

Mining Software Dependencies
at Large Scale
A Preliminary Study on the Maven Central
Repository
Motivations

● Existence of massive repositories with millions of
software artifacts (e.g., Maven Central (MC) > 3M
artifacts)

● Scarce research have been made in order to study
such repositories at a large scale

● Vulnerable dependencies are a known problem in
today’s OSS ecosystems

Objectives

● Explore the global structure of MC
● Analyze the degree of interrelation between artifacts ●

Determine which are the most influential artifacts

● Describe the historical evolution of popular OSS
projects

Data collection

● Maven-miner (https://github.com/diverse-project/maven-miner) ●

Neo4j (http://neo4j.com/)

● Cypher (https://neo4j.com/developer/cypher-query-language/)

The “big picture”

● Only 1% of MC
● 31877 nodes
● 57227 edges

Key concepts

● B is a dependency of

A ● A directly uses B
● A transitively uses C

A

B C

Descriptive statistics

● According to the studied dataset:
– Artifact with the Max # of dependencies:

org.jboss.as:jboss-as-build:7.1.2

– Artifact with the Max # of direct usages:
org.slf4j:slf4j-api:1.6.1

– Artifact with the Max # of transitive usages:
commons-logging:commons-logging:1.1.1

Connectivity

● Union Find algorithm

A
BC Cluster #1

DE
Cluster #2

B
Artifacts’ impact

A
● Page Rank algorithm:

It’s not only the number of
dependencies what is
important,

CD E

but also the importance of the artifacts

behind those dependencies

Projects’ evolution

Conclusions

● A graph-based representation of MC brings new
opportunities to perform large scale analyzes on
software evolution and dependencies usage

● For the portion of data studied:
– We found that the graph is nearly fully

connected, with 94% of artifact belonging to a
single large cluster

– We identified the most influential artifacts
through the use of different graph algorithms
(commons-logging:commonslogging:1.1.1)

Future work

● Explore the full MC graph of artifacts and its

dependencies
● Quantify how much of each dependency is actually

used by each artifact (#classes? #methods?)
●Identify such parts in order to introduce diversity

(e.g., to change a method for another with the same
functionality but belonging to a different library)

KTH ROYAL INSTITUTE
OF TECHNOLOGY

Mining Software Dependencies
at Large Scale
A Preliminary Study on the Maven Central
Repository

