Mining Software Dependencies
at Large Scale

A Preliminary Study on the Maven Central
Repository
Motivations

* Existence of massive repositories with millions of
software artifacts (e.g., Maven Central (MC) > 3M
artifacts)

*Scarce research have been made in order to study
such repositories at a large scale

*Vulnerable dependencies are a known problem in
today’s OSS ecosystems

Objectives

* Explore the global structure of MC
*Analyze the degree of interrelation between artifacts °

Determine which are the most influential artifacts

*Describe the historical evolution of popular OSS
projects

Data collection

*Maven-miner (https://github.com/diverse-project/maven-miner) *
Neo4j (http:/neodj.com/)

* Cypher (https://neo4j.com/developer/cypher-quew-language/)

Query

The “big picture”

*Only 1% of MC
* 31877 nodes

*57227 edges
Key concepts

‘B is a dependency of

A *A directly uses B

* A transitively uses C

Descriptive statistics

* According to the studied dataset:

~ Artifact with the Max # of dependencies:
org.Jjboss.as:fboss-as-build:7.1.2

— Artifact with the Max # of direct usages:
orq.slf4j:slfdj-api:1.6.1

~ Artifact with the Max # of transitive usages:
commons-logging:commons-logging:1.1.1

Min Max Median Mean SD Q1 Q.
Dependencies 0 316 0 1.7 4.1 0 2
Direct usages 0 273 1 1.7 5.6 1 1
Transitive usages 0 20527 3 17.2 190.7 1 T
ConneCt|V|ty # Artifacts #Clusters
29989 1
. _ . 66 1
*Union Find algorithm 39 1
19 2
13 1
10 1
9 1

8 10
e Q

Cluster #1

Cluster #2
It's not only the number of
] . dependencies what is
Artifacts’ impact important,

*Page Rank algorithm:
but also the importance of the artifacts

behind those dependencies

Groupld Artifactld Version #Dep #DUsages #TUsapes PR
commons-logging commons-logging 1.1.1 0 256 20527.00 32.88
javax.activation activation 1.1 0 114 T182.00 24.31
org.slfd) slfdj-api 1.6.1 0 273 842.00 17.86
aopalliance aopalliance 1.0 0 144 4728.00 15.99
stax stax-api 1.0.1 0 65 2686.00 15.12
javax.xml.bind jaxb-api 2.1 6 103 1325.00 15.04
org.glassfish.external management-api 3.0.0 0 100 2617.00 13.79
asm - asm 4.1 0 25 1657.00 13.59
Javax.xml.stream stax-api 1.0-2 0 a8 203100 13.44
javax.inject javax.inject 1 0 151 1357.00 10.79

Projects’ evolution

2006 2008 2010 2012 2014 2016
Release Date

Conclusions

~8&- commons—codec

- commons—collections
—- COMMOnS—io

—+— commons-lang

-~ commons-logging

* A graph-based representation of MC brings new
opportunities to perform large scale analyzes on
software evolution and dependencies usage

*For the portion of data studied:

~ We found that the graph is nearly fully

connected, with 94% of artifact belonging to a
single large cluster

~ We identified the most influential artifacts
through the use of different graph algorithms
(commons-logging:commonslogging:1.1.1)

Future work

*Explore the full MC graph of artifacts and its

dependencies

* Quantify how much of each dependency is actually
used by each artifact (#classes? #methods?)

‘ldentify such parts in order to introduce diversity
(e.g., to change a method for another with the same

functionality but belonging to a different library)

KTH ROYAL INSTITUTE
OF TECHNOLOGY

Mining Software Dependencies
at Large Scale

A Preliminary Study on the Maven Central
Repository

