System Architecture and Processing Pipeline for
Anantha - ARGO Conversational Interface

Team Name : Sirius
Team Id : 99896

Team Members : R. Advaith, V. Subhash, R. Yashwanth, S. Raviteja, M. Abhinav, J. Shreya

Topics Covered in This Document

1.

2.

8.

9.

User Authentication and Secure Session Management Initialization

Natural Language Query Acquisition and Input Processing Interface
Contextual Session Buffering and LLM Dispatch via Redis Queues
Advanced Semantic Query Parsing and Structural Interpretation Using LLMs

Retrieval Strategy Classification: Vector Embedding, Knowledge Base, or Direct
Data Access

Embedding Vector Generation and Semantic Similarity Search in Vector
Databases

Metadata-Driven Parameter Filtering, Validation, and Constraint Enforcement
Query Result Consolidation and ARGO Float Identifier Extraction

Context-Aware Query Refinement and Augmentation Leveraging LLM Feedback

10. Automated Generation of Optimized SQL Queries from Refined Query

Parameters

11. Structured Query Execution within High-Performance Data Access Layer

(FastAPI + SQL Engine)

12. Post-Processing of Query Results and Categorization of Output Data Types

13. Scientific Interpretation and Multi-Modal Visual Analytics with Tabular Data

Rendering

14. Multi-Format Data Export and Visualization Sharing (PNG, CSV, NetCDF)

15. User Feedback Capture and Integration into Reinforcement Learning Feedback

Loops (RLHF)

Workflow Diagram :

1
User Authentication &
Secure Sessions

Natural Language
Query Input

3_J ™\
[Session Buffer & Task

Dispatch (Redis Queue)
-async handling

\

Generate embeddings
for the query and match
them with stored vectors

to find similar results.

%

Filter results by
metadata (e.g., dates,
IDs) and validate
parameters for format
and limits.

\

v

}

5

Select retrieval mix by
etting binary flags (1/0)
for Vector DB,
Knowledge Base, and
SQL fetch.

S

A

v

LLM parses the
query into intent,
entities, and constraints
for structured
understanding.

)

-

Merge results from all
sources and extract
ARGO float IDs if
applicable.

Refine query with
LLM for clarity, then
generate safe,
optimized SQL.

-

12(a) Advanced Reasoning

mode

[EJ Anomaly Detection,

Predictive Forecasting &

%—*@

v

Ll

Interactive 2D/3D Plots

~

10| Execute sQL through

\

FastAPl and the SQL

LLM Insights & Analysis

engine, returning
structured tabular

A

results (rows/tables) via

Trend Analytics etc. Tabular Data Outputs the API.
. A A . v
J
) v .)
OUTPUT —P[Database Storage }——D Feedback system for RL

\

1. User Authentication and Secure Session Management Initialization

The authentication entry point of the system architecture leverages Firebase Authentication as
a managed identity provider, thereby externalizing credential storage, password hashing, and
user lifecycle management into a hardened, cloud-native service. Authentication tokens are
issued as Firebase ID Tokens, which are JWTs (JSON Web Tokens) signed by Google’s public
keys (rotated automatically via the Google Identity Platform). These tokens encapsulate user
identity, verification state, and optional custom role claims, and they are verified server-side
through signature validation against the published JWKS (JSON Web Key Set).

In contrast to traditional self-managed identity stores, this approach obviates the need for a local
password hashing scheme (e.g., argon2id), while inheriting Firebase’s built-in resistance to
brute-force, credential stuffing, and replay attacks. Upon successful sign-in, clients receive a
short-lived ID Token (=1 hour TTL) alongside an automatically managed Refresh Token. The
Refresh Token, scoped to the Firebase project, enables silent renewal of the ID Token without
user re-authentication, ensuring stateless access flows in coordination with the FastAPI
middleware layer that performs verification and role claim extraction.

Session continuity is achieved by binding Firebase-issued identity tokens to a Redis-backed
session context store. Each active session is associated with a unique session_id and
enriched with ephemeral metadata such as prior query embeddings, intent vectors extracted
from conversational history, and access-tier annotations (e.g., Analyst, Researcher, Public
Viewer). This allows downstream LLM-driven components to maintain multi-turn dialogue
coherence while enforcing least-privilege access controls.

Security controls are layered:

e CSREF protection is enforced by delivering ID Tokens via explicit authorization headers
(Authorization: Bearer) rather than cookies, thereby decoupling authentication
from browser session semantics.

e Rate limiting is implemented through Redis token-bucket algorithms (e.g., 20
authenticated requests/second), mitigating denial-of-service or abuse scenarios.

e Session invalidation propagates from Firebase via revocation APIs: when a user
password is reset, MFA is enforced, or explicit logout occurs, the corresponding refresh
tokens are invalidated globally and sessions flushed from Redis.

e Audit logging captures all authenticated data accesses, recording {uid, role,
query_id, timestamp, resource, action} in structured, immutable logs. These

support compliance with the FAIR data principles—Findable, Accessible,
Interoperable, and Reusable—by ensuring traceability across human and
programmatic interactions.

By integrating Firebase Authentication with Redis-based ephemeral session enrichment, the
system establishes a hybrid model that unifies stateless cloud-native identity guarantees
with stateful conversational memory management, ensuring both security and usability for
non-technical ocean data consumers.

2. Natural Language Query Acquisition and Input Processing Interface

Upon successful authentication, users interact via a frontend abstraction layer constructed
using a hybrid Streamlit + React stack. This layer facilitates freeform natural language input
capture, augmented with rich widgets for contextual assistance (e.g., dropdowns for known
float IDs, date-range pickers, and BGC parameter selectors).

Input queries are passed to a backend API endpoint (/query/parse) via asynchronous HTTP
(Axios/FastAPI), tagged with user session_id, geospatial preference, and historical dialog
context. Each input utterance is subjected to preprocessing routines, which include:

e Normalization: Unicode NFKC conversion, whitespace trimming, case folding.

e Named Entity Recognition (NER) for marine-specific entities: e.g., "Arabian Sea",
"Argo float 3901234", using domain-adapted transformer-based models.

e Temporal Resolution: Expression parsing of phrases like “last 6 months”, “March
2023”, into canonical ISO 8601 timestamps using Heideltime-style interval resolvers.

This processed input is then appended to the user’s conversation history buffer in Redis,
retaining both the raw and normalized query text alongside metadata such as query_time,
confidence_scores, and geo_flag.

Moreover, the frontend Ul integrates autocomplete and semantic suggestion modules,
powered by shallow semantic embeddings retrieved from the vector database (ChromaDB). For
example, typing "salinity" triggers dynamic completions like "salinity near 100m depth" or
"salinity anomalies in Nifio zones", reflecting frequent query structures observed in system logs.

These augmentations not only improve user experience but also prime the LLM parser for
high-quality downstream intent extraction, ensuring minimal semantic drift in subsequent steps.

3. Session Buffer & Task Dispatch via Redis Queue (Asynchronous
Handling)

o Look in cache

SQL Database

Cache hit > e.g. Backendless
return data
J T
D - Prime cache @
with data T

Client
o Cache miss > look in persistent datastore

Once the normalized query and associated metadata (from Step 2) are prepared, the system
transitions into a distributed task orchestration phase, designed to handle high-concurrency
user interactions and prevent LLM bottlenecks. This phase utilizes a Redis-backed queueing
infrastructure (using Redis as the broker) to decouple frontend query capture from backend
processing, providing non-blocking, fault-tolerant dispatch semantics.

Upon enqueueing a user query, the system generates a task object serialized as a JSON
payload:

{

"session_id": "abc123",

"query_id": "q_xyz",

"normalized_query": "Show salinity profiles near the equator in
March 2023",

"timestamp": "2025-09-17T13:04:2172",

"user_roles": ["researcher"],

"context_hash": "md5(embedding+NER+Geoloc)",
"conversation_state_ptr": "redis://ctx:session_abc123"}

Each task is then pushed to a priority Redis queue (query:parse:priority) based on
heuristics like:
e Userrole (e.g., admins get priority latency),

e Query complexity (estimated via token count + semantic entropy),

e Queue length + age of pending tasks.

Worker nodes running on Python asyncio event loops pull from this queue and spin off
coroutine tasks using uvloop or Trio backends for sub-50ms task startup latency.

Key Mechanisms Enabled Here:

e Task TTL enforcement: Tasks older than 120s are invalidated to prevent stale
processing.

e Concurrency-safe deduplication: Using Redis’ SETNX and Lua scripts to prevent race
conditions in duplicate query dispatch.

e Error propagation channel: Failures (e.g., tokenizer overflow, rate-limiting from LLM
API) are pushed to a secondary queue for logging and fallbacks.

e Task chaining: If semantic ambiguity is detected (via confidence scores from LLMs in
step 4), a secondary task is enqueued automatically to elicit clarification from the user.

This architecture enables high-throughput LLM orchestration, allowing the system to handle
hundreds of concurrent user queries while isolating LLM invocation costs and latency from the
frontend.

4. Advanced Semantic Query Parsing and Structural Interpretation
Using LLMs

This stage forms the core semantic translation engine, wherein natural language queries are
decomposed into formal, machine-interpretable semantic frames using a domain-tuned Large
Language Model (LLM)—specifically accessed via the Gemini API (multimodal,
instruction-tuned, long-context capable).

Upon invocation, the query is embedded into a Model Context Protocol (MCP) template,
ensuring contextual grounding and reproducibility. A typical MCP prompt structure:

Technical Notes:

e LLM prompting is zero/few-shot, augmented by in-context metadata injection for
user-specific intent continuity.

e Entity detection includes both explicit ("Arabian Sea")and implicit ("last 6
months") resolution, resolved using internal libraries and verified against a marine
geospatial ontology derived from GEBCO and WOD datasets.

e The model returns not just structured intents, but probabilistic confidence scores per
field, used to trigger fallback chains if ambiguity exceeds thresholds.

e Outputs are parsed using pydantic-based schemas, allowing runtime validation and
typed structuring of the LLM response into downstream classes (SemanticIntent,
GeoTemporalConstraint, DataSpecRequest, etc.).

To ensure robustness, a fallback controller detects out-of-distribution queries (e.g., "show
underwater volcanoes") and routes them to a fallback KB/QA retrieval engine or triggers
clarification prompts.

This phase ensures that human natural language is transformed into a machine-readable
abstraction, which becomes the basis for selecting retrieval strategies in the next step.

Enhanced Query Generation Example :

1. User prompt : “presssute trenda over years”

Enhanced query : “Retrieve ARGO float profiles data with PRES (pressure)
parameter measurements, suitable for analyzing long-term trends over multiple
years.”

2. User prompt : “Give me floats after feb10 ‘23 and before 23 mar ‘24 , give me all”

Enhanced query : “Retrieve ARGO float profiles and associated oceanographic
data, including temperature, salinity, pressure, and any bio-geochemical (BGC)
parameters, for floats that commenced their missions or recorded profiles after
February 10, 2023, and before March 23, 2024. Include details such as float IDs,
WMO numbers, launch dates, mission durations, operating institutions, and
specific sensor types.”

3. User prompt : “floats after mar 2023 in arabian sea”

Enhanced query : “Retrieve ARGO float profiles and associated oceanographic
data, including temperature, salinity, pressure, and any bio-geochemical (BGC)
parameters, for floats that commenced their missions or recorded profiles in the
Arabian Sea region after March 31, 2023. Include details such as float IDs, WMO
numbers, launch dates, mission durations, operating institutions, and specific
sensor types.”

5. Retrieval Strategy Classification: Hybrid Mode Selection Between Vector
Search, SQL, and Knowledge Base

Upon successful semantic interpretation of the user query (via LLM-based parsing), the system
enters the Retrieval Strategy Classification phase, where it determines the appropriate data
access modality from three channels:

e Vector Semantic Search (V_DB): Based on natural language embeddings over ARGO
float documents and summaries.

e Relational SQL Access (SQL): For strict geotemporal slicing and numerical filtering.

e Curated Knowledge Base (K_BASE): For static or factual queries (e.g., float counts,
definitions, instrument specs).

Classification Engine

This phase is powered by a Bayesian Intent-Constraint Mapper (BICM), which uses the output
semantic schema from the LLM to evaluate the following decision features:

Feature

Description

Example

intent_class

From LLM output (e.g.,

“Compare BGC values in

"compare_parameters") Arabian Sea”
temporal_scope ISO-8601 parsed "2025-04-01" to
"2025-09-17"

spatial_filtering

Presence of lat/lon or named
regions

"Bay of Bengal" —
BBOX

parametric_constrai
nts

Filters like "salinity > 34"

True — SQL

query_semantic_dens
ity

Token-level entropy

High — Vector DB

entity_type

Domain NER — Float ID, Sensor
Name

"float_1902674"

factuality_score

Matches to static KB entries

Definitions, tags

{

Based on this, the system sets a retrieval vector R = [V_DB,
An example result:
"vector_db": true,
"sql_enabled": true,
"knowledge_base": false,
"priority": ["sql", "vector_db"],
"embedding_model": "all-MinilLM-L6-v2",
"sql_tables": ["argo_profiles", "bgc_data"],

"expected_return_type":

SQL, K_BASE] € {0,1}°.

"profile_data + float_metadata"

This guides the parallel execution pipeline in fetching relevant entries—via semantic similarity in
ChromaDB and explicit filtering in PostgreSQL. If ambiguity or low confidence is detected, a
clarification prompt is triggered, re-entering the user into a feedback loop with the LLM parser.

6. Embedding Vector Generation and Semantic Similarity Search in
ChromaDB (With Metadata Constraints)

S QUERY
\-‘__-__'/ /’.—____H\
___________/
.y ChromaDB Large
Embedding Language
Database > AUGMENTED - MOdel
PROMPT
N~
R

In cases where vector_db: true is asserted by the classifier, the system enters the
semantic retrieval phase, using ChromaDB (built over FAISS) to perform approximate nearest
neighbor (ANN) search against high-dimensional embeddings of ARGO float metadata and
descriptive documents.

Embedding Space and Corpus

Each document in the ChromaDB collection represents a summarized description of a unique
ARGO float profile, such as:

“Float 1902674 (WMO A12345), deployed by Dr. Smith from CSIR... Drift Summary:
Arabian Sea (65% of profiles)... Anomalies: sensor calibration issue on
2019-11-22.”

The corresponding metadata is highly structured and includes nested scientific instrumentation
info, geospatial extents, anomaly logs, mission durations, etc.

Document Schema:

{
"id": "float_1902674_profile_1",

"document”: "...", // Natural language description
"embedding": [...], // 384/768-D vector

"metadata": {
"float_id": "1902674",
"dominant_region": "Arabian Sea",
"start_date": "2015-85-20",
"end_mission_date": "2624-61-30",
"sensors": [...],
"tags": ["Salinity Monitoring", "High-Quality Data"],
"special_features_or_anomalies": ["Sensor calibration issue on
2019-11-22"1,

}
}

Embedding Generation and Querying

The incoming natural language query (e.g., "Find floats with salinity anomalies in the Arabian
Sea") is first embedded wusing a domain-aligned sentence transformer (e.g.,
all-MinilM-L6-v2)to produce a query_vector € [R3%4,

Then, a constrained vector similarity query is issued to ChromaDB:

results = chroma.query/(
query_embeddings=[query_vector],
n_results=15,

where={

"dominant_region": "Arabian Sea",

"tags": {"Scontains": "Salinity Monitoring"}
H
include=["documents", "metadatas", "distances"]

Retrieval Mechanics:
e Similarity Metric: cosine_similarity(query_vec, db_vec) using FAISS HNSW.
e Metadata Filtering: Executed before similarity ranking to reduce vector comparison load.

e Payload Returned: Contains structured metadata, full float summaries, anomaly flags,
and distance scores.

Example Output (Abstracted):

[

{
"float_id": "1902674",

"score": 0.87,

"dominant_region": "Arabian Sea",
"special_features_or_anomalies": [
"Sensor calibration issue on 2619-11-22"

1,
"mission_duration_days": 3185,
"tags": ["Long-Term Deployment", "High-Quality Data"]

]
This vector-based retrieval complements SQL-based slicing, particularly when:
e Users refer to latent concepts (e.g., “abnormal drift”),
e Queries are underspecified (“Find interesting floats”),
e Or need approximate recall across fuzzy region/time overlaps.
By integrating both semantic similarity and structured metadata filtering, this hybrid retrieval
ensures both interpretability (via metadata) and flexibility (via neural embeddings), forming the

backbone of contextual relevance in ARGO float discovery.

Structure of Metadata :

Field Value
id float_1902674_profile_1
float_id 1902674
wmo_inst_type A12345
pi_name Dr. Smith
operating_institution CSIR
project_name Argo Project
launch_date 2015-05-20
launch_latitude -6.01
launch_longitude 76.5
start_date 2015-05-20

end_mission_date 2024-01-30
end_mission_status Active
mission_duration_days 3185
mission_duration_years 8.7
num_profiles 500

sensors Seabird SBE41 — Measures Temperature (°C), Salinity
(PSU)

manufacturer Seabird Electronics

model SBE41

deployment_type Profiling

dominant_region

Arabian Sea

pct_in_dominant_region

65%

regions_visited

Arabian Sea, Bay of Bengal

latitude_range

-10.5 —> 5.1

longitude_range

60.0 — 80.0

centroid Lat: -2.5,Lon: 70.0
first_region Arabian Sea
last_region Bay of Bengal

special_features_or_anomali
es

Drift outside expected area on 2021-06-15; Sensor
calibration issue on 2019-11-22

data_quality_score High
last_data_update 2024-01-30
tags Arabian Sea, Salinity Monitoring, Long-Term

Deployment, High-Quality Data

7. Metadata-Driven Filtering, Validation, and Constraint Enforcement

After initial candidate documents are retrieved—either from ChromaDB (semantic vector
search), PostgreSQL (structured SQL query), or both—an intermediate filtration layer applies
domain-informed constraint logic over the metadata schema to enforce strict alignment with
the parsed user intent.
This stage plays a critical role in ensuring that:

e False positives from semantic retrieval are pruned.

e All numeric, geospatial, and temporal constraints are respected.

e Returned profiles are both scientifically meaningful and user-aligned.

Constraint Types and Operators

The system parses and applies constraints over fields extracted in step 4 (intent_struct),
using deterministic validation operators:

Constraint Metadata Field Operator Example
Type
Temporal start_date, [start, end] & [Profiles after
end_mission_date [T, T:] 2023-03-01
Spatial dominant_region, e "Arabian Sea"
(Named) regions_visited
Spatial centroid_lat, BBox.contains(pt) | [-10, 10],
(Lat/Lon) centroid_lon [65, 75]
Tag-based tags, anomalies token_match(tag) | "Salinity
Monitoring"
Numeric mission_duration_days, > <, = Mission duration
num_profiles > 1000
Categorical sensor_name, model SE "Seabird
SBE41"

Filtering Engine Implementation

Metadata filtering is implemented using a rule-based pipeline over document payloads
returned from ChromaDB or SQL. Each candidate is passed through a filter stack, modeled as
a sequence of logical predicates:

def validate(doc):

return (
doc["metadata"]["dominant_region"] == "Arabian Sea"
and "Sensor calibration issue” in
doc["metadata"]["special_features_or_anomalies"]
and doc["metadata"]["start_date"] >= "2023-03-01"

)

For vector search outputs, the system ranks and retains only documents meeting 280%
constraint satisfaction (configurable threshold). For SQL outputs, results are hard-filtered at
the query layer to guarantee strict satisfaction.

Constraint Resolution Examples

User Query: “Show me long-term ARGO floats with salinity sensors in the Arabian Sea that
reported anomalies.”

— Constraints derived:
e mission_duration_days > 1500

e tags contains "Salinity Monitoring"
e dominant_region = "Arabian Sea"

e special_features_or_anomalies non-empty

— Matching document:

{

"float_id": "1902674",

"mission_duration_days": 3185,

"dominant_region": "Arabian Sea",

"tags": ["Salinity Monitoring"],

"special_features_or_anomalies": ["Sensor <calibration dissue on

2019-11-22"]
}

This multi-constraint enforcement step is not optional, especially when multiple candidates
have high vector similarity but diverge semantically in mission scope, region, or instrumentation.

This validator is also responsible for error propagation: if no candidates satisfy the constraints,
a structured clarification request is generated and routed back to the chat interface with
suggestions (e.g., "No floats with nitrate anomalies in that region; would you like to expand
search bounds?").

8. Query Result Consolidation and ARGO Float Identifier Extraction

Following successful filtering, the system proceeds to the result consolidation phase, where
data products from different modalities (semantic, SQL, KB) are unified into a canonical
response structure. This serves two purposes:

1. Deliver a consistent response format to downstream visualization and chatbot
renderers.

2. Derive critical identifiers (e.g., float_id, profile_id) for further API chaining and
drill-down queries.

Output Schema Normalization

Each selected result—regardless of retrieval origin—is cast into a normalized, typed data
model, such as:

{
"float_id": "1902674",

"wmo_inst_type": "A12345",
"deployment_region": "Arabian Sea",
"mission_start": "2015-05-20",
"mission_end": "2024-61-30",
"duration_days": 3185,
"sensors": ["Seabird SBE41"],
"parameters”: ["Temperature", "Salinity"],
"anomalies": ["Sensor calibration issue on 2019-11-22"],
"geo_summary": {
"lat_range": [-10.5, 5.1],
"lon_range": [60.0, 80.0]
)
"tags": ["Salinity Monitoring", "Long-Term Deployment"]

This schema is materialized as a list of structured objects, which can be ingested by multiple
backend renderers:

e Chat summarizer (LLM) — Converts structured float metadata into human-readable
summaries.

e Geospatial mapper (Plotly/Leaflet) —» Uses lat_range, lon_range, centroid_%*.

e Dashboard interface (Streamlit) — Renders profile-by-profile comparisons.

e Drilldown link generator — Enables the user to view all profiles from a float ID (e.g.,
/float/1902674/profiles).
Identifier Extraction
In this step, the system extracts and caches identifiers such as:
e float_id (e.g., "1902674")
e profile_ids (associated SQL rowkeys)
e session_query_hash (unique fingerprint for reproducibility)

e source_retrieval_mode (e.g., "sql+vector”, "vector_only")

This metadata is persisted into Redis under the current session_id, enabling:
e Jumpback capability to revisit or refine earlier queries.

e Drilldown operations, e.g., "Show me all profiles from float 1902674 with depth >
1000m".

e Cross-query reasoning, e.g., comparing floats across missions, sensors, or anomalies.
Finally, the consolidated result object is passed downstream to the post-processing module

(step 9), where format selection, visualization, and data export options (PNG, CSV, NetCDF) are
triggered.

9. Context-Aware Query Refinement and Augmentation Leveraging LLM
Feedback

At this stage, the system transitions from raw intent detection and preliminary entity extraction
into canonical query specification. The goal is not to directly emit SQL but to produce an
intermediate, schema-aware representation that is both ~machine-validated and
user-interpretable.

The refinement loop leverages a schema-conditioned LLM (Gemini API) to normalize
ambiguous user expressions into deterministic query objects. These objects explicitly encode
temporal intervals in 1ISO-8601, spatial constraints in standardized geospatial formats (BBOX or
GeoJSON), and parametric constraints mapped to database column names. Importantly, the
model is forced to emit strict JSON structures, eliminating freeform narrative and enabling
direct ingestion by backend validators.

To ensure robustness, all outputs undergo formal schema validation (e.g., via Pydantic) and
semantic checks: invalid date ranges, missing units, or unsupported aggregation operators

trigger a clarification pathway. When ambiguity is detected (e.g., “near the equator” without
bounding coordinates), the LLM sets a clarification flag, prompting the system to solicit explicit
user input rather than hallucinating assumptions.

This refinement stage thus transforms a noisy linguistic input into a canonical query
specification language (CQSL), which becomes the contract between natural language and
structured database operations. Beyond accuracy, this layer introduces safety guarantees: no
direct LLM-to-SQL path exists, and only vetted parameters advance to the execution engine.

10. Automated Generation of Optimized SQL Queries from Refined
Parameters

Following canonicalization, the system performs safe, deterministic translation into SQL.
Unlike naive text-to-SQL pipelines, query generation here is programmatic and index-aware,
designed to exploit relational optimizations and spatial indexing in PostgreSQL/PostGIS.

The translation process applies operator templates parameterized by the refined query object:
temporal constraints translate into range predicates, spatial constraints into ST_Within or
ST_DWithin calls, and parameter filters into equality or inequality clauses. To handle
oceanographic workloads, queries frequently incorporate common table expressions (CTESs)
to isolate candidate float profiles before aggregation.

Aggregation is treated as a first-class construct. User requests such as “mean salinity” or “trend
in nitrate” are mapped to canonical aggregation functions (AVG, STDDEV, COUNT) with explicit
grouping dimensions (e.g., float identifier, depth bins). These groupings are enforced to match
scientific conventions, ensuring reproducibility across repeated queries.

Optimization is not static. Each generated SQL statement is subjected to execution plan
inspection (EXPLAIN/ANALYZE). Plans are recorded and analyzed to detect pathological
behaviors such as sequential scans over multi-terabyte NetCDF-derived tables. When
inefficiencies are detected, the system automatically suggests index creation, partitioning
strategies, or materialized aggregates. Optionally, condensed query plans are reintroduced
into the LLM feedback loop, enabling adaptive query rewrites informed by execution statistics.

To preserve accountability, every query—along with its refined JSON specification, generated
SQL text, and execution plan—is logged into an audit table. This enables downstream
reinforcement learning from human feedback (RLHF) and system introspection, turning
operational telemetry into future optimization signals.

11. Interactive 2D/3D Visualization and LLM-Driven Analytical Insights

Once structured query results are obtained, the system pivots from raw tabular outputs into
multi-modal analytical visualization. The core design principle here is to fuse geospatial
interactivity with scientific interpretability, ensuring that domain experts can explore ARGO
float data dynamically rather than through static tables.

The visualization layer is two-tiered:

1. Geospatial Rendering — Profiles and float trajectories are projected in two or three
dimensions using high-precision geospatial libraries. Point geometries derived from float
locations are integrated into map frameworks (Leaflet/Cesium), enabling zoomable
trajectory exploration, heatmap overlays, and temporal brushing. Bathymetric and
regional boundaries are layered to contextualize float dynamics within oceanographic
domains.

2. Scientific Plotting — Depth—time diagrams, temperature—salinity (T-S) plots, and
biogeochemical cross-sections are automatically generated from structured queries.
These plots preserve scientific accuracy by respecting units, quality control flags, and
canonical parameter names. Advanced users may toggle between ensemble summaries
(mean/variance envelopes) and single-float profiles, thereby scaling from macroscopic
ocean basin insights to float-specific diagnostics.

An important innovation is the integration of LLM-driven narrative overlays. Instead of
presenting raw figures alone, the system couples each visualization with an interpretive
summary generated by the language model, e.g., “Salinity gradients increase toward the
equatorial band in late summer, with float 1902674 showing anomalously high values compared
to basin averages.” This capability reduces cognitive load for decision-makers who may not be
specialists in physical oceanography.

By unifying geospatial rendering, time-series analytics, and natural-language explanations, the
system elevates raw ARGO outputs into explanatory visual knowledge artifacts.

12. Advanced Reasoning Mode for Complex Scientific Inference

While most queries can be satisfied by direct retrieval and aggregation, certain research-grade
use cases demand higher-order reasoning that spans beyond database joins. Advanced
reasoning mode activates when the LLM detects either (a) user requests involving prediction,
causality, or anomaly attribution, or (b) contextual ambiguity requiring simulation or model-based
inference.

This mode involves a multi-step augmentation of the core pipeline:

e Cross-Modal Synthesis — Instead of limiting retrieval to SQL outputs, the system fuses
tabular ARGO profiles, metadata tags, and vectorized summaries of historical literature
(e.g., regional climatology, monsoon variability studies). The LLM performs a
retrieval-augmented synthesis, integrating heterogeneous evidence into a coherent
scientific explanation.

e Pattern Extraction and Anomaly Attribution — Temporal and spatial residuals are
compared against climatological baselines derived from long-term ARGO archives. If
float profiles deviate beyond statistical thresholds (e.g., >30c anomaly in mixed-layer
depth), the reasoning engine classifies the anomaly (instrumental vs. geophysical) and
links it to potential drivers such as monsoon circulation, eddy activity, or sensor drift.

e Hypothetical Modeling — When users pose counterfactuals (“What if the float had
drifted 5° further west?”), the reasoning mode extrapolates profiles into adjacent
domains using geostatistical interpolation (kriging) or physics-guided regression models.
These extrapolations are not deterministic predictions but probabilistic scenarios,
explicitly annotated with confidence intervals.

Critically, advanced reasoning is transparent: outputs include traceable provenance metadata
specifying which retrievals, baselines, or models contributed to the inference. This guards
against the opacity of LLMs by grounding their higher-order reasoning in verifiable scientific data
sources.

Thus, advanced reasoning mode transforms the system from a query engine into an
exploratory research assistant, capable of hypothesis generation, anomaly attribution, and
contextual synthesis within the oceanographic domain.

13. Anomaly Detection, Forecasting, and Trend Analytics

Beyond descriptive retrieval, the system incorporates a diagnostic and prognostic analytics
layer designed to extend ARGO data utility into early-warning, climate monitoring, and
operational forecasting domains.

1. Anomaly Detection — Incoming float profiles are continuously benchmarked against
climatological baselines and historical float ensembles. Multivariate thresholds
(temperature, salinity, density) are applied using robust statistical metrics such as
median absolute deviation (MAD) and empirical orthogonal function (EOF) outlier
tests. This ensures that anomalies reflect genuine oceanographic deviations rather than
transient sensor noise. Each anomaly is classified and tagged as either:

o Instrumental (e.g., calibration drift, pressure sensor offset).
o Geophysical (e.g., intraseasonal Kelvin wave, eddy-induced salinity intrusion).

2. Trend Analytics — Time-series decomposition techniques (Fourier, wavelet, and
seasonal-trend decomposition using LOESS) are applied to long-duration profiles. These
reveal basin-scale secular changes (e.g., Arabian Sea salinity freshening) alongside
interannual variability signals tied to ENSO or monsoon oscillations. Trends are
stored as metadata extensions linked to floats, thereby enriching future retrievals with
context-aware insights.

3. Forecasting Layer — While ARGO data alone cannot yield deterministic ocean
forecasts, the system leverages data-driven models (vector autoregression, Gaussian
process regression) and physics-informed priors (mixed-layer heat budget
formulations) to project near-term scenarios. Forecasts are always accompanied by
confidence intervals and uncertainty maps, explicitly stating the degree of reliability.

The value proposition of this module lies in converting raw ARGO float observations into
decision-relevant intelligence, supporting stakeholders ranging from academic researchers to
operational agencies monitoring fisheries, monsoon impacts, or coastal hazards.

14. Structured Outputs and Multi-Format Data Export

Scientific workflows demand not only analysis but also portable, reusable outputs. To this end,
the system provides structured outputs across multiple modalities, each designed for distinct
stakeholders:

e Tabular Summaries — Query results are normalized into CSV and SQL-ready tables,
maintaining schema fidelity (column names, units, QC flags).

e Geospatial Layers — Float trajectories, profile centroids, and anomaly maps are
exportable as GeoJSON, NetCDF, and shapefiles, compatible with GIS systems.

e Publication-Ready Visuals — Analytical plots (T-S diagrams, anomaly scatterplots, drift
trajectories) are exportable in high-resolution vector formats (SVG, PDF) for direct
inclusion in manuscripts.

e Narrative Reports — LLM-generated interpretive summaries are formatted into LaTeX
and Word-compatible documents, enabling seamless integration into technical reports
and research briefs.

A critical design choice is traceability: every exported file is stamped with provenance
metadata (timestamp, float IDs, query signature, processing pipeline hash). This ensures that
downstream users can reproduce or audit analyses — a cornerstone of scientific credibility.

15. Integration, Extensibility, and Human-in-the-Loop Oversight

The final layer emphasizes that the system is not a closed black box but a modular, extensible
framework embedded within the larger oceanographic research ecosystem.

1. Integration Hooks — REST APIs, gRPC endpoints, and message-queue connectors
allow seamless interfacing with external climate models, institutional databases, and
national data repositories (e.g., INCOIS, NOAA, Euro-Argo).

2. Extensibility — New sensor modalities (e.g., biogeochemical floats with oxygen, nitrate,
pH) can be onboarded with minimal schema adjustment, preserving backward
compatibility.

3. Human-in-the-Loop Oversight — Analysts retain supervisory control: they can validate
anomaly classifications, override automated forecasts, and append expert annotations.
This ensures that machine intelligence complements rather than replaces domain
expertise.

Thus, the pipeline culminates in a system that is analytical, explainable, interoperable, and
extensible, bridging the gap between ARGO float raw data and actionable scientific knowledge.

THANK YOU

	System Architecture and Processing Pipeline for Anantha - ARGO Conversational Interface
	Topics Covered in This Document
	1. User Authentication and Secure Session Management Initialization
	2. Natural Language Query Acquisition and Input Processing Interface
	3. Session Buffer & Task Dispatch via Redis Queue (Asynchronous Handling)
	Key Mechanisms Enabled Here:

	4. Advanced Semantic Query Parsing and Structural Interpretation Using LLMs
	Technical Notes:

	5. Retrieval Strategy Classification: Hybrid Mode Selection Between Vector Search, SQL, and Knowledge Base
	Classification Engine

	
	6. Embedding Vector Generation and Semantic Similarity Search in ChromaDB (With Metadata Constraints)
	Embedding Space and Corpus
	Document Schema:
	Embedding Generation and Querying
	Retrieval Mechanics:
	Example Output (Abstracted):

	7. Metadata-Driven Filtering, Validation, and Constraint Enforcement
	Constraint Types and Operators
	
	Filtering Engine Implementation
	Constraint Resolution Examples

	8. Query Result Consolidation and ARGO Float Identifier Extraction
	Output Schema Normalization
	Identifier Extraction

	9. Context-Aware Query Refinement and Augmentation Leveraging LLM Feedback
	10. Automated Generation of Optimized SQL Queries from Refined Parameters
	11. Interactive 2D/3D Visualization and LLM-Driven Analytical Insights
	12. Advanced Reasoning Mode for Complex Scientific Inference
	13. Anomaly Detection, Forecasting, and Trend Analytics
	14. Structured Outputs and Multi-Format Data Export
	15. Integration, Extensibility, and Human-in-the-Loop Oversight

