This draft is old. Here is the new one:

https://docs.google.com/document/d/1b25gpDx0bC4
KJ1RWIDOvrQhBrxkRPCIbMuTxpF9YPa0/edit

In 2012, Holden Karnofsky wrote the article Thoughts on the Singularity
Institute (SI), from which this is an excerpt:

One of the things that bothers me most about SI is that there is
practically no public content, as far as I can tell, explicitly addressing the
idea of a "tool" and giving arguments for why AGI is likely to work only
as an "agent."

And here is an excerpt from Eliezer Yudkowsky’s response:

Tool Al wasn't the obvious solution to John McCarthy, I.J. Good, or
Marvin Minsky. Today's leading Al textbook, Artificial Intelligence: A
Modern Approach - where you can learn all about A* search, by the way
- discusses Friendly AI and Al risk for 3.5 pages but doesn't mention
tool Al as an obvious solution. For Ray Kurzweil, the obvious solution is
merging humans and Als. For Jurgen Schmidhuber, the obvious
solution is Als that value a certain complicated definition of complexity
in their sensory inputs. Ben Goertzel, J. Storrs Hall, and Bill Hibbard,
among others, have all written about how silly Singinst is to pursue
Friendly AI when the solution is obviously X, for various different X.
Among current leading people working on serious AGI programs labeled
as such, neither Demis Hassabis (VC-funded to the tune of several
million dollars) nor Moshe Looks (head of AGI research at Google) nor
Henry Markram (Blue Brain at IBM) think that the obvious answer is
Tool AL Vernor Vinge, Isaac Asimov, and any number of other SF
writers with technical backgrounds who spent serious time thinking
about these issues didn't converge on that solution.

https://docs.google.com/document/d/1b25gpDx0bC4KJ1RWIDOvrQhBrxkRPCIbMuTxpF9YPa0/edit
https://docs.google.com/document/d/1b25gpDx0bC4KJ1RWIDOvrQhBrxkRPCIbMuTxpF9YPa0/edit
https://www.lesswrong.com/posts/6SGqkCgHuNr7d4yJm/thoughts-on-the-singularity-institute-si
https://www.lesswrong.com/posts/6SGqkCgHuNr7d4yJm/thoughts-on-the-singularity-institute-si
https://www.lesswrong.com/posts/sizjfDgCgAsuLJQmm/reply-to-holden-on-tool-ai

This exchange reminds me that it’s hard to know what other people see as
“obvious”. Trying to properly understand the perspective of others can be a lot
of work, and although I have put in many hours reading the thoughts of
alignment experts, I am very far away from having a full overview and
understanding of people’s opinions and ideas. My reason for mentioning this
is that I find if various ideas are new/interesting/helpful, or old/obvious or
wrong/misguided.

Trying to understand another person's perspective in detail is not a trivial
task, and whereas AI alignment is concerned I am a hobbyist. I suspect there
may be some overlap between stuff written here and Eric Drexler's writings on
Comprehensive Al Services, but I don't know how much or little. And I also
suspect overlap with the ideas of Paul Cristiano, but I'm not sure to which
degree. I am aware of there being concepts with names such as Al safety by
debate and Iterated Distillation and Amplification, and I have been able to
find posts with titles such as Bootstrapped Alignment, but - well, anyway, I'll
just get on with it. I suspect there may be some interesting stuff in here, but if
I am repeating other peoples ideas without adding anything substantial, or in
some other way missing the mark, then sorry about that.

A lot of AT alignment theory is sort of concerned with the question of "how
might we align an AI-system before/at the stage when it becomes
superintelligent?", while the focus of this text is a bit different. It is more
focused on "presuming that we have a superintelligent AI-system, which isn't
necessarily aligned but does at least pretend to be aligned, how might this
Al-system be used to set up a more safe system?". It seems to me that in such
situation there would be some very powerful techniques at our disposal, and
that ways to proceed and make full use of these techniques might be very
worthy of more deep/careful/comprehensive analysis. Even if the initial AGI is
assumed to really be aligned (a much more desirable and less risky situation!)
it would be advisable to use techniques such as these as an additional level of
security/alignment-confirmation.

Section 1: Describing hypothetical preconditions (with
anthropomorphic framing)

https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://scholar.google.com/citations?user=B7oP0bIAAAAJ&hl=en
https://www.lesswrong.com/tag/debate-ai-safety-technique-1
https://www.lesswrong.com/tag/debate-ai-safety-technique-1
https://www.alignmentforum.org/search?terms=Iterated%20Distillation%20and%20Amplification
https://www.lesswrong.com/posts/teCsd4Aqg9KDxkaC9/bootstrapped-alignment?_ga=2.28237244.1434218801.1655524787-483593772.1655524787

I'm not familiar with deep learning at a technical level, but my impression is
that a lot of modern machine learning is a bit like this:

THIS 1S YOUR MACHINE (EARNING SYSTETM?

YUP! YOU POUR THE: DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

And the hypothetical situation I imagine is a situation where we have
developed a superintelligent AGI, but that we don't really understand how it's
work - I'll assume that it's pretty much a "black box".

I assume that maybe the capabilities of the system went quite quickly from
"wouldn't be able to empty a dishwasher or reliably drive a car” to
"superintelligent along more or less any dimention we care about"” (my
intuitions about FOOM are probably more Yudkowsky-like than
Hanson/Christiano-like, but I don't really know, and I feel more unsure than I
used to).

This superintelligence is able to understand us well (when instances of the
system are given sufficient data/input). And in a superficial sense it seems
perfectly aligned. If it is asked to for example give us ideas about AI alignment,
it will provide lots of valuable insight. And if it is asked to write code that is

optimized with human readability in mind, it will provide really well-written
code. It isn't evasive, and the answers it gives (if/when it is allowed to answer
in free-form) will seem as if they are crafted to be more or less maximally
helpful and non-deceptive.

So it is a powerful tool that we have at our disposal, to put it mildly (in the
hypothetical situation I'm assuming). But as explained in detail by Eliezer
Yudkowsky and others - just because it seems as if it is aligned, does not mean
that it is aligned (or even that it is likely to be so). And banking on not being
tricked by an intelligence that is vastly more intelligent than ourselves, even
though being tricked in just one subtle way could mean the death of everyone
on Earth (and maybe also increased s-risks) - well, that's a risky activity.

We dealing with an instance of an Al-system, we choose what info/input we
give it, what we ask it to do/answer, and last but not least: within which
limitations in expressivity it may answer. And thus there are huge differences
in risk between different ways of using an Al-system. We could imagine there
being a sort of "scale". Towards one end of the scale would be to give the Al
access to the internet, or to implement complex machinery based on the Als
instructions. Towards the other end of the scale would be e.g. only giving it
multiplication-questions (“Is 3*3=9?"), and letting its only line of
communication be to answer “Yes” or “No”.

https://centerforreducingsuffering.org/research/intro/

Oracle/genie Al-system

Interface
that limits
expressivity

The avenues for an unaligned oracle/genie to attempt trickery depends on the kinds of
questions asked and on the restrictions in expressivity when answering questions (and also
on the security of the environment where the code is run, but that's outside the scope of this
text).

One of the main themes in this text is whether there might be sequences of
steps by which we might use plausibly-unaligned Als so as to greatly reduce
total risk. Might there for example be relatively safe ways of using an
uninterpretable superintelligence to create superintelligences that are much
less "black box"-like? Might there be ways of creating aligned
superintelligences in a relatively short span of time with the help of a
superintelligence, even if the superintelligence we start out isn't really
aligned? And if so, to which degree would it be possible to minimize the risk
involved in such a process? I don't properly answer any of these questions in
this text, but I do brainstorm and try to provide pointers for further analysis.
There are huge degrees of freedom for how Al-systems can be used, and the
question of "which possible uses of AGI-systems in which sequence might
minimize total risk?" seems to me like a question that is worthy of more
analysis (and where we can do much useful analysis without knowing the
specifics of how the initial AGI would work).

Some security-tips that I feel like mentioning, even though I consider them
mostly outside the scope of this text:

e Never letting a machine that runs that Al-system (or has run the Al
system previously) have access to the internet or receive USB-sticks,
and also not letting it network with machines that do.

e Not forgetting that digital machines also are a part of the physical
world, and try to take into account (e.g. considering to only run
computers containing Al-system code inside a faraday cage).

e Valuing security mindset, and hiring people with security mindset into
the organization. Instill into the people that "too paranoid” is better
than "not paranoid enough".

e Having a group of people with security mindset needing to manually
approve queries that are asked of the Al-system, and whether the
response should be sent on to the rest of the team (+ having

https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia
https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia
https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia

narrow/specialized Al-systems label responses that seem like they
might be suspect).

e Trying to keep in mind that the Al-system doesn't just learn from what
you explicitly tell it, but from pretty much anything that it can make
use of in Bayesian-like inference.

e Not taking for granted that the Al-system isn't hiding its capabilities,
and thinking that security protocols that presume plausibility of
superintelligent capabilities are much better to start with too early
than too late!

e NSA-like procedures from preventing code and design secrets from
being shared with less scrupulous actors.

e Attempting to consolidate different teams at the forefront (Open Al,
DeepMind, etc) into one cohesive entity, as a way to make strong arms
race dynamics less likely.

e Trying insofar as possible to ensure that the Al-systems code is
theoretically unable to "hack itself" out of the "box", regardless of the
specifics of the code being run, and attempting to ensure this through
multiple assurances.

e Taking into account that account execution-times (of calls to memory,
etc) and that sort of thing can be a potential source of Bayesian-like
inference for an Al-system.

e Think deeply about the question of whether there might be ways for an
Al-system to find "deleted" data on the computer (e.g. from previous
Al-instances).

e Using "mathematical” proofs to verify as much as possible of the
behavior of the operating system, CPU, hard drive, memory, etc, etc.

e Not using the same "instance" of the Al-system for all questions (that
is to say, by default the Al-system should not have direct or indirect
access to previous question-history or input).

The above is not an attempt at an exhaustive list, and as mentioned I
consider these kinds of things to be mostly outside the scope of this text.

Section 2: Getting help with code (modification, review, generation,
ete)

Getting help from from an Al-system to create code is much safer than using
an Al-system to e.g. create nanofactories (presuming that the code that is
generated will be run under the same hopefully safe conditions as the ones
already in use for the initial superintelligence).

Also when it comes to coding-assistance there is a "scale" in regards to how
much of an avenue a superintelligence would have for committing "malice".
One of the safer examples of code-assistance is to refactor code, but in ways
that provably doesn't change behavior. The Al-program could be required to
provide “proofs” that a given change does not change behavior. A format for
specifying such "proofs" is something that humans could provide, but it is also
something that the AI could provide (but with humans outlining what the kind
of format they want). Any "inference-rule" for "proof-steps" in such a format
would need to make intuitive sense, and both humans and other Al-systems
could try to find counterexamples (examples of pieces of code that are
"proven" to behave the same, but where they actually have different output
given input x, or make non-trivially different use of computer resources in
ways not advertised by the proof result). A superintelligence could also make
proofs about what exactly what is the "difference" in behavior between 2
pieces of code (e.g., "function x and function y will behave the same, except if
the input is c", or "if code piece a was added here to function b, then function
b would always have the same output as function c").

One purpose of rewriting code might be to make it much faster (and at some
stage, if a group of people with security mindset trusts it to be sufficiently safe,
maybe even writing directly in assembly or making specialized computer chips
based on an Al system's design). Another purpose of rewriting code could be
to make it more easy to read and understand for humans. A superintelligence
could be able to deduce well based on unstructured/vague specification what
makes code more readable to humans. So one might imagine just telling an
Al-system: "Refactor the code to make it better organized, easier to
understand, and harder to misunderstand or not notice bugs". But it would
also be possible to set up more explicit ways in which the
readability/understandability of code is "scored".

Another way Al-systems could help with code would be to point out potential
bugs/issues with the code. And in cases where it was put to such a purpose,

https://www.lesswrong.com/posts/8gqrbnW758qjHFTrH/security-mindset-and-ordinary-paranoia

the people controlling the AI would be able to choose the limits within which
the expressivity of the Al-system is restricted. One could imagine the
Al-system not being allowed to write text at all, but instead pointing out
potential issues through other means. For example, it could highlight 1 or
more passages of code that the user should look at, and/or it could point out
example-inputs and the corresponding outputs (either for the system as a
whole or certain sub-sections of the code). If it was allowed to use text to
explain, then the text could be strictly limited in terms of
length/content/structure. On the scale between "safe" and "less safe", I'm
thinking that any help from the Al to point out bugs probably gives more
opportunity for mischief than e.g. rewriting code in ways that provably don't
change behavior. But there would be a lot less room for mischief compared
with many other tasks.

An Al-system can also be asked to create code entirely by itself. Smaller pieces
of code, or larger pieces of code - everything from simple functions, to big
sub-components, to entire code-bases. And the specifications for the code it is
asked to write - those may be detailed or they may be short - they may be
precise or they may be vague (or some of both). And another axis of variability
is how easy the code is to review - how hard or easy it is to verify that the code
does what it is said to do, and that it has been properly optimized for the
qualities that humans want in it (in terms of understandability, the possibility
for scalable oversight, consistently following design principles that make it as
hard as possible to "hide" malicious behavior, etc).

When generating pieces of code, it may be best to not output one "piece of
code", but rather a datastructure where different alternative code-bases are
distributed along multi-dimensional space, where each axis represents things
we value (how easy it is to understand for humans, how "powerful" it is, how
fast it runs, how easy certain properties/aspects are to test/confirm/prove,
ete).

Section 3: "Adversarial" review

I am of the perspective that having "adversarial" Al-systems that review the
work of other Al-systems often may be useful (not "the solution" by itself, but
potentially a very useful technique when practiced well). Whereas review is

concerned, the review can be done both by superintelligences or by more
narrow/specialized systems (or both!). Best of all are tasks that specified in
such a way that it is clear/unambiguous to see if it is broken, and even a
narrow/specialized system will be able to find all examples of the specification
being broken (if it is broken anywhere).

How we can ask for things (e.g. pieces of code) in such a way that it is easy to
verify, and hard to "cheat", is IMO an area that is worthy of plenty of
brainstorming and analysis.

If we have access to narrow intelligences that we more easily can confirm to be
aligned (at the task in question), then the scope of what can be reviewed in an
exhaustive way may increase greatly.

And even review where the success of the reviewer at noticing problems is
probabilistic can make it much harder for a superintelligence to "cheat". Texts
describing what (large or small) pieces of code do, is one thing that can be
reviewed. And it's an example of something where a narrow/specialized
reviewer may be able to reliably notice some types of problems, while other
types of problems may be hard/infeasible to notice reliably.

Section 4: Asking oracles/genies for narrow/specialized "generators"
("reviewers', "answer-generators", "simulation-generators",

"simulation-generator-generators", etc)

You could ask an oracle/genie to look for inconsistencies between a piece of
code and a description of what that piece of code is supposed to do. But
instead of (or in addition to) asking instances of the oracle to do that task
directly, you may ask it to provide you a general-purpose function/system for
doing that.

As mentioned, we may want to use narrow/specialized systems to review the
work of superintelligent Al-systems (sometimes in addition to other
superintelligent AI-systems). And one way to obtain such systems would be to
have an AGIs make them. The distinction between a narrow/specialized
system, and a system that has "general" intelligence, may be blurry, but at the
same time we do have clear ideas of many of the things/aspects to be on the
lookout for. And as mentioned, a code base (which more or less is what a

"reviewer" would be) can absolutely be "scored" for clarity/readability
(although not with complete accuracy that covers any type of issue in an
exhaustive way).

Videos such as this one show that as humans we have limited ability to absorb
everything we see in a precise/comprehensive way. But at the same time, there
are limits to what we can be made to not notice. If a superintelligence provides
a narrow/specialized reviewer - in very well-written source code, and coupled
with textual and schematic descriptions of what the reviewer does - then that
probably gives it a lot of rooms for shenanigans - but there are probably also
lots of avenues/methods for comprehensive review.

A desirable property of "reviewers" is if they can be tested, and the more
reliably they can be tested the better. Both testing with lots of examples (so as
to see if reliably notices instances of x from training data), and testing other
Al-systems (including superintelligent ones) are asked to search for examples
of input that can "fool" the reviewer.

Another desirable property is that is may make it harder (but not necessarily
impossible) to "fool" us intentionally. Whether a general-purpose (but
narrow/specialized) reviewer does what it should do may be easier to evaluate
than evaluating an object-level answer coming directly from an AGI. And it
can also help make it harder for different superintelligences to "collude"
(compared to when one superintelligence is asked to evaluate the source code
of another superintelligence, as opposed to being asked to evaluate a
narrow/specialized "reviewer").

These desirable properties hold more generally for when asking an AGI to
answer something, design something, or code something. For example, rather
than being asked to simulate the structure of a machine that would result from
a step-by-step process (involving things like e.g. DNA synthesis and/or
peptide sequencing and/or 3D printing), it may be asked for a
"simulation-generator". Such a generator may then be evaluated (like, you can
look at the code and the principles the code makes use of, and see if they make
sense), and it can be backtested against things that already have been made in
the real world.

https://www.youtube.com/watch?v=vJG698U2Mvo

Maybe it sometimes also could have merit to ask for
"answer-generator-generators". The purpose of that could be to make it harder
to "hide" shenanigans by increasing generality and including less specific
information. For example, a "simulation-generator-generator" could be
agnostic to laws of physics (and could be asked of Al-systems where we have
minimized the amount of info we give them about the universe).

Sometimes it may make sense that the "generators" are "stacked". For
example, maybe a "simulator" uses a lot of compute, and that therefore we
want a more approximate version that runs faster. Instead of (or in addition
to) directly having the AI make the approximate version, we may have Als
generate "generators" for doing "approximation", and feed the
high-fidelity/high-compute "generator" that takes on the role of an
"approximator".

Maybe often one would be faced by questions such as «should I use this or this
answer-generator?», «should this or that AGI-architecture be asked to
provide the "reviewer"?», «should set A or set B be the training-data of the
AGI-architecture-instance I ask to provide the "generator"?», etc. To such
questions a good answer may often be: Why not both?

Compute may be a practical consideration, and another consideration (that I
won't cover much in this text) may in some instances be the possibility of
suffering subroutines. But besides concerns, a good attitude when it comes to
"generators" and "reviewers" is probably "the more the merrier". Trying lots of
stuff (bonus if they are based on widely different architectures and principles),
and checking the degree to which their output converges.

One avenue of further thinking/brainstorming/analysis might be the question
of which properties of "generators" that affect how hard/easy it is for

Section 5: Argument-trees with a new type of more expressive
formalism/"logic"

If this section is draining to read, you could skip it and come back to it
later.

https://reducing-suffering.org/what-are-suffering-subroutines/

So maybe in some sense higher-order predicate logics are "structurally
equivalent" to the kind of thing I have in mind in terms of what theoretically
can be done with it, and maybe that also is the case for proof assistants based
on dependent type theories such as Coq and Agda. Nontheless, these formats
(based on my far-from-comprehensive understanding of them) feel limited to
me, at least when it comes to representing real-world concepts that aren't
purely about "mathematical" things:

Changing code to make it more easy to understand/read for humans is more
safe when it can be done in ways where it is "mathematically” proven that the
behavior of the code remains unchanged:

e They stray unnecessarily far from human language and other forms in
which the human brain is comfortable with having things presented (by
"unnecessarily" I mean "in ways where AFAIK no
precision/clarity/specificity is gained)

e Asfar as I can see (and my familiarity is limited) they don't seem to be
built to handle really complex types

e A lot of the concepts that we deal with natively as humans, and that can
be stated relatively crisply, are concepts that these formalisms seem to
not be designed to express (so expressing them becomes - well, if not
impossible, then at least awkward/"hacky")

Meanwhile, human language certainly also has it's limitations for users where
we want to express arguments/statements/beliefs/questions/etc as precisely
as is feasible:

e Clauses are not made explicit/visible (and how to parse them is often
ambiguous), and the same goes for "variables" like "he", "she", "it", etc

e No languages are really designed for nuance/detail/precision, making
the tradeoff between nuance/detail /precision and brevity/complexity of
text is unnecessarily "costly"

e It is not made easy to disambiguate, and describe as well as you can the
concept (often a fuzzy and "cluster-like") that you have in your mind

e It is not made obligatory (or even default) to specify the

"inference-rules" that is used for each "argument-step" when you argue,

https://en.wikipedia.org/wiki/Coq
https://en.wikipedia.org/wiki/Agda_(programming_language)
https://www.lesswrong.com/posts/WBw8dDkAWohFjWQSk/the-cluster-structure-of-thingspace

and the same goes for even providing all the relevant "argument-steps”

I think - partly based on hunch/intuition - that it might have merit to have
some kind of a formalism that is made to make formal arguments (where each
argument-step uses an explicit inference-rule that can compute
conclusion/output from assumptions/input), but in a way that is more
tailored towards trying to be able to represent more or less anything that
logically inclined humans can say in human language while they are trying to
be as precise as they can. And with functionality that is tailored towards
specifying the meaning of and disambiguating human concepts (including
vague "cluster-concepts"). And made from the "ground up" with the intention
that inference-steps and various other things are to be computable, and with
the intention that it is to be easy to understand (while avoiding
misunderstandings insofar as possible) when shown on a screen/GUI - as
opposed to e.g. predicate logic, where the starting point is writing things on
paper, or Coq, where the starting point is a programming-language that can be
written/read as plain strings in any text-editor.

The concept I have in mind (insofar as my thoughts are crystalized), is
inspired by a system that I wrote about in my masters thesis. Despite being a
master thesis it is a shoddily written document full of spelling mistakes that
was put together in a hurry. But nonetheless it could be looked at by those who
are especially interested.

https://docs.google.com/document/d/1f2MlQdC-uDQ4nNxS6rWVUJkThSkPvEGyQOH5P04MVQo/edit

Socrates i1s mortal

Statement
oSocrateso 1sc mortale

Words and expressions

Socrates Noun | ST S | %\

Tha antity referenced by the Wikipedia-artice
Socrotes

is o]

The auxilbary verb is

mortal e A

The adjective mortal

Socrates is defined as being the entity that is referred 1o by the entity that is referred by the
Wikipedia-article about Socrates. The words “is” and “mortal” have not been given definitions,
but if she chose to do so, Olivia could choose from one of the existing ones or come up with a
new one of her own.

Every segment of the sentence (in this case, “Socrates” and “mortal”) is singled out by coloring
the background in a certain shade of color. When this segment is hovered the place where it's
defined below changes color/shade, and vice versa. For this simple sentence this is not
important, but for other more complex sentences this can make sentences easier to read and
sometimes help make sentences that otherwise would be ambiguous unambiguous.

The plus-icons in the sentence can be clicked if Olivia wants to make updates to it. She could
for example click the one preceding “Socrates” to update it to “It may be the case that
Socrates”, the one succeeding “is” to update to “is probably”, or the one succeeding “mortal”
to update to “mortal and fond of wearing sandals”.

Screenshot from thesis

A1 A2
If x iz a human

then x iz mortal

Bocrotes is o human

ASBIMELON

1

Socrates is mortal

Feldowa Trom &1 and AL

A1 1 xis o humon then ¥ is mortal Apseeption
A2 Soorktes i8 o human Anpurpticn Argua why
C1 Socrales is mortal Folown from &1 and A2

Differences between example and potential real-world applications

While the example above hopefully helps give an idea of what it could be like to use an
application that's based on GPF-system, there are several certain and potential differences
between the example and what an actual real-world application would be like.

Different GUI

The GUI in the example is not very well thought through, and is not an attempt to correspond
well to what a real-world application for constructing computer-verified arguments would
look like. Both in terms of layout (which elements that are included and where they are
placed) and style (colors, fonts, sizes, etc), there would be large differences.

Other uses than proofs

The example concerns someoneg who is constructing a proof / computer-verified argument.
That is one potential use, but one among many. Other potential uses include but are not
limited to:

Adding information to knowledge bases.

Asking questions to an answering system (e.g. something similar to WolframAlpha).

Constructing sentences that are to be translated to one or more other languages
and/or formats (and adding new vocabulary when necessary).

= Giving instructions to an application for what is should do.

= Enabling people to (1) use third-party software by constructing statements, questions,

Other screenshot from thesis

I am not under the illusion that human concepts can be made totally explicit.
That is to say, for many/most human concepts I don't think we specify some
function/definition that clearly defines whether or not (or the degree to
which) any instance would belong to that concept or not. But basically, the
more you specify about what you mean to refer to when you are referring to a
specific concept in some statement, the more precise your are being. Can you
mention some examples of things that more-or-less clearly belong to the
concept you currently mean to refer to? Cool. Can you you mention some
examples of things that more-or-less clearly don't belong in the concept? Cool.
Do you have like 127 propositional statements that don't clearly define the
borders of the concept in question, but are relevant to the assumed likelyness
of fitting within the concept? Awesome. Do you have some description of a
space of "thing-space" (perhaps by itself a complicated description) that you
actively don't want to be labeled inside/outside the concept? That helps as
well. Etc, etc.

From my perspective it feels like an analogy of sorts can be made between
logics/formalisms that incorporate probability and logics/formalisms that
incorporate ambiguity/concept-specification. A possible "ethos" for using
formalisms that represent probability within them could be that probabilities
are a part of what constitutes good reasoning, and that therefore there is merit
to incorporate it into the formalism (instead of ignoring it, and having the
formalism sort of "pretend it doesn't exist"). My hunch is that maybe it could
be fruitful to sometimes have a similar attitude towards formalisms that try to
incorporate ambiguity/concept-specification, and try to make more of the
process of specifying mapping between "variables" and real-world objects be
sort of incorporated within the the formalism itself.

One way to use these kinds of formalisms could be to have Al-systems use
them when presenting arguments/"proofs". Also, if Al-systems sometimes ask
for clarifications of questions/requests/etc - or receive questions/requests/etc
in a "disambiguated" format to begin with - then maybe some ways of doing
that may involve this kind of a formalism.

When using explicit and argument-trees where each argument-step is
"computable", then presumably several of the desirable properties that we
associate with formal proofs follow. And it may be easier to show in an explicit

way when reasoning is inconsistent. If ambiguity is involved in such a
formalism, then maybe also proofs can be made in regards to ways of
classifying also - showing e.g. that a given set of propositions (some of which
are "inference-rules") are inconsistent with how humans think about those
concepts / can result in use of concepts that is deceptive or not in accordance
with what humans would find reasonable/sensical.

When arguments/"proofs" are constructed, how those are scored may also be
determined based on how easy they are for humans to
understand/follow/verify.

One thing that could be made use of is "predictors"” (specialized and preferably
"narrow" functions, generated based on principles alluded to in the section
about "generators") that try to predict the degree to which argument-steps and
propositions will be accepted by humans (not just humans generally of course,
but specific types of humans in specific types of contexts - and sometimes even
specific events with specific humans). If the correctness of these "predictors"
seems to be accurate, then they could also be used to try estimating how easily
humans can be tricked (into believing things that are clearly false, and into
believing things that are inconsistent). They may also identify best practices
for making it as hard as possible to lead humans astray (which can be used
when "scoring" argument-trees along that direction).

I am not sure how fruitful the sort of approaches I vaguely outline here in this
section would be, but it seems to me like one type of approach that probably
(as far as I know) is worthy of attention/consideration.

Another thing to attempt might be to design Al-systems where this kind of
format forms the "core" of all reasoning that the system does - with more
"messy" and "black box"-like reasoning/processing being something that is
used in a function-call like way from the "core" reasoning thread, and with
attempts to label what these more "messy" and "black-box" components do
and what they wont do. For example, making sure that if function-calls are
an image classifier, then that image classifier only does image classification
in a straight-forward and narrow/specialized way, without any part of its
functionality where complex agent-like behavior is plausible. One question is
whether we could try making something like that directly (I would not rule
that out, but the idea of doing so feels daunting to me). Another question is
whether a superintelligence could help us make something like this, with us
specifying the kinds of "lego-blocks" we want the system to be constructed
from, and the kinds of properties we want it to have (and the easier to verify
these properties the better). Seems quite plausible to me that something like
that could work, but I'm not sure. And regardless of whether AGIs can have
such an architecture, maybe more narrow/specialized systems might.

Section 6: Brain emulation approximations

There are various types of brain emulations we could imagine. Does it
simulate from birth/prenatal, or does it start at a point where the
person/animal in question already has memories/etc? Does it simulate one
specific possible path, or does it calculate/estimate more of a
probability-distribution-space of possible outcomes/states? Does it simulate
details of everything that would happen in the brain, or does it also/instead
use other methods to make predictions? What kind of environment is the
brain simulated to be in? (High welfare environments I would hope, especially
in the case of algorithms that have similarities in structure/function to brain
function!)

If we did try to get help from a superintelligence to make brain emulations,
there are are various approaches we could take, and we would not have to stick
to one only. Maybe techniques like the ones alluded to in the section about
"generators" could be utilized extensively.

One thing one might ask already now is what kind of experimental data that
could useful - not just to generate emulations, but also to test their accuracy.
For example, if some Al makes a "generator" that can generate simulations of
mice (based simply on being given their DNA, and without being given much
other information about mice), might there be some (high welfare)
experiments that we might want to do to generate helpful high-fidelity data to
test the simulation-generator against? Or do we probably have enough
existing data that would be equally helpful? What about experiments where
aspects of brain-state are measured in a high-fidelity way before/while/after
doing activities such as evaluating arguments, coding, reading other people's
code, etc, etc? Could that be useful, or probably not?

Section 7: "Counsel" of "siloed" AI-systems

I would think that probably it is beneficial to generate a sort of "counsel” of
"siloed" superintelligent systems, and have those be used in the process
somehow. Widely different architectures and widely different approaches to
AT alignment could be tried, and instances of these different Al-systems could
be used for both providing answers/ideas/code/instructions/etc, and looking
over the stuff that other Al-systems provide. Some of these Al-systems (in this
system of systems of systems etc) could be made with humans doing much of
the highest-level work, but with with lots of Al-assistance in the
implementation (and in the iterative process of verification/modification).
Other Al-systems included in the "coucil" could be made in one "swoop" by
other Al-systems, or based with the help of very high-level queries.

Here are a few examples of types of approaches that various architectures
could be based on (very much not an attempt at an exhaustive list!):

e Machine learning through debate (clustering around / building upon
ideas by Paul Cristiano and others)

e Trying to crystalize the principles that make human brains aligned, and
make use of similar principles but in an idealized form

e Guesses (based on various methodologies for guessing performed by
"siloed" systems - including potentially high-fidelity simulations in

high-welfare conditions) about alignment methodologies that different
specific Al researchers and Al researcher teams might have converged
on if they had thousands of years to work on the problem (in
high-welfare conditions)

One merit of a system of systems, where sub-systems are based on different
alignment techniques, is that we can see if the different "siloed" sub-systems
come up with different solutions/answers, or if they converge on similar ones
(including when they review answers/solutions/argumentation/"generators"
from other sub-systems).

Taking why-not-both-ing one step further?

A recurring theme in this text is that often it good to try various
solutions/architectures for generating answers, searching for issues/problems,
aligning Al-systems, etc, and then see if the output of these system converges.
And as a general principle I'd suggest a "more the merrier" approach (though
costs are a factor, and the possibility of suffering sub-routines should be
avoided/minimized.

I also mentioned that one of the easier things to verify may be "proofs" that 2
programs are equivalent in terms of input/output (and/or other properties we
care about). And perhaps (I guess we'll see) superintelligent AI-systems may
be quite good at rewriting code and proving equivelance.

https://reducing-suffering.org/what-are-suffering-subroutines/

Often there may be parameters/choices where we might unsure of which to
pick:

e What "info" should the Al-system be given?

e There are are many parameters/choices where we might unsure of
which to pick:
What "info" should the Al-system be given?

e What parts of previous history (questions given, info about human
operators, etc) should Al-system be given?

e How should "scoring-functions" weigh different properties against each
other (e.g. "task-performance" vs ease of human verification)

e Over what domain should the system be able to work (give
input/output)?

Often what we want is to calculate a data structure that shows how the output
will vary depending on what parameters we choose. So we will be able to see
how the system [TODO, seems I didn’t finish this sentence]

Maybe sometimes (or maybe even often) the Al-system will be able to rewrite
code in such a way that an efficient piece of code can simulate running the
code with lots of possible parameters. E.g., for the following function...

(n: number) => {
if | 18% I

...I should be able to "prove" that for inputs lower than 10 the result is 10 (I
don't have to run the function for all those numbers to confirm that). I leave
more complicated examples to future superintelligences.

What is of interest, whether it is obtained by elegance or through "brute
force", is a map/data-structure/description showing how output varies based
on input. So that we can see clearly how output changes based on e.g. what

info the Al-system is given. And this map/data-structure/description could
also be "inversed", displaying for which inputs the output is the same (and by
being the same, I mean either being the same exact value, or being within the
same "space/area" of values somehow).

Section 8: Mapping concept models (e.g. as in Section 5) to geometric
data structures (e.g. physics-simulations) [First draft for this section
not finished!]

A Eliezer Yudkowsky &
@ESYudkowsky

An 'aligned' powerful AGl is one that can be pointed in
any direction at all, even what seems like a simple task
that isn't morally fascinating. E.g. "Place, onto this
particular plate here, two strawberries identical down
to the cellular but not molecular level."

I do have thoughts about how I would go about solving this problem, and this section
describes one of the components/mechanisms/techniques that would be an important part
of that strategy.

Let me start with some definitions:

e Concept model: Could be something like what I allude to in Section 5,
but having something that complex/formal/specified would not be
"obligatory". Examples of concepts could include "human", "dead
human", "that human over there", etc - but what matters is the concepts
that these words represent (not the words themselves).

e Geometric data structure: More or less anything, but it might often
be geomentric and "mathy". The data structure would typically
represent something that is physical (e.g. a room with a table, plates,
strawberries, etc). But there would be many degrees of freedom in
regards to how the structure would represent this physical space. A
picture with pixels could be one simple example of a data structure. A
simulation of a three-dimentional space is another example.

e Mapping: A data structure that represents the correspondence

between a specific "thing/event/etc" from the concept model and some

part of the geometric data structure. A simple example would be a
specification of which pixels of a picture where a specific strawberry "is".
However, the data structure would not have to be that simple, and it
would not need to assume/imply that there is a strict/precise area of the
data structure where the the thing exactly is located (uncertainty,
vagueness, etc could be accounted for by the data structure).

e Mapping function: A function that identifies mappings between
concepts/things and the geometric data structure. A very narrow
approach (and straight forward, but computationally infeasible in most
cases) would be to have an if-sentence for every possible configuration
of pixels (or points in space, or lines in space, or labeled objects in space,
or whatever the geometric data structure consists of). An example of a
very broad mapping function would be to have a superintelligent agent
do the mapping (thus making it so that the mapping function is a
superintelligent agent).

It could be the job of a superintelligent agent to provide a "mapping function"
(or a "mapping function generator", or a "mapping function generator
generator"). As always, efforts should be made to test/verify this mapping
function. And understandability is something that would be an important
component of the "score" a mapping function is given. Another important
component would be brevity (other things being equal, shorter is better). And
most of all: How well it corresponds to what makes sense to humans.

Let's imagine there being a geometric data structure that represents a hospital
room in a very high fidelity way, and that some of the concepts to be mapped
included "sick human", "dead human", "happy human", "healthy human", etc.
How would a mapping function do that? Well, there are lots of ways, and I'm
glad it's not my job to implement such a function in a manual way. The
mapping for "Happy human" would probably

We have already touched upon some principles/techniques that can be helpful
when generating simulations in a way that makes it harder for the AI-system
to attempt/succeed with any shenanigans. Such as

[First draft for this section isn't really finished]

Section 9: Digital alignment experiments

[TODO]

Real-world actions (and strategic considerations) [will be totally
rewritten, and include more/other stuff than currently, including
ideas brainstorming for copying strawberry problem]

[TODO]

Desirable outcomes and ethical responsibilities of Al researchers [will be totally
rewritten, and include more/other stuff than currently]

[TODO]

https://www.lesswrong.com/posts/uQf3tfbmehqf9yqax/g.org/research/intro/
https://www.lesswrong.com/tag/coherent-extrapolated-volition

	Section 1: Describing hypothetical preconditions (with anthropomorphic framing)
	Section 3: "Adversarial" review
	Section 4: Asking oracles/genies for narrow/specialized "generators" ("reviewers", "answer-generators", "simulation-generators", "simulation-generator-generators", etc)
	Section 5: Argument-trees with a new type of more expressive formalism/"logic"
	Section 6: Brain emulation approximations
	Section 7: "Counsel" of "siloed" AI-systems
	Taking why-not-both-ing one step further?
	Section 8: Mapping concept models (e.g. as in Section 5) to geometric data structures (e.g. physics-simulations) [First draft for this section not finished!]
	Section 9: Digital alignment experiments
	Real-world actions (and strategic considerations) [will be totally rewritten, and include more/other stuff than currently, including ideas brainstorming for copying strawberry problem]
	Desirable outcomes and ethical responsibilities of AI researchers [will be totally rewritten, and include more/other stuff than currently]

