?

●​ How should "scoring-functions" weigh different properties against each

other (e.g. "task-performance" vs ease of human verification)

●​ Over what domain should the system be able to work (give

input/output)?

Often what we want is to calculate a data structure that shows how the output

will vary depending on what parameters we choose. So we will be able to see

how the system [TODO, seems I didn’t finish this sentence]

Maybe sometimes (or maybe even often) the AI-system will be able to rewrite

code in such a way that an efficient piece of code can simulate running the

code with lots of possible parameters. E.g., for the following function...

...I should be able to "prove" that for inputs lower than 10 the result is 10 (I

don't have to run the function for all those numbers to confirm that). I leave

more complicated examples to future superintelligences.

What is of interest, whether it is obtained by elegance or through "brute

force", is a map/data-structure/description showing how output varies based

on input. So that we can see clearly how output changes based on e.g. what

info the AI-system is given. And this map/data-structure/description could

also be "inversed", displaying for which inputs the output is the same (and by

being the same, I mean either being the same exact value, or being within the

same "space/area" of values somehow).

Section 8: Mapping concept models (e.g. as in Section 5) to geometric

data structures (e.g. physics-simulations) [First draft for this section

not finished!]

I do have thoughts about how I would go about solving this problem, and this section

describes one of the components/mechanisms/techniques that would be an important part

of that strategy.

Let me start with some definitions:

●​ Concept model: Could be something like what I allude to in Section 5,

but having something that complex/formal/specified would not be

"obligatory". Examples of concepts could include "human", "dead

human", "that human over there", etc - but what matters is the concepts

that these words represent (not the words themselves).

●​ Geometric data structure: More or less anything, but it might often

be geomentric and "mathy". The data structure would typically

represent something that is physical (e.g. a room with a table, plates,

strawberries, etc). But there would be many degrees of freedom in

regards to how the structure would represent this physical space. A

picture with pixels could be one simple example of a data structure. A

simulation of a three-dimentional space is another example.

●​ Mapping: A data structure that represents the correspondence

between a specific "thing/event/etc" from the concept model and some

part of the geometric data structure. A simple example would be a

specification of which pixels of a picture where a specific strawberry "is".

However, the data structure would not have to be that simple, and it

would not need to assume/imply that there is a strict/precise area of the

data structure where the the thing exactly is located (uncertainty,

vagueness, etc could be accounted for by the data structure).

●​ Mapping function: A function that identifies mappings between

concepts/things and the geometric data structure. A very narrow

approach (and straight forward, but computationally infeasible in most

cases) would be to have an if-sentence for every possible configuration

of pixels (or points in space, or lines in space, or labeled objects in space,

or whatever the geometric data structure consists of). An example of a

very broad mapping function would be to have a superintelligent agent

do the mapping (thus making it so that the mapping function is a

superintelligent agent).

It could be the job of a superintelligent agent to provide a "mapping function"

(or a "mapping function generator", or a "mapping function generator

generator"). As always, efforts should be made to test/verify this mapping

function. And understandability is something that would be an important

component of the "score" a mapping function is given. Another important

component would be brevity (other things being equal, shorter is better). And

most of all: How well it corresponds to what makes sense to humans.

Let's imagine there being a geometric data structure that represents a hospital

room in a very high fidelity way, and that some of the concepts to be mapped

included "sick human", "dead human", "happy human", "healthy human", etc.

How would a mapping function do that? Well, there are lots of ways, and I'm

glad it's not my job to implement such a function in a manual way. The

mapping for "Happy human" would probably

We have already touched upon some principles/techniques that can be helpful

when generating simulations in a way that makes it harder for the AI-system

to attempt/succeed with any shenanigans. Such as

[First draft for this section isn't really finished]

Section 9: Digital alignment experiments

[TODO]

Real-world actions (and strategic considerations) [will be totally

rewritten, and include more/other stuff than currently, including

ideas brainstorming for copying strawberry problem]

[TODO]

I would think that probably it's best to have a "council" of at least a few

AI-systems based on different alignment-methodologies before any action is

taken on the internet or in the non-digital realm. Among actions in the

non-digital realm, maybe some of the first could involve constructing new

types of computers with more processing power - perhaps at first by making

modifications to existing chip manufacturing, but maybe later on by

developing molecular nanotechnology of the kind that Eric Drexler has

theorized about (presuming that this is feasible), and using these capabilities

to make computers.

Some things to keep in mind when choosing ordering of real-world actions:

●​ Machine learning through debate (clustering around / building upon

ideas by Paul Cristiano and others)

●​ Trying to crystalize the principles that make human brains aligned, and

make use of similar principles but in an idealized form

●​ Guesses (based on various methodologies for guessing performed by

"siloed" systems - potentially including high-fidelity simulations in

high-welfare conditions) about alignment methodologies that different

specific AI researchers and AI researcher teams might have converged

on if they had thousands of years to work on the problem (in

high-welfare conditions)

As to first actions after that - well, it will depend on the values and goals of the

people who control the AI, and the specific geopolitical situation of the time.

But there may be very strong strategic and moral reasons to avoid multipolar

scenarios, and if scrupulous and large/consolidated teams don't ever make use

of their AI, then sooner or later less scrupulous teams will end up doing so.

One place to start in making real-world strategic use of superintelligent

capabilities might be to disable all nukes in the world

Desirable outcomes and ethical responsibilities of AI researchers [will be totally

rewritten, and include more/other stuff than currently]

[TODO]

Unless strong arguments can be made otherwise (by superintelligent aligned

AI-systems that are presumed to be aligned), my assumption will be that

multipolar scenarios with "distributed" AI will tend to be much more

dangerous than some of the better unipolar scenarios. Multipolar scenarios

may risk huge waste of resources, much more risk of massively deadly wars

(maybe even killing everyone), and huge s-risks with catastrophic amounts of

suffering unlike anything seen up until now in the history of Earth.

What type of "society" that people try to put into being when/if

superintelligent AI-systems are developed - well, that wont be up to me - but if

it was I would propose some sort of system with checks and balances

(involving actual voting, estimations of people's opinions that are much more

accurate/nuanced than voting, the outcomes of CEV-reminiscent procedures,

etc.

My vote would be towards

https://www.lesswrong.com/posts/uQf3tfbmehqf9yqax/g.org/research/intro/
https://www.lesswrong.com/tag/coherent-extrapolated-volition

	Section 1: Describing hypothetical preconditions (with anthropomorphic framing)
	Section 3: "Adversarial" review
	Section 4: Asking oracles/genies for narrow/specialized "generators" ("reviewers", "answer-generators", "simulation-generators", "simulation-generator-generators", etc)
	Section 5: Argument-trees with a new type of more expressive formalism/"logic"
	Section 6: Brain emulation approximations
	Section 7: "Counsel" of "siloed" AI-systems
	Taking why-not-both-ing one step further?
	Section 8: Mapping concept models (e.g. as in Section 5) to geometric data structures (e.g. physics-simulations) [First draft for this section not finished!]
	Section 9: Digital alignment experiments
	Real-world actions (and strategic considerations) [will be totally rewritten, and include more/other stuff than currently, including ideas brainstorming for copying strawberry problem]
	Desirable outcomes and ethical responsibilities of AI researchers [will be totally rewritten, and include more/other stuff than currently]

