Apache Beam Containers

Overview
Backaround information

Location/Naming

Proposed repository
Proposed naming and tagging scheme

Publication Schedule
Snapshot images
Release Images

Docker images

Commands
Prerequisites

Release Images Validation
Automated test suites

Manual testing
Backwards compatibility
Other verification

Use cases

Overview

The idea is to build a set of public SDKHarness pre-built images, that users can utilize to run their
portable pipelines without having to manually build them, or use these images as base images for
customization.

Background information

e SDKHarness architecture / design docs ?
e |mage structure ?
e Source?

Location/Naming

This section describes the naming scheme and location for publication of the images.

Proposed repository

We are reviewing following three docker registries.

1. Ger
e Quotas:

o It seems like gcr only has hit limit from each IR, | didn't find any documentation about
image limit. Butitweotld-have-size-limit. Container Registry uses Cloud Storage for
each registry's underlying storage. Cloud Storage Quotas & Limits apply to each
registry.

e Permissions:

o Pulling - public

o Pushing - limited to authorized accounts that have correct permissions under
apache-beam-testing:

m publishing the snapshots nightly might be feasible similar to how we
currently publish nightly maven snapshots, by creating a Jenkins job;

m publishing at release time can be another job triggered manually by the
release owner;

e GCP Project:
o Apache-beam-testing
e Advantage:
o Gcloud command-line tool provides an easy way to manage remote images,
including remove tagging, remove images etc.
2. Bintray
e Quotas for OSS:
o 10GB storage
o 1TB Downloads
e Permissions:
o Pushing: Can limit to certain users/groups. The maximum file size for uploads is 250
MB for OSS users.
o Pulling: On the 0SS plan, any content we upload to Bintray is publicly available.
Anyone can download it, even if they don’t have a Bintray account.
3. Docker Hub (free)
e Quotas: Wasn't specified.

https://cloud.google.com/storage/quotas

e Permissions: Manages at three levels, read/read-write/admin.
o Pushing: Need read-write or above permission
o Pulling: Any user can pull public repositories.

After comparing the above three docker registries, Docker Hub is a winner for release images. It is
free, no quota limits, well adopted at industry. However, GCR is the easiest to manage remote
images because it provides gcloud toolkit.

Remain tasks:

1. Where to host daily snapshot images?
2. How Dataflow uses release images? Mirror images from docker hub to gcr or other options?

Proposed naming and tagging scheme

We will push release candidate images first and make it official ones after validation. We are
using tagging to differentiate candidate images and final images. The candidate images will be
tagged with *_rc’ suffix. The final release images will not have the suffix. Meanwhile, we will
have a latest tag which always points to the most recent verified release image so users can
pull it by default.

Release image name scheme: apachebeam/{repository}:tag

Repository Tagging Example
Snapshot language + yyyymmdd_{suffix} in {location}/snapshot/java:20190820
images language_version uTC
Release {language}_ {sdk_version}_{suffix} apachebeam/python2.7_sdk:2.10.1
images {language_version}_
sdk apachebeam/java_sdk:2.10.1_rc

*Java and Go will not have language version until we support multi versions.

Publication Schedule

Snapshot images

m how do we publish the snapshots, what's the frequency?

https://docs.docker.com/v17.09/datacenter/dtr/2.0/user-management/permission-levels/#team-permission-levels

m automatic, when HEAD is built, nightly similar to mavens.

= when and how do we cleanup the snapshot images:

m when you publish an image you have a new version/hash and still can use any
previous versions. They take space and will count towards a quota. We need to clean
them up periodically:

m make it part of the publish job to look and delete the versions that are more
than X days (or versions) old?

Release Images

e How should we build and publish the images for release versions of Beam?
e Release manager will be provided a script to build and publish images.
e Should it be a blocker for the release?
e Should we make it part of the release and not mark release as complete until the
images are published?
e Forthe first release(v2.16), we can make it optional, and if the releases go
well, we can make it mandatory of the release from v2.17.
e Should it be done by the same release owner?
e Yes, a script and a release instruction will be provided..
e Should the validation be part of the release validation?
e Yes, when we validate other release artifacts.

Docker images

Language Supported Docker image Image size Image size after
versions name before compression (on gcr)
compression

Python 2.7 python2.7_sdk 1.82GB 563MB

3.5 python3.5_sdk 1.83GB 568MB

3.6 python3.6_sdk 1.84GB 569MB

3.7 python3.7_sdk 1.85GB 575MB

Java 8 java_sdk 550MB 255MB
11 not available - -

Go 112 go_sdk 125MB 54MB

Commands

This section describes the commands that are used to build, publish, run tests and examples for the
images.

Prerequisites

Docker should be installed.

$ docker -v
Docker version 18.09.3, build 774alf4

Staging release images

Shell script

Publishing release images

Shell script

Release Images Validation

This section describes how to validate a built and/or published image.

Validation testing

Test on Dataflow with uploaded images.

for Python

this should run against py2.7, py3.5, py3.6 and py3.7.
S pwd

[...]lbeam/sdks/python

$ python -m apache beam.examples.wordcount \

-—input gs://apache-beam-samples/shakespeare/hamlet.txt \

--output gs://temp-storage-for-end-to-end-tests/staging-SUSER/output \
-—-runner DataflowRunner \

--project apache-beam-testing \

--temp location gs://temp-storage-for-end-to-end-tests/staging-$USER/\
--worker harness container image $REPOSITORY/python2.7 sdk:$TAG \
--experiment beam fn api \

https://github.com/apache/beam/blob/master/release/src/main/scripts/build_release_candidate.sh
https://github.com/apache/beam/blob/master/release/src/main/scripts/publish_docker_images.sh

--sdk location sdks/python/container/py2/build/target/apache-beam.tar.gz

for Java
S pwd
[...]beam/sdks/java

get WordCount example code as a maven project
$ mvn archetype:generate \
-DarchetypeGroupId=org.apache.beam \
-DarchetypeArtifactId=beam-sdks-java-maven-archetypes-examples \
-DarchetypeVersion=2.6.0 \
-Dgroupld=org.example \
-DartifactId=word-count-beam \
-Dversion="0.1" \
-Dpackage=org.apache.beam.examples \
-DinteractiveMode=false

run Java project
S pwd
[...]/word-count-beam

$ mvn compile exec:java
-Dexec.mainClass=org.apache.beam.examples.WordCount -Dexec.args="\
--runner=DataflowRunner \

--project=apache-beam-testing \
--staginglLocation=gs://temp-storage-for-end-to-end-tests/staging-$USER/\
--workerHarnessContainerImage=SREPOSITORY/Jjava sdk:S$TAG \
--experiments=beam fn api \
--output=gs://temp-storage-for-end-to-end-tests/staging-$USER/output" \
-Pdataflow-runner

for Go
S pwd
[...]beam/sdks/go

$ go run examples/wordcount/wordcount.go \

--runner=dataflow \

--project=apache-beam-testing \

--staging location=gs://temp-storage-for-end-to-end-tests/staging-$USER/\
--worker harness container image=$REPOSITORY/go sdk:S$TAG \
--output=gs://temp-storage-for-end-to-end-tests/staging-$USER/output

Push to final release location

export

NEW REPOSITORY=gcr.io/apache-beam-testing/beam/sdks/release

for Python

docker
docker

docker
docker
docker

tag $REPOSITORY/python2.7:$TAG $NEW REPOSITORY/python2.7:STAG
push $NEW REPOSITORY/python2.7:$TAG

tag SREPOSITORY/python3.5:$TAG $REPOSITORY/python3.5:$NEW TAG
tag $SREPOSITORY/python3.6:$TAG SREPOSITORY/python3.6:SNEW TAG
tag SREPOSITORY/python3.7:$TAG SREPOSITORY/python3.7:$NEW TAG

for Java

docker tag SREPOSITORY/java:S$TAG SREPOSITORY/java:$NEW_TAG
for Go
docker tag SREPOSITORY/go:S$TAG SREPOSITORY/go:S$SNEW TAG

Backwards compatibility

e Do we want new images to be able to run old pipelines?

e This is decided by SDK, not container specific.

e How long do we support backwards compatibility for?

e This is decided by SDK, not container specific.

Other verification

e Do we sign the artifacts, images?

o 77

e Do we check hashes, signatures?

e No

e How to ensure that Python container image contains all dependencies of Apache Beam SDK,
all versions are compatible and there are no dependency conflicts? Some ideas discussed on
dev mailing list:

e List all dependencies of Beam Python SDK, including transitive dependencies in
base_image_requirements.txt. This could be done in a two step process:

m use a human-generated requirements file like base_image_requirements
today which has a set of curated requirements. The human-generated file
should be periodically updated (as a separate process, independent of SDK
release)

m Changes to the first file would result in a generated file with all transitive
dependencies. Second file could be used as the source of truth for all
dependencies at a particular commit. Generated file could be used for the
container builds.

e During container build, check that there are no dependency conflicts (they typically
look like: Package X requires version A of dependency Y, but you will have B, which is
incompatible).

e During container build, we verify that at the moment of Apache Beam installation, no
new dependencies are pulled from PyPi.

m One possibility is to run apache beam installation command without access
to internet, so that a successful installation is a signal that all dependencies
are present.

e unshare -n -r pip install apache-beam-2.15.0.dev0.tar.gz

Use cases

How do we allow the images to be used?

1. Snapshot images can be used for daily testing.

2. Snapshot images are always created from head, so users can use Beam at head if they want
to.

3. Customize containers on top of published images.

4.

Do we support users using them in production as is?

Release images can be used in production. Snapshot images can be used in production, but we don't
guarantee they are as stable as release images.

Is there some quota for downloading the prebuilt images?

From gCloud instruction, gcr has following quota limitations.

Any request sent to Container Registry has a 2 hour timeout limit.
The fixed rate limits per client IP address are:
e 30,000 HTTP requests every 10 minutes
e 500,000 HTTP requests per day
Container Registry uses Cloud Storage for each registry's underlying storage. Cloud Storage Quotas
& Limits apply to each registry.

Any special/extra license needs to be attached to the images?

Yes, need to include licenses/notices for third party dependencies for each image.

https://cloud.google.com/container-registry/quotas
https://cloud.google.com/storage/quotas
https://cloud.google.com/storage/quotas

	Apache Beam Containers
	
	Overview
	Background information

	Location/Naming
	Proposed repository
	1.​Gcr
	2.​Bintray
	3.​Docker Hub (free)

	Proposed naming and tagging scheme

	Publication Schedule
	Snapshot images
	Release Images

	Docker images
	Commands
	Prerequisites

	Release Images Validation
	Validation testing
	Push to final release location
	Backwards compatibility
	Other verification

	Use cases

