ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ АКАДЕМИЯ КОММУНАЛЬНОГО ХОЗЯЙСТВА им. К.Д. ПАМФИЛОВА

Утверждаю Директор АКХ им. К. Д. Памфилова В. Ф. Пивоваров 21 сентября 1990 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАСЧЕТУ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ С ДЫМОВЫМИ ГАЗАМИ ОТОПИТЕЛЬНЫХ И ОТОПИТЕЛЬНО-ПРОИЗВОДСТВЕННЫХ КОТЕЛЬНЫХ

СЕКТОР НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ АКХ

MOCKBA 1991

Настоящие методические указания содержат перечень ингредиентов, формулы для расчета выбросов, практические рекомендации и вспомогательные таблицы, необходимые для проведения расчетов. В указания введены методы определения содержания в дымовых газах количества таких вредных веществ, как пятиокись ванадия, формальдегид, 3,4-бензпирен, сажа; преобразованы и упрощены используемые ранее формулы расчетных количеств окиси углерода и окислов азота; изменены и введены новые расчетные графики и вспомогательные таблицы.

Настоящие методические указания выпускаются взамен разработанных в 1986 г. «Методических указаний по расчету выбросов загрязняющих веществ в атмосферу с дымовыми газами отопительных и отопительно-производственных котельных МЖКХ РСФСР (кандидаты техн. наук А.Л. Максимов, М.А. Плотников и Д.Я. Борщов), за основу которых ранее были приняты «Методические указания по расчету выбросов загрязняющих веществ при сжигании топлива в котлах производительностью до 30 т/ч» (1985) и «Методика определения валовых выбросов вредных веществ в атмосферу от котлов тепловых электростанций» (1984).

Разработаны отделом коммунальной энергетики АКХ им. К.Д. Памфилова (канд. техн. наук В.З. Пономарева). Согласованы Всесоюзным НИИ охраны природы и заповедного дела (ВНИИприроды, С.-Петербург, письмо № 374/33 от 7.06.90 г.) и Госкомприроды СССР (письмо № 09-2-8/1206 от 31.08.90 г.).

Предназначены для использования в теплоэнергетических предприятиях местных Советов, а также служб Госкомприроды СССР при проведении инвентаризации источников выбросов в атмосферу загрязняющих веществ.

Замечания и предложения по настоящим указаниям просьба направлять по адресу: 123371. Москва, Волоколамское шоссе, 116. АКХ им. К.Д. Памфилова, отдел коммунальной энергетики.

общие положения

Основным техническим процессом является нагревание теплоносителя (воды или пара) в котельной установке за счет теплоты сгорания топлива в топке.

Теплопроизводительность парогенераторов соответствует паропроизводительности по коэффициенту пересчета (прил. 1).

Перечень вредных веществ, выбрасываемых с дымовыми газами включает следующие ингредиенты: твердые частицы, окислы серы, окись углерода, окислы азота,

пятиокись ванадия и некоторые продукты неполного сгорания топлива.

Предполагается отсутствие улетучивания твердых частиц из отвалов и складов.

Выбросы вредных веществ рассчитываются в массовых единицах за рассматриваемый период времени, например, т/год или г/с.

Необходимо учитывать периодичность работы котельной установки в рассматриваемый период времени и различные виды применяемых топлив. Для этого рассматриваемый период времени (год) делится на промежутки времени, в течение каждого из которых производилась работа на одном виде топлива. Рассматриваются выбросы в каждом промежутке времени и суммируется количество выбросов за год.

При использовании нескольких видов топлива в одной котельной установке одновременно, выбросы рассчитываются как сумма выбросов от раздельного использования этих топлив.

Текущие выбросы в рассматриваемый момент времени, как правило, измеряются в Γ/c .

Максимальные текущие выбросы соответствует режиму номинальной (установленной) мощности.

Наиболее распространенный случай - работа котельной установки в режиме установленной мощности в течение отопительного периода в году на одном виде топлива. В этом случае выбросы за год равны выбросам за отопительный период года.

Основные условные обозначения

В - массовый расход натурального топлива за рассматриваемый период времени (т/год или г/с), масса - рабочая; $Q_{\rm H}^{\rm p}$ - низшая теплота сгорания натурального топлива (в пересчете на рабочую массу), МДж/кг или ккал/кг; $A^{\rm p}$ - зольность топлива на рабочую массу, %; $S^{\rm p}$ - сернистость топлива на рабочую массу, %; q_3 - потери теплоты от химической неполноты сгорания, %; q_4 - потери теплоты от механической неполноты сгорания, %; M_i - массовое количество выбросов за рассматриваемый период времени ингредиента i; α - коэффициент избытка воздуха; Q - теплопроизводительность котельной установки (тепловая мощность), МВт или Γ кал/ч или Γ пара/ч.

РАСЧЕТ РАСХОДА ТОПЛИВА

Расход топлива B_{ycr} (кг/ч) в режиме номинальной (установленной) тепловой мощности определяется по формуле

$$B_{yct} = (Q_{HOM}/Q_H^P \eta) \times 10^6 \text{ KF/H}, \tag{1}$$

где η - КПД котельной установки, в долях; $[Q_{\text{ном}}] = [\Gamma \text{кал/ч}]; [Q_{\text{H}}^{P}] = [\text{ккал/кг}].$

Расход топлива за рассматриваемый период определяется по действующим нормам расхода на выработку теплоты или по формуле

$$B = KB_{ycr}, (2)$$

где К - коэффициент нагрузки. В рассматриваемом распространенном частном случае для годового периода

$$K = \tau_{or}/8766,$$
 (3)

где тот - отопительный период, ч/год.

Для определения весового расхода природного газа рекомендуется использовать формулы

$$B = V\rho; (4)$$

$$Q_{H}^{P} = Q_{HV}^{P} / \rho, \tag{5}$$

где V - расход природного газа, м³/год; ρ - плотность природного газа, кг/м³ (ρ = 0,76 - 0,85); $Q_{\rm HV}^{\rm P}$ - то же, что и $Q_{\rm H}^{\rm P}$, но в ккал/м³ или кДж/м³.

Расчет приземных концентраций проводится на резервный вид топлива. Плата за годовые выбросы рассчитывается по фактическому расходу топлива $B_{\text{факт}}$.

РАСЧЕТ ВЫБРОСОВ В АТМОСФЕРУ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Расчет выбросов твердых частиц

Состав выбрасываемых твердых частиц включает: SiO_2 - 30 - 60 %, Al_2O_3 - 15 - 28 %, Fe_2O_3 - 2 - 10 %, CaO_3 , CaO_4 , CaO_5

Количество летучей золы и несгоревшего топлива M_{π} (г/с, т/год, по размерности расхода топлива), выбрасываемое с дымовыми газами от каждой отдельной котельной установки в рассматриваемый период, определяется по формуле

$$M_{_{\Pi}} = BA^{P} \frac{a_{_{YH}}}{100 - \Gamma_{_{YH}}} (1 - \eta_{3}), \tag{6}$$

где η_3 - доля твердых частиц, улавливаемых в золоуловителях (КПД золоуловителя); $a_{\rm yh}$ - доля уноса золы, %; $\Gamma_{\rm yh}$ - содержание горючих в уносе, %.

Значения A^P , Γ_{yH} , a_{yH} , η_3 принимаются по фактическим средним показателям, при отсутствии этих данных определяются по характеристикам сжигаемого топлива (прил. 2). Значение показателя f, равного

$$f = \frac{a_{yh}}{100 - \Gamma_{yh}},\tag{7}$$

можно принимать по табл. 1.

При сухом золоулавливании блок-циклоны типа НИИОгаз имеют КПД $\eta_3 = 0.75$ - 0.85, батарейные циклоны ЦКТИ имеют КПД $\eta_3 = 0.8$ - 0.9.

В случае возврата уноса, применяющегося в стальных котлах производительностью более 1,2 Гкал/ч (1,392 МВт), $a_{\rm yh}$ должна быть уменьшена на 10 % от первоначальной величины.

Величина $\Gamma_{\text{ун}}$ может быть определена при отсутствии экспериментальных данных по формуле

$$\Gamma_{yH} \leq \frac{q_4^{yH}}{q_4^{yH} + \frac{32680}{Q_H^P} A^P a_{yH}} 100,$$
(8)

Таблица 1

где $q_4^{_{yH}}$ - потери теплоты от механической неполноты сгорания топлива в уносе, %. Для приближенного расчета $q_4^{_{yH}}=0,5~q_4$ % (см. прил. 2); Q_H^P - ккал/кг (см. табл. 1 прил. 3).

Значение коэффициентов f и K_{CO} в зависимости от типа топки и вида топлива

Тип топки	Вид топлива	f	K_{CO} , кг/ГДж
1	2	3	4
С неподвижной решеткой и ручным забросом топлива	Бурые и каменные угли	0,0023	1,9
	Антрациты: AC и AM	0,003	0,9

Тип топки	Вид топлива	f	К _{со} , кг/ГДж
1	2	3	4
	АРШ	0,0078	0,8
С пневмомеханическими	Бурые и каменные угли:	0,0088	0,6
забрасывателями и неподвижной			
решеткой			
	Антрациты:		
С цепной решеткой прямого хода	АРШ	0,0088	0,6
	АС и АМ	0,002	0,4
С забрасывателями и цепной решеткой	Бурые и каменные угли	0,0035	0,7
Шахтная	Твердое топливо	0,0019	2
Шахтно-цепная	Торф кусковой	0,0019	1
Наклонно-переталкивающая	Эстонские сланцы	0,0025	2,9
Слоевые топки бытовых	Дрова	0,005	14
теплогенераторов			
	Бурые угли	0,0011	16
	Каменные угли	0,0011	7
	Антрацит, тощие угли:	0,0011	3
Камерные топки	Мазут	0,01	0,32
Топки паровых и водогрейных котлов	Газ природный, попутный и коксовый	-	0,25
Топки бытовых теплогенераторов	Газ природный	-	0,08
	Легкое жидкое (печное) топливо	0,01	0,16

Расчет выбросов пятиоксида ванадия

При использовании жидкого топлива (мазута) количество окислов ванадия $M_{V_2O_5}$ г/с (т/год) (по размерности расхода топлива), рассчитывают по формуле

$$M_{V_2O_5} = 3,57 \cdot 10^{-6} G_V B_{\Gamma/c (T/\Gamma O I)}.$$
 (9)

или в пересчете на пятиоксид ванадия (аэрозоль)

$$M_{V_2O_5} = 10^{-6} G_{V_2O_5} B_{\Gamma/c}$$
 (т/год).

где G_V - содержание ванадия (или $G_{V_2O_5}$ - в пересчете на пятиокись ванадия) в жидком топливе, г/т; В - массовый расход натурального топлива за рассматриваемый промежуток времени, (г/с) т/год.

По эмпирической формуле ВТИ им. Ф.Э. Дзержинского $^{G}_{V_{2}O_{5}}$ (г/т) равен

$$G_{V_2O_5} = 95.4 \, S^P - 31.6 \, \Gamma/T,$$
 (10)

где S^P - содержание серы в мазуте на рабочую массу, % ($S^P > 0.4$ %).

Расчет выбросов окислов серы

Количество окислов серы M_{SO_2} , г/с (т/год) (по размерности расхода топлива), в пересчете на SO_2 вычисляется по формуле

$$M_{SO_2} = 0.02 \text{ B S}^P (1 - \eta'_{SO_2}) (1 - \eta'_{SO_2})_{\Gamma/c} (\tau/\Gamma O J),$$
 (11)

где $\eta_{SO_2}^{'}$ - доля окислов серы, связываемых летучей золой топлива (см. ниже); $\eta_{SO_2}^{''}$ - доля окислов серы, улавливаемых в золоуловителях попутно с улавливанием твердых частиц. Для сухих золоуловителей принимается равной нулю. В мокрых золоуловителях она зависит от приведенной сернистости топлива $S_{np}^{P} = S^{P}/Q_{H}^{P}$, (% кг) / МДж, и от расхода и общей щелочности орошаемой воды (рис. 1).

Ориентировочные значения η_{SO_2} при факельном сжигании различных видов топлив $[\underline{6}]$

Торф	0,15
Сланцы эстонские и ленинградские	0,8
Остальные сланцы	0,5
Экибастузский уголь	0,02
Березовские угли Канско-Ачинского (КА) бассейна для топок с	
твердым шлакоудалением	0,5
Остальные угли КА бассейна для топок с твердым шлакоудалением	0,2
Прочие угли	0,1
Мазут	0,02
Газ	0

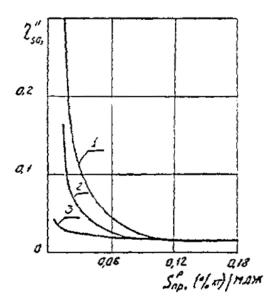


Рис. 1. Степень улавливания окислов серы в мокрых золоуловителях $\eta_{SO_2}^{"}$ при щелочности орошаемой воды: 1 - 10 мг-экв/дм³; 2 - 5 мг-экв/дм³; 3 - 0 мг-экв/дм³

Расчет выбросов окиси углерода

Количество окиси углерода M_{CO} , г/с (т/год) (по размерности расхода топлива), вычисляется по формуле

$$M_{CO} = 0.001 C_{CO} B (1 - \frac{q_4}{100})_{\Gamma/c \text{ (т/год)}},$$
 (12)

где C_{CO} - выход окиси углерода при сжигании 1 т топлива (кг/т), определяется по формуле

$$C_{CO} = \frac{q_3 R Q_H^P}{100 Q_{CO_2}} \kappa \Gamma / T,$$
 (13)

где размерность Q_H^P выражается в КДж/кг; $Q_{CO_2}=10,13$ МДж/кг; q_3 - для мазута и газа при отсутствии системы автоматического регулирования горения равно 0,5 ($q_3=0,5$ %), при отлаженной системе q_3 равно 0,15 ($q_3=0,15$ %); R - безразмерная доля q_3 , обусловленная наличием продукта неполного сгорания окиси углерода. Для твердого топлива R=1; газа R=0,5; для мазута R=0,65. Величина Q_4 равна для мазута и газа 0,5 ($Q_4=0,5$ %). Значения Q_3 и Q_4 для угля см. в прил. Q_4 сможно определить также по

данным табл. $\underline{1}$, используя формулу $C_{CO} = K_{CO}$ Q_H^P , где $[K_{CO}] = [\kappa \Gamma / \Gamma / \Xi M]$, а $[Q_H^P] = [M/M/K]$; $[C_{CO}] = [\kappa \Gamma / \Xi]$.

Формула для расчета выражения ($\underline{12}$) может быть упрощена с учетом выражений ($\underline{1}$), ($\underline{13}$) и численных значений q_3 , q_4 и R.

При размерности $Q_{\text{ном}}$ в Гкал/ч $Q_{\text{CO}_2} = 2420$ ккал/кг, расчетное секундное количество выбросов $M_{\text{CO}}^{\text{pacч}}$ (г/с) равно

$$M_{CO}^{\text{pac4}} = \frac{q_3 R(1 - q_4/100) Q_{\text{HoM}} \times 10^6 \times 10^3}{100 \eta \times 2420 \times 3600} = 1,148 q_3 R(1 - q_4/100) \frac{Q_{\text{HoM}}}{\eta} \Gamma/c,$$
(14)

 $M_{\text{CO}}^{\text{расч}} = 0.29 \frac{Q_{\text{ном}}}{\eta}$ г/с; при

в том числе для газа M_{CO} , г/с, равно без системы автоматики η г/с; и отлаженной работе системы ($q_3 = 0.15$ %).

$$M_{CO}^{pacq} = 1{,}148 \times 0{,}15 \times 0{,}5 \times 0{,}995 \frac{Q_{HOM}}{\eta} = 0{,}0857 \frac{Q_{HOM}}{\eta}_{\Gamma/C}, \tag{15}$$

для мазута $M_{\text{CO}}^{\text{м расч}}$ - без системы автоматики $M_{\text{CO}} = 0.37$ $\frac{Q_{\text{ном}}}{\eta}$ $_{\text{г/c},\ c}$ автоматикой -

$$M_{\text{CO}}^{\text{M}} = 0.111 \frac{Q_{\text{HOM}}}{\eta} \Gamma/c, \qquad (16)$$

для каменного угля

$$M_{\text{CO}}^{\text{ку}} = 3.2 \frac{Q_{\text{ном}}}{\eta} \, \text{г/c} \, \text{при} \, \text{q}_4 = 7 \, \text{%}; \, \text{q}_3 = 3 \, \text{%};$$
 (17)

для бурого угля

$$M_{\text{CO}}^{\text{бу}} = 3,134 \frac{Q_{\text{ном}}}{\eta} \, \Gamma/c \, \text{при} \, q_4 = 9 \, \%; \, q_3 = 3 \, \%;$$
 (18)

Валовое количество выбросов M_{CO} (т/год) при работе котельной τ_{cm} (ч/год) с учетом (2) и (3) равно

$$M_{CO}[\tau/\Gamma o \pi] = M_{CO}[\Gamma/c] \tau_{o\tau} 3,6 \times 10^{-3} \frac{B_{\phi a \kappa \tau}}{B_{y c \tau}}.$$
 (19)

Расчет выбросов окислов азота

Количество окислов азота M_{NO_2} , г/с (т/год) (по размерности расхода топлива), в пересчете на NO_2 вычисляется по формуле

$$M_{NO_2} = 0.001 B Q_H^P K_{NO_2} (1-\beta) (1-q_4/100)$$
г/с (т/год), (20)

где В - расход топлива, г/с (т/год);

$$[0,001] = [\Gamma Дж / MДж]$$
 $[M] = \left[\frac{\Gamma Дж}{MДж} \cdot \frac{MДж}{\kappa \Gamma} \cdot \frac{\kappa \Gamma}{\Gamma Дж} B\right] = [B],$

где Q_H^P - низшая теплотворная способность топлива, МДж/кг [для газа - МДж/м³]; K_{NO_2} - количество окислов азота, образующихся на 1 ГДж тепла, кг/ГДж, в зависимости от вида сжигаемого топлива и номинальной производительности котельной установки, определяется по графику на рис. 2.

При нагрузке, отличающейся по номинальной, на значение K_{NO_2} следует вводить поправку, равную $(Q_{\phi a \kappa \tau}/Q_{hom})^{0,25}$, где Q_{hom} и $Q_{\phi a \kappa \tau}$ - соответственно номинальная и фактическая производительность котельного агрегата; β - коэффициент, учитывающий степень снижения выбросов окислов азота в результате применения технических решений. В настоящее время для малых котлов $\beta = 0$.

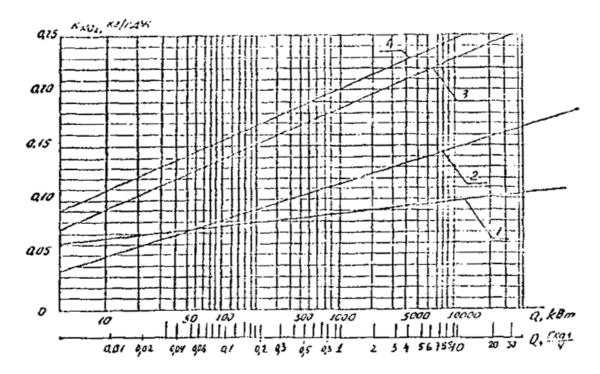


Рис. 2. Зависимость K_{NO_2} от тепловой мощности котельной установки для различных видов топлив:

1 - природный газ, мазут; 2 - антрацит; 3 - бурый уголь; 4 - каменный уголь

При размерности Q_H^P в ккал/кг (ккал/м³)

$$M_{NO_2} = 4{,}187 \times 10^{-6} Q_H^P K_{NO_2} B(1-\beta) (1 - \frac{q_4}{100}), \tag{21}$$

где [M] = [B], $[4,187 \times 10^{-6}] = [\Gamma Дж/ккал]$.

Если размерность $Q_{\text{ном}}$ в [Гкал/ч], то формула для расчета $M_{\text{NO}_2}^{\text{расч}}$ (г/с) с учетом выражения (1) и $\beta=0$ приобретает вид

$$M_{NO_2}^{pacq} = 1,163Q_{HOM}/\eta K_{NO_2} (1 - q_4/100),$$
 (22)

где K_{NO_2} , кг/ГДж - по графику на рис. $\underline{2}$.

С учетом изложенного расчетное количество выбросов диоксида азота $^{\rm M}{}_{\rm NO_2}$ (г/с) при сжигании

газа и мазута ($q_4 = 0.5 \%$)

$$M_{NO_2}^{\Gamma,M} = 1,157 \frac{Q_{HOM}}{\eta} K_{NO_2}^{\Gamma,M},$$
(23)

каменного угля $(q_4 = 7 \%)$

$$M_{NO_2}^{A,KY} = 1.08 \frac{Q_{HOM}}{\eta} K_{NO_2}^{KY},$$
 (24)

бурого угля ($q_4 = 9 \%$)

$$M_{NO_2}^{6y} = 1,06 \frac{Q_{HOM}}{\eta} K_{NO_2}^{6y}.$$
 (25)

Валовое количество выбросов окислов азота M_{NO_2} (т/год) для котельных, работающих в отопительный период T_{or} (ч/год), равно

$$M_{NO_2}[\tau/\text{год}] = M_{NO_2}[\tau/c]\tau_{\text{от}} 3,6 \times 10^{-3} \frac{B_{\phi \text{акт}}}{B_{\text{уст}}}.$$
 (26)

Ориентировочное определение выбросов некоторых продуктов неполного сгорания топлива

Вместе с окисью углерода от котельных агрегатов в атмосферу поступают формальдегид НСНО, сажа и 3,4-бензпирен [2, 3, 8]. Диапазон изменения содержания формальдегида может отличаться на порядок в зависимости от режимных и конструктивных особенностей топок. Содержание его колеблется от 0 до 70 мг/м³. При коэффициенте избытка воздуха $\alpha = 1,1-1,7$ (прил. 4) в котлах ДКВР-10-13 с горелками ГМГ наблюдалось количество формальдегида, равное 0,2-0,5 мг/м³, с горелками ГА-110 - 0,7-1 мг/м³ [8]. Рекомендуемая для ориентировочных расчетов концентрация (в уходящих газах) для котлов Q < 10 т/ч - 17,35 мг/м³.

По данным литературы [8], наиболее вероятные значения количества формальдегида за котлами производительностью менее 10 т/ч составляют 3,7 - 31 мг/м³ продуктов сгорания.

Сажеобразование в газоходах котла до 90 мг/м^3 наблюдается в осенний и весенний период, особенно за малогабаритными топками секционных отопительных котлов МГ-2, МГ-2Г, «Универсал» при диффузионных подовых горелках (рис. $\underline{3}$ - $\underline{5}$) [$\underline{3}$] и отсутствии автоматики горения. При отлаженной работе системы автоматики горения концентрация как сажи, так и других продуктов неполного сгорания меньше в 3,33 раза ($q_3 = 0,15$).

В саже и дымовых газах содержатся канцерогенные вещества - полициклические углеводороды, такие, например, как 3,4-бензпирен ($C_{20}H_{12}$). Максимальное содержание характерно для топок с неподвижной решеткой. Количественные характеристики приведены в табл. 2 [2]. При сжигании природного газа 3,4-бензпирен содержится в единичных случаях.

При сжигании донецких углей в котлах ТП-230 и львовско-волинских в ТП-100 количество бенз(а)пирена без очистки газов составляло 0,8 - 16,5 Мкг/м³.

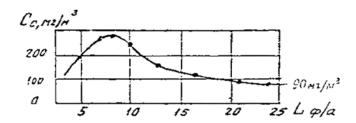


Рис. 3. Изменение концентрации сажи C_c по высоте факела $L_{\phi/a}$ подовой диффузионной горелки при сжигании природного газа в котле «Тула-3» (без автоматики горения)

При камерном сжигании пылевидного топлива бензпирен отсутствует. При сжигании твердого топлива в слое на ручной и механической топках бензпирен содержится в большом количестве - 2,2 - 379 г/т сжигаемого угля [13].

При сжигании мазута в котлах ТГПМ-314А и ПК-19, оборудованных горелками $X\Phi$ ЦКБ-ВТИ, был обнаружен бензпирен в концентрации 0.02 - 0.5 мкг/м³ [12].

Количество выбросов рассмотренных продуктов неполного сгорания топлива $M\left(r/c\right)$ определяется по формуле

$$M = C V_r \Gamma/c$$

где C - концентрация вредного вещества в уходящих газах, г/м³; $V_{\rm r}$ - объем уходящих газов, м³/с.

Валовое количество выбросов М (т/год) равно

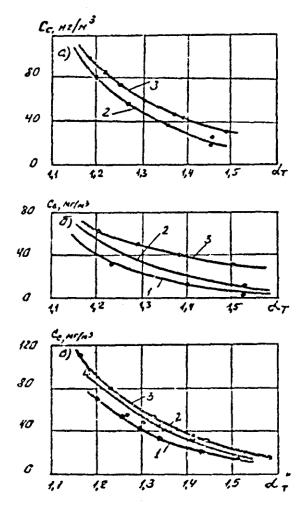


Рис. 4. Изменение концентрации сажи C_c в зависимости от коэффициента избытка воздуха на выходе из топки $\alpha_{\scriptscriptstyle T}$:

а - при сжигании газа в чугунных секционных котлах "Энергия-3"; б - $HP_{\rm q}$ с однощелевыми горелками; в - $M\Gamma$ -2T с двухщелевой горелкой; 1 - 3 - нагрузка горелки соответственно 60, 80 и 90 % (без автоматики горения)

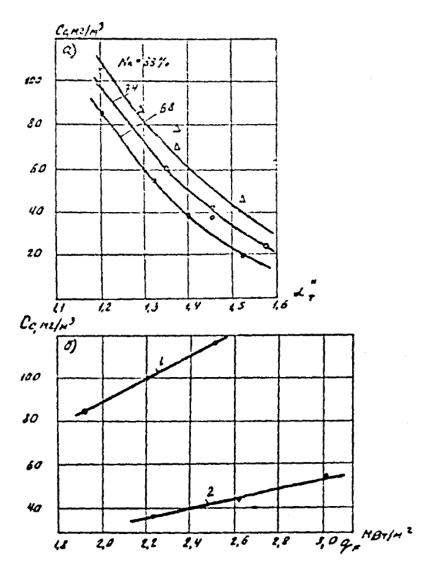


Рис. 5. Зависимость концентрации сажи С_с:

а - от коэффициента избытка воздуха на выходе из топки $\alpha_{\rm r}$ (при сжигании газа с помощью подовой диффузионной однощелевой горелки в котле "Универсал-6" при разной нагрузке Q; б - от теплового напряжения огневого сечения щели $q_{\rm F}$ при сжигании газа с помощью однощелевой горелки котла "Универсал-6" (1) и двухщелевой горелки котла МГ-2Т (2) (без автоматики горения)

Таблица 2 Образование токсичных веществ в процессе выгорания топлив в отопительных котлах мощностью до 85 кВт [2]

Тип котла	Топливо	Режим горения	С ₂₀ H ₁₂ , мгк/100 м ³	С _{NO2} ,	С _{NO} , мг/м ³	C _{CO} , %
KC-2	КУ (каменный	Начало выгорания	8,97	5	205	-
	уголь)	Основной период горения	33,55	25	180	-
КЧМ-3 (7 секций)	А (антрацит)	Розжиг дров	111,2	6 - 8	110	-
		Догорание дров	346,1	30 - 40	70 - 80	-
		Начало погрузки угля	13,6	10	120	0,11
		Конец погрузки угля	53,6	20	110	0,28
		Основной период горения	17,2 - 13,4	30	100	0,08
	Природный газ	$\alpha = 1,2$	8 - 2	2,5	140	0,008
		$\alpha = 1.4$	-	3,5	150	-
		$\alpha = 1.8$	-	50	150	-
		$\alpha = 2,2$	-	60	160	-
		$\alpha = 2.8$	-	80	180	0,065

Тип котла	Топливо	Режим горения	С ₂₀ Н ₁₂ , мгк/100 м ³	С _{NO2} ,	С _{NO} , мг/м ³	C _{CO} , %
КС-3	ТБП (легкое	$\alpha = 1,25$	60	25	250	0,07
	жидкое	$\alpha = 1,4$	350	80	140	0,02
	топливо)					

РАСЧЕТ КОНЦЕНТРАЦИЙ И ВАЛОВЫХ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В ДЫМОВЫХ ГАЗАХ

Расчетные формулы концентраций вредных веществ в дымовых газах в зависимости от количества текущих выбросов необходимы, главным образом, при сопоставлении расчетных и измеренных экспериментально величин концентраций, а также для определения выбросов при известных величинах концентраций.

Расчет объема дымовых газов

Объем уходящих газов без влаги при нормальных условиях $V_r^{\rm H}$ (температура 0 °C, давление 760 мм рт. ст. (0,1013 МПа) от сгорания 1 кг натурального топлива можно приближенно определить по формуле

$$V_{\Gamma}^{H} = \alpha V_{o \ HM}^{A}/K\Gamma, \tag{27}$$

где $V_0^{\scriptscriptstyle \rm H}$ - объем стехиометрического количества воздуха при нормальных условиях для сгорания 1 кг натурального топлива.

Приближенно можно определить

$$V_o^{H} = \frac{1{,}12 \cdot Q_H^p}{1000} _{HM^3/K\Gamma,}$$
 (28)

где $Q_{_{\mathrm{H}}}^{^{\mathrm{p}}}$ - в ккал/кг, или по табл. $\underline{1}$, $\underline{2}$ прил. $\underline{3}$ (точнее).

При температуре газов t выше 0 °C удельный объем уходящих газов определяется по формуле

$$V_r = V_r^H (273 + t) : 273_{M^3/K\Gamma}.$$
 (29)

Расчет массовой концентрации

Массовая концентрация ингредиента i в уходящих газах определяется по формуле

$$C_{\text{Bec }i} = \frac{10^{3} \,\text{M}_{i}}{\text{BV}_{r}^{\text{H}} \left(1 - \frac{q_{\text{q}}}{100}\right)}_{\text{\Gamma/M}^{3}},\tag{30}$$

где размерность [$^{\mathrm{M}_{i}}$] соответствует размерности [B], [$^{\mathrm{V}^{\mathrm{H}}_{\mathrm{r}}}$] - м³/кг.

Расчет объемной концентрации

Объемная концентрация ингредиента і в уходящих газах определяется по формуле

$$C_{c6} = \frac{22,4M_{i}}{B\mu_{i}V_{r}^{H}\left(1 - \frac{q_{q}}{100}\right)} \times 10^{6}$$
чнм*(млн⁻¹), (31)

где M_i - молекулярный вес ингредиента i;

^{*} чнм - части на миллион (единицы измерения объемной концентрации).

$$\mu_{SO_2} = 64$$
; $\mu_{CO} = 28$; $\mu_{NO_2} = 46$.

Пересчет объемных концентраций в весовые и наоборот представлен в прил. 5.

Расчет валовых выбросов вредных веществ

Валовый выброс ингредиента i определяется как сумма выбросов ингредиента i по всем единичным источникам выбросов (котельным установкам):

$$\mathbf{M}_{\text{Bani}} = \sum_{1}^{j} \mathbf{i}\mathbf{j},\tag{32}$$

где j - порядковый номер единичной котельной установки (котлоагрегата). Валовые выбросы вредных веществ при сжигании различных видов топлив в котлах ЖКХ представлены в прил. $\underline{6}$.

ПРИМЕР РАСЧЕТА

Определить количество выбросов вредных веществ с дымовыми газами от котельной установки концентрации окислов серы в дымовых газах. Исходные данные для расчета приведены ниже.

риведены ниже.	
Тип котельной установки	"Универсал-6"
Режим работы в году т _{ог} , ч/год	5350 (отопительный
	период года)
Топливо:	1
зольность A^{P} , %	14
сернистость S ^P , %	2
низшая теплота сгорания Q , МДж/кг (ккал/кг)	27 (6448,5)
Теплопроизводительность в режиме установленной мощнос	
КПД котельной установки η	0,74
Потери теплоты от неполноты сгорания, %:	0,74
	7
механической q4	1
химической q ₃	
Доля золы, уносимой газами, a_{yh}	0,3
Содержание горючих в уносе Γ_{yh} , %	40
Доля $\eta_{{ m SO}_2}$, связываемых летучей золой	0,1
Доля $\eta_{{ m SO}_2}$, улавливаемых в мокрых золоуловителях	0
КПД золоуловителя η_3	0,8
Удельное количество образующихся окислов азота K_{NO_2} , к	г/Гдж 0,105
Коэффициент избытка воздуха α	1,5
Температура уходящих газов (после золоуловителей) t_{vx} , °C	60
температура уходящих газов (после золоуповителей) іух,	00

Определение параметров

1. Расход топлива за рассматриваемый период по формуле (1)

$$B_{ycr} = \frac{0.5 \times 10^6}{0.7 \times 6448,53} = 104,77$$
 $K\Gamma/\Psi = 29 \Gamma/c.$

2. Годовой коэффициент нагрузки по формуле (3):

$$K = 5360 : 8766 = 0.61$$
.

3. Расход топлива за год по формуле (4):

$$B = 104.77 \times 0.61 \times 8766 \times 10^{-3} = 560.2 \text{ T/год.}$$

4. Расчетное количество выбросов пыли $M^{pacч}$ (г/с) по формуле (6):

$$M_{\pi}^{pac4} = 29 \times 14 \frac{0.3}{100 - 40} - (1 - 0.8) = 0.406$$

5. Валовое количество выбросов пыли (т/год) по формуле ($\underline{6}$), где B = 560,2 т/год или по формуле:

$$M_{\pi}[T/\Gamma OJ] = M_{\pi}[\Gamma/C] \times 3600 \times 10^{-6} \times 5360 = 7,84$$
 _{Т/ГОЛ.}

6. Расчетное количество выбросов сернистого ангидрида $M^{pac4}(\Gamma/c)$ по формуле (11):

$$M_{SO_2}^{pac4} = 0.02 \times 29 \times 2(1 - 0.1)(1 - 0) = 1.044 \Gamma/c.$$

7. Валовое количество выбросов сернистого ангидрида $^{\rm M}_{{\rm SO}_2}$ (т/год) по формуле (11) или

$$M_{SO_2} = 1,044 \times 3,6 \times 10^{-3} \times 5360 = 20,14 \text{ т/год.}$$

8. Расчетное количество выбросов окиси углерода M^{pac4} (г/с) по формуле (14):

$$M_{CO}^{pac4} = 1,148 \times 1 \times 1(1 - 0,07) \frac{0,5}{0,74} = 72$$

9. Валовое количество выбросов окиси углерода M_{CO} (т/год) по формуле (19):

$$M_{CO} = 0.72 \times 3.6 \times 10^{-3} \times 5360 = 13.9$$
 т/год.

10. Расчетное количество диоксида азота M $^{\text{pacч}}$ (г/с) по формуле ($\underline{22}$):

$$M_{NO_2}^{pacu} = \frac{1,163 \times 0,5}{0,74} \times 0,105 \times (1-0,07) = 0,0767$$

11. Валовое количество диоксида азота M_{NO_2} (т/год) по формуле (26):

$$M_{\mathrm{NO}_2} = 0.0767 \times 3.6 \times 10^{-3} \times 5360 = 1.48 \text{ т/год.}$$

12. Удельный объем стехиометрического количества воздуха $V^{\frac{H}{0}}$ (нм 3 /кг) по формуле (28):

$$V_o^{\text{H}} = \frac{1,12 \times 6448,53}{1000} = 7,22$$
_{HM³/KΓ.}

13. Удельный объем уходящих газов при нормальных условиях по формуле (27) или, точнее, по табл. 1 прил. 3:

$$V_{\Gamma}^{H} = 1.5 \times 7.22 = 10.8 \text{ HM}^{3}/\text{K}\Gamma.$$

14. Удельный объем уходящих газов V_{Γ} (м³/кг) по формуле пересчета на фактическую температуру газов:

$$V_r = 10.8 \frac{273 + 60}{273} = 13.2$$
_{M³/KT.}

15. Массовая концентрация сернистого ангидрида C^{SO_2} (г/м³) в уходящих газах по формуле (30):

$$C_{SO_2}^{Bec} = \frac{10^3 \times 1,044}{29 \times 13,2(1-0,07)} = 2,93$$

16. Объемная концентрация сернистого ангидрида C^{so_2} в уходящих газах по формуле (31):

$$C_{SO_2}^{o6} = \frac{22.4 \times 1.044 \times 10^6}{29 \times 64 \times 13.2(1 - 0.07)} = 1026$$

или, точнее, по таблице прил. 5.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Следует предъявлять требования к поставщикам топлива в части записи в отгрузочных документах характеристик топлива: зольность, содержание серы, азота, тяжелых металлов.
- 2. Расчетом выбросов вредных веществ, как правило, пользуются при перспективном планировании и прогнозе в крупном масштабе региона (область, край, республика).
- 3. При контроле за выбросами отдельных производственных предприятий предпочтение следует отдавать наиболее достоверному экспериментальному методу измерений выбросов (концентраций) вредных веществ в дымовых газах.

приложения

Приложение 1 Паропроизводительность, эквивалентная 1 МВт тепловой мощности

Давление Р, МПа			Те	емпература, °	С		
давление Р, МПа	100	200	300	400	500	600	700
0,1	1,348	1,254	1,173	1,400	1,034	0,973	0,918
0,5	-	1,263	1,177	1,102	1,035	0,974	0,918
1	-	1,322	1,182	1,105	1,037	0,975	0,919
2,5	-	-	1,199	1,113	1,042	0,978	0,921

Примечание. 1 кал = 4,187 Дж; 1 Гкал/ч = 1,16 МВт; 1 т/год = 3,17 × 10^{-2} г/с; 1 ГДж = $10^3 \cdot$ МДж = $10^6 \cdot$ КДж = $10^9 \cdot$ Дж.

Некоторые показатели топок и применяемых топлив [<u>11</u>]

Приложение 2

	Топливо						p
Вид	Марка	α	q ₃ , %	q ₄ , %	$a_{\scriptscriptstyle \mathrm{VH}}$	Γ_{vh} , %	А ^{пр} , (% кг)/ккал
1	2	3	4	5	6	7	8
To	пки с ручным обслуживанием с	шурующей п	ланкой	(тип	НИИсантехн	ники)	
Антрациты	AM	1,35 - 1,55	2	7	0,31	50	2
	AC	1,35 - 1,55	2	7	031	50	2
Каменные угли	Неспекающиеся Д	1,35 - 1,55	5	6	0,19 - 0,21	29	3,5
	Слабоспекающиеся СС и ОС	1,35 - 1,55	3	6	0,19 - 0,21	41	3
	Тощие	1,35 - 1,55	3	6	0,19 - 0,21	51	2,5
Бурые угли	Ирша-Бородинский	1,35 - 1,55	2 - 3	8	0,18 - 0,2	15 - 20	1,6
	Артемовский	1,35 - 1,55	2 - 3	8	0,18 - 0,2	15 - 20	4,2

	Топливо						p
Вид	Марка	α	q ₃ , %	q ₄ , %	$a_{\scriptscriptstyle \mathrm{VH}}$	Γ_{vh} , %	А ^{пр} , (% кг)/ккал
1	2	3	4	5	6	7	8
	Челябинский	1,35 - 1,55	2 - 3	8	0,18 - 0,2	15 - 20	6,5
	Подмосковный	1,35 - 1,55	2 - 3	8	0,18 - 0,2	15 - 20	8,9
		типа ПМЗ-РІ					
Антрациты	АРШ	1,6	0,5 - 1	13	0,3	30	3
Каменные угли	Д	1,4 - 1,5	0,5 - 1	6	0,16	30	3,5
Каменные угли	СС и СС	1,4 - 1,5	0,5 - 1	6	0,16	30	3
	T	1,4 - 1,5	0,5 - 1	6	0,16	30	2,5
Бурые угли	Ирша-Бородинский	1,4 - 1,5	0,5 - 1	7	0,22	20	1,6
	Артемовский	1,4 - 1,5	0,5 - 1	7	0,15	20	4,2
	Челябинский	1,4 - 1,5	0,5 - 1	7	0,22	20	6,5
	Подмосковный	1,4 - 1,5	0,5 - 1	9	0,21	20	8,9
		Топки типа	ГЛЗМ и	<u>ТЧЗ</u>			
Антрациты	AC	1,6	0,5 - 1	13	0,25	50	2
Каменные угли	Д	1,3 - 1,4	0,5 - 1	6 - 7	0,2 - 0,27	30	3,5
	СС и ОС	1,3 - 1,4	0,5 - 1	6 - 7	0,2 - 0,27	30	3,5 3
	T	1,3 - 1,4	0,5 - 1	6 - 7	0,2 - 0,27	30	2,5
	Ирша-Бородинский	1,3 - 1,4	0,5 - 1	6	0,25	20	1,6
	Челябинский	1,3 - 1,4	0,5 - 1	6	0,25	20	6,5
	Подмосковный	1,3 - 1,4	0,5 - 1		0,19	20	8,9

 $A_{np}^{p}=\frac{A^{P}}{Q_{H}^{p}}\times 10^{3}$ Примечания: 1. A_{np}^{p} - приведенная зольность топлива, $A_{np}^{p}=\frac{A^{P}}{Q_{H}^{p}}\times 10^{3}$ (% кг)/ккал. 2. При отсутствии в гр. 2 марки сжигаемого топлива значения показателей рекомендуется выбирать по

приведенной зольности A_{np}^p , интерполируя в пределах «Вид топлива». 3. Топки типа: механическая цепная = 0,1 - 0,15 %; камерная с сухим шлакоудалением q_3 = 0,05 - 0,1

^{%;} с жидким шлакоудалением $q_3 = 0$ (см. прил. <u>4</u>).

Расчетные характеристики твердых, жидких и газообразных топлив

Таблица 1

Расчетные характеристики твердых и жидких топлив [9]

D. C	Б. У			Серосодержание топлива, %				и продукт = 1, нм ³ /н	ов сгорані сг	Низшая теплота	Полный объем продуктов сгорания при $\alpha = \alpha_i$.	
Республика, край, область	Бассейн, месторождение	Марка топлива	Зольност ь А ^Р , %	S_{κ}^{p}	S_{np}^p	Vº	$ m V_{RO_2}$	$V_{ m N_2}^{ m o}$	V ^o _{H₂Oo}	V_Γ^o	сгорания $Q^{ m p}_{ m H}$, ккал/кг	$V_{\Gamma} = V_{\Gamma}^{o} + V^{o} K (\alpha - 1),$ где $K = 1,0161,$ нм ³ /кг
1	2	3	4	5	6	7	8	9	10	11	12	13
			•			Угли		•				
УССР,	Донецкий	Д	21,8	1,5	1,5	5,16	0,94	4,08	0,64	5,67	4680	$5,67 + 5,24 (\alpha - 1)$
Донецкая,		Д	25,8	2,5	1,4	4,78	0,86	3,78	0,63	5,27	4240	$5,27+4,86 (\alpha - 1)$
Луганская обл.		Γ	23	2	1,2	5,83	1,05	4,61	0,61	6,28	5260	$6,28 + 5,92 (\alpha - 1)$
и РСФСР,		Γ	26,7	1,9	1,2	5,19	0,94	4,11	0,6	5,65	4730	$5,65 + 5,27 (\alpha - 1)$
Ростовская		Γ	34,6	3,2	3,2	4,66	0,84	3,69	0,53	5,06	4190	$5,06 + 4,73 (\alpha - 1)$
обл.		T	23,8	2	0,8	6,43	1,19	5,09	0,51	6,79	5780	$6,79 + 6,53 (\alpha - 1)$
		A	22,9	1	0,7	6,04	1,20	4,78	0,34	6,32	5390	$6,32 + 6,14 (\alpha - 1)$
		ПА	20,9	1,7	0,7	6,64	1,26	5,25	0,46	6,97	6030	$6,97 + 6,75 (\alpha - 1)$
		K, K, OC	35,5	1,9	0,6	4,77	0,87	3,78	0,51	5,16	4300	$5,16+4,85 (\alpha - 1)$
РСФСР,	Кузнецкий	Д Г	13,2	0,3	0,3	6,02	1,1	4,77	0,71	6,58	5450	$6,58 + 6,12 (\alpha - 1)$
Кемеровская		Γ	11	0,5	0,5	6,88	1,24	5,45	0,74	7,42	6240	$7,42 + 6,99 (\alpha - 1)$
обл.		1CC	18,2	0,3	0,3	6,26	1,15	4,96	0,62	6,73	5700	$6,73 + 6,36 (\alpha - 1)$
		2CC	18,2	0,4	0,4	6,52	1,2	5,16	0,6	6,97	5870	$6,97 + 6,62 (\alpha - 1)$
		T	16,8	0,4	0,4	6,83	1,28	5,41	0,53	7,22	6250	$7,22 + 6,94 (\alpha - 1)$
		K, K, OC	30,7	0,7	0,7	4,75	1	3,77	0,2	4,97	5000	$4,97 + 4,83 (\alpha - 1)$
Коми АССР	Печорский;	К	23,6	0,8	0,8	6,15	1,12	4,87	0,59	6,58	5650	$6,58 + 6,25 (\alpha - 1)$
	Воркутинское											
	Интинское	Д Г	25,4	2	0,6	4,88	0,91	3,87	0,57	5,35	4370	$5,35 + 4,96 (\alpha - 1)$
УССР, Львовская и	Львовско-Волынс кий; Волынское	Γ	19,8	1,8	0,8	5,75	1,05	4,55	0,63	6,23	5250	$6,23 + 5,84 (\alpha - 1)$
Волынская обл.	Межреченское	Γ	25,8	2,3	0,8	5,66	1,02	4,48	0,59	6,09	5150	6,09 + 5,75 (α - 1)

				Серосод топли	ержание іва, %	Объем		продукте = 1, нм ³ /к	ов сгоран сг	ия при α	Низшая теплота	Полный объем продуктов
Республика, край, область	' I Manka a	Марка топлива	Зольност ь А ^Р , %	S^p_{κ}	$S^p_{\pi p}$	V°	V_{RO_2}	$ m V_{N_2}^o$	V ^o _{H₂Oo}	V_{Γ}^{o}	сгорания $Q_{_{ m H}}^{ m p}$, ккал/кг	сгорания при $\alpha = \alpha_i$. $V_{\Gamma} = \begin{array}{c} V_{\Gamma}^o \\ + V^o \ K \ (\alpha - 1), \ \text{где} \ K \\ = 1,0161, \ \text{нм}^3/\text{к}\Gamma \end{array}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Башкирская АССР	Бабаевское	Б1	7	0,5	0,5	2,65	0,48	2,09	1,01	3,58	2090	3,58 + 2,69 (a - 1)
РСФСР,	Кизеловский	ГР, ГМСШ	31	6,1	6,1	5,33	0,95	4,22	0,56	5,73	4700	$5,73 + 5,42 (\alpha - 1)$
Пермская обл.												
		Γ	39	6,8	1,6	4,21	0,76	3,33	0,47	4,56	3810	$4,56 + 4,28 (\alpha - 1)$
РСФСР,	Челябинский	Б3	29,5	1,0	1,0	3,74	0,7	2,96	0,59	4,26	3330	$4,26 + 3,8 (\alpha - 1)$
Челябинская												
обл.												
РСФСР,	Егоршинское	ПА	23,9	0,4	0,4	5,9	1,13	4,67	0,47	6,27	5350	$6,27 + 5,99 (\alpha - 1)$
Свердловская												
обл.	_											
	Волчанское	БЗр	33,2	0,2	0,2	2,73	0,54	2,16	0,57	3,27	2380	$3,27+2,77 (\alpha - 1)$
	Веселовское,	Б3	30,4	0,4	0,4	2,86	0,56	2,27	0,6	3,43	2480	$3,43 + 2,91 (\alpha - 1)$
	Богословское	270	2.5	0.0	0.4	4.40		2.55	0.55	4.02	4000	
Грузинская ССР	Ткварчельское	Ж	35	0,9	0,4	4,48	0,8	3,55	0,57	4,92	4000	4,92 + 4,55 (α - 1)
	Ткибульское	Γ	27	0,7	0,6	4,71	0,86	3,73	0,63	5,22	4280	$5,22 + 4,79 (\alpha - 1)$
Узбекская ССР	Ангренское	Б2	13,1	1,3	1,3	3,81	0,75	3,01	0,71	4,47	3300	$4,47 + 3,87 (\alpha - 1)$
Киргизская	Кок-Янгак	Д	17,9	1,7	1,7	5,67	1,05	4,49	0,63	6,17	5140	$6,17 + 5,76 (\alpha - 1)$
	Таш-Кумир	Д	21,4	1,2	1,2	4,87	0,91	3,85	0,62	5,39	4380	$5,39 + 4,95 (\alpha - 1)$
	Сулюкта	Б3	13,3	0,2	0,3	4,79	0,94	3,79	0,64	5,37	4270	$5,37 + 4,87 (\alpha - 1)$
	Кизыл-Кия	Б3	14,4	0,6	0,3	4,3	0,83	3,4	0,68	4,92	3770	$4,92 + 4,37 (\alpha - 1)$
	Кара-Киче	Б3	8,1	0,7	0,7	5,28	1,03	4,18	0,66	5,87	4730	$5,87 + 5,36 (\alpha - 1)$
Таджикская ССР	Шураб, шахта № 8	Б2	9,2	0,6	0,4	4,47	0,89	3,53	0,68	5,1	3870	5,10 + 4,54 (a - 1)
	Шураб, шахта № 1/2	Б3	14,1	0,8	0,4	4,63	0,89	3,66	0,67	5,22	4120	5,22 + 4,7 (α - 1)
РСФСР,	Канско-Ачинский	Б2	6	0,2	0,2	4,24	0,82	3,35	0,81	4,98	3740	$4.98 + 4.31 (\alpha - 1)$
Красноярский				_								, , , , , , , , , , , , , , , , , , , ,
край	Ирша-Бородинско е											
	Назаровское	Б2	7,3	0,4	0,4	3,62	0,7	2,86	0,83	4,99	3110	4,39 + 3,68 (α - 1)

				Серосод	ержание іва, %	Объем		продукто = 1, нм ³ /к	ов сгоран	ия при α	Низшая теплота	Полный объем продуктов
Республика,	Бассейн,	3.6	Зольност	1011,117	ıва, 70			- 1, nw / N			сгорания	сгорания при $\alpha = \alpha_i$.
край, область	месторождение	Марка топлива	ь A ^P , %	S_{κ}^{p}	S_{np}^p	V°	V_{RO_2}	$ m V_{N_2}^o$	$ m V_{H_2Oo}^o$	$ m V_{\Gamma}^{o}$	$Q_{\scriptscriptstyle m H}^{ m p}$	$V_{\Gamma} = V_{\Gamma}^{o} + V^{o} K (\alpha - 1),$ где K
	-			S _K	$S_{\Pi p}$	V	[∗] RO ₂	v_{N_2}	V _{H2} Oo	\mathbf{v}_{Γ}	,	$= 1,0161, \text{ HM}^3/\text{K}\Gamma$
											ккал/кг	, ,
1	2	3	4	5	6	7	8	9	10	11	12	13
	Березовское	Б2	4,7	0,2	0,2	4,26	0,83	3,37	0,81	5,01	3740	5,01 + 4,33 (\alpha - 1)
	Боготольское	Б1	6,7	0,5	0,5	3,31	0,64	2,62	0,87	4,13	2820	$4,13 + 3,36 (\alpha - 1)$
	Абанское	Б2	8	0,4	0,4	4,03	0,78	3,19	0,8	4,77	3520	4,77 + 4,09 (a - 1)
	Минусинский,	Д	5,5	0,5	0,5	5,54	1,03	4,39	0,67	6,09	5030	$6,09 + 5,63 (\alpha - 1)$
	Черногорское											
РСФСР,	Итатское	Б1	6,8	0,4	0,4	3,53	0,69	2,79	0,85	4,33	3060	$4,33 + 3,59 (\alpha - 1)$
Красноярский												
край												
	Барандатское	Б2	4,4	0,2	0,2	4,06	0,78	3,21	0,85	4,84	3540	4,84 + 4,12 (\alpha - 1)
PC4CP,	Черемтовское,	Д	27	1,1	1,1	4,72	0,86	3,74	0,61	5,21	4270	$5,21+4,8 (\alpha - 1)$
Иркутская обл.												
	Азейское	Б3	12,8	0,4	0,4	4,59	0,86	3,63	0,75	5,25	4140	5,25 + 4,66 (a - 1)
	Мугунское	Б3	14,8	0,9	0,9	4,78	0,88	3,79	0,76	5,43	4190	5,43 + 4,86 (a - 1)
Бурятская АССР	Гусиноверское	Б3	16,8	0,5	0,5	4,39	0,82	3,47	0,72	5,01	3910	5,01 + 4,46 (\alpha - 1)
	Хонбольджинское	Б3	12,5	0,3	0,3	4,53	0,87	3,58	0,71	5,16	3950	$5,16+4,6 (\alpha - 1)$
	Баннгольское	Д Г	15,4	0,5	0,5	4,83	0,89	3,82	0,74	5,45	4310	$5,45+4,91 (\alpha - 1)$
РСФСР,	Букачачинский	Γ	9,2	0,6	0,6	7,01	1,27	5,54	0,73	7,54	6380	$7,54 + 7,12 (\alpha - 1)$
Читинская			,	ŕ	,	ĺ	ŕ	ŕ	ŕ	ŕ		
обл.												
РСФСР,	Черновское	Б2	9,6	0,5	0,5	4,22	0,8	3,34	0,79	4,94	3460	$4,94 + 4,29 (\alpha - 1)$
Читинская	-											
обл.												
	Татаурское	Б2	10	0,2	0,2	4,06	0,78	3,21	0,79	4,78	3550	$4,78 + 4,12 (\alpha - 1)$
	Харанорское	Б1	8,6	0,3	0,3	3,48	0,68	2,75	0,81	4,24	2980	$4,24 + 3,54 (\alpha - 1)$
РСФСР,	Райчихинское	Б2	9,4	0,3	0,3	3,56	0,71	2,82	0,78	4,3	3040	$4,3+3,62 (\alpha - 1)$
Хабаровский												
край												
		Б1	7,9	0,3	0,3	2,85	0,59	2,25	0,82	3,66	2270	$3,66 + 2,9 (\alpha - 1)$
	Уральское	Γ	29,6	0,4	0,4	5,25	0,95	4,15	0,53	5,68	4790	$5,68 + 5,33 (\alpha - 1)$
РСФСР, Приморский	Липовецкое	Д	33,8	0,4	0,4	4,75	0,86	3,75	0,55	5,17	4360	5,17 + 4,83 (α - 1)

			Серосодержание объем воздуха и продуктов сгорания при α Низи топлива, $\%$ = 1, нм 3 /кг тепл									Полный объем продуктов
Республика, край, область	Бассейн, месторождение	Марка топлива	Зольност ь A ^P , %								сгорания	сгорания при $\alpha = \alpha_i$.
краи, область	месторождение		ь A , 70	S_{κ}^{p}	S_{np}^p	V°	V_{RO_2}	$V_{N_2}^{o}$	$V_{\rm H_2Oo}^{\rm o}$	$ m V_{\Gamma}^{o}$	$Q^{ m p}_{\scriptscriptstyle m H}$,	$V_{\Gamma} = V_{\Gamma}^{o} + V^{o} K (\alpha - 1), $ где $K = 1,0161, $ нм $^{3}/$ кг
											ккал/кг	·
1	2	3	4	5	6	7	8	9	10	11	12	13
край		77		0.4	0,4 5,08 0,9						4.5	
	Суганский	Γ6	34	0,4			/	4,02	0,5	5,46	4650	5,46 + 5,16 (α - 1)
		Ж6	32,1	0,4	0,4	5,37	0,99	4,24	0,51	5,74	4900	5,74 + 5,46 (a - 1)
		T	22,8	0,5	0,5	6,41	1,21	5,07	0,49	6,77	5790	6,77 + 6,51 (\alpha - 1)
	Подгородненское	T	40,3	0,4	0,4	4,91	0,91	3,88	0,42	5,21	4390	$5,21+4,99 (\alpha - 1)$
	Артемовское	Б3	24,3	0,3	0,3	3,55	0,67	2,81	0,68	4,15	3180	$4,15 + 3,61 (\alpha - 1)$
РСФСР,	Тавричанское	Б3	24,9	0,4	0,4	4,53	0,83	3,59	0,63	5,06	4080	$5,06 + 4,60 (\alpha - 1)$
Приморский												
край												
	Реттиховское	Б1	17,3	0,2	0,2	2,71	0,51	2,14	0,83	3,48	2400	$3,48 + 2,75 (\alpha - 1)$
	Чихезское	Б1	12,5	0,2	0,2	2,99	0,57	2,37	0,86	3,8	2560	$3.8 + 3.04 (\alpha - 1)$
	Бикинское	Б2	22,1	0,3	0,3	2,64	0,5	2,09	0,76	3,35	2160	$3,35 + 2,68 (\alpha - 1)$
Якутская АССР	Джебарики-Хая	Д	11,1	0,2	0,2	6,08	1,13	4,81	0,7	6,64	5500	6,64 + 6,18 (\alpha - 1)
11001	Нерюнгринское	CC	12,7	0,2	0,2	6,51	1,23	5,15	0,59	6,97	5895	$6,97 + 6,61 (\alpha - 1)$
	Сангарское	Д	13,5	0,2	0,2	6,37	1,14	5,04	0,75	6,93	5790	$6,93 + 6,47 (\alpha - 1)$
	Чульмаканское	ж	23,1	0,3	0,3	6,17	1,1	4,89	0,65	6,64	5550	$6,64 + 6,27 (\alpha - 1)$
РСФСР.	Нижне-Аркагалин	Д	9,2	0,3	0,3	6,02	1,1	4,77	0,76	6,63	5480	$6,63 + 6,11 (\alpha - 1)$
Магаданская обл.	ское	A	7,2	0,5	0,5	0,02	1,1	7,77	0,70	0,03	2400	0,03 + 0,11 (u - 1)
OOJI.	Верхне-Аркагали	Д	13	0,1	0,1	4,9	0,94	3,88	0,69	5,51	4420	$5,51+4,98 (\alpha-1)$
	нское	A	13	0,1	0,1	1,,,	0,51	3,00	0,07	3,31	1120	3,51 + 4,70 (4 1)
РСФСР,	Анадырское	Б3	11,9	0,1	0,1	5,11	0,94	4,04	0,79	5,76	4590	$5,76+5,19 (\alpha - 1)$
Магаданская	тицдырекое	ВЗ	11,5	0,1	0,1	5,11	0,51	1,01	0,77	3,70	1370	3,70 : 3,17 (4 1)
обл.												
РСФСР.	_	Д	22,1	0,4	0,4	5,32	0,96	4,21	0,67	5,85	5470	$5,85 + 5,41 (\alpha - 1)$
Южный		Д	22,1	0,4	0,4	3,32	0,70	7,21	0,07	3,63	3470	3,83 + 3,41 (u - 1)
Сахалин												
Cununini	<u> </u>	Γ	12,7	0,5	0,5	6,7	1,2	5,3	0,75	7,25	6110	$7,25+6,81 (\alpha-1)$
	<u> </u>	Б3	20	0,3	0,3	4,36	0,81	3,45	0,73	4,96	3920	$4,96 + 4,43 (\alpha - 1)$
	ı - ı	DJ.	1 20	0,2		цы горю		נד,כ ן	0,7	1,70	3720	1 - 1,70 · 1,13 (u - 1)
Эстонская	Шахты и разрез	Горю чий сланец	40 + 14,4	1,3	0,3	2,89	0,53	2,29	0,55	3,37	2610	$3,37 + 2,94 (\alpha - 1)$

			_		ержание ива, %	Объем	воздуха и	и продукто = 1, нм ³ /к		ия при α	Низшая теплота	Полный объем продуктов сгорания при $\alpha = \alpha_i$.
Республика, край, область	Бассейн, месторождение	Марка топлива	Зольност ь А ^Р , %	S^p_{κ}	S^p_{np}	V°	V_{RO_2}	$ m V_{N_2}^o$	V ^o _{H₂Oo}	V_Γ^{o}	сгорания $Q^{ m p}_{ m H}$, ккал/кг	$V_{\Gamma} = V_{\Gamma}^{\circ} + V_{\Gamma}^{\circ} K (\alpha - 1),$ где $K = 1,0161,$ нм ³ /кг
1	2	3	4	5	6	7	8	9	10	11	12	13
ССР	«Вивиконд» Разрезы № 1, «Сиргона» и «Вивиконд»	То же	41,2 + 18,4	1,4	1,4	2,49	0,48	1,97	0,49	2,94	2230	2,94 + 2,53 (α - 1)
Ленинградская обл.		-	44,2 + 16,5	1,4	0,3	2,51	0,48	1,98	0,48	2,94	2230	2,94 + 2,55 (α - 1)
РСФСР, Куйбышевская обл.	Каширское	-	49,7 + 9,5	1,8	1,6	1,65	0,33	1, 3	0,44	2,07	1390	2,07 + 1,68 (α - 1)
		Фрезерный торф	6,3	0,1	0,1	<u>Торф</u> 2,38	0,46	1,89	0,95	3,3	1940	3,30 + 2,42 (α - 1)
ı		Дрова	0,6	-	- <u>Жид</u> і	<u>Дрова</u> 2,81 сое топлі	 0,57 иво	2,23	0,95	3,75	2440	3,75 + 2,85 (α - 1)
		Мазут: малосернистый сернистый высокосернистый Стабилизированна я нефть	0,05 0,1 0,1 0,1	0,3 1,4 2,8 2,9	0,3 1,4 2,8 2,9	10,62 10,45 10,2 10,48	1,58 1,57 1,57 1,55	8,39 8,25 8,06 8,28	1,51 1,45 1,36 1,52	11,48 11,28 10,99 11,35	9620 9490 9260 9500	11,48 + 10,79 (α - 1) 11,28 + 10,62 (α - 1) 10,99 + 10,36 (α - 1) 11,35 + 10,65 (α - 1)

	ныс хара	· · · · ·		F				
	Теплота					продук		Полный объем
	сгорания	Плотност	СГО	рания г	три α =	$1, \text{ HM}^3/$	HM ³	продуктов сгорания
_	низшая	ь при 0° С						при $\alpha = \alpha_i$.
Газопровод	сухая	и 760 мм		37	3 70	x 70	**0	$V_{\Gamma} = V_{\Gamma}^{o} + V_{\Gamma} K (\alpha - 1)$
	$Q_{_{\mathrm{H}}}^{\mathrm{c}}$	рт. ст.,	Vº	V_{RO_2}	$V_{N_2}^{o}$	V _{H2Oo}	$V_{\scriptscriptstyle H}^{o}$	$V_{\Gamma} = V \cdot K (u - 1)$, где $K = 1,0161$,
	ккал/нм ³	кг/нм³						$1), 120 \text{ K} = 1,0101, \\ \text{HM}^3 / \text{HM}^3$
1	2	3	4	5	6	7	8	9
1		•			0	/	0	9
Саратов-Москва	8550	<u>приро</u> 0,837	одные 1 9,52	<u>азы</u> 1,04	7,6	2,1	10,73	$10,73 + 9,67 (\alpha - 1)$
Первомайск-Сторожовка	6760	0,857	7,51	0,82	6,24	1,64	8,7	$8.7 + 7.63 (\alpha - 1)$
Саратов-Горький	8630	0,786	9,57	1,03	7,59	2,13	10,75	$10,75 + 9,72 (\alpha - 1)$
Ставрополь-Москва:	8030	0,780	9,57	1,03	1,39	2,13	10,73	$10,73 \pm 9,72 (u - 1)$
І нитка	8620	0,764	9,58	1,02	7,6	2,14	10,76	$10,76 + 9,73 (\alpha - 1)$
II нитка	8730	0,704	9,58	1,02	7,67	2,14	10,76	
II нитка III нитка	8840	0,772	9,81	1,04	7,07	2,18	11,01	$10.86 + 9.84 (\alpha - 1)$
Серпухов-Ленинград	8940	0,780	10	1,08	7,78	2,18	11,01	$11.01 + 9.97 (\alpha - 1)$
Гоголево-Полтава	7400	0,799					9,39	$11,22 + 10,16 (\alpha - 1)$ $9,39 + 8,39 (\alpha - 1)$
Дашава-Киев	8570		8,26	0,87	6,66	1,86		
, ,		0,712	9,52	1	7,52	2,15	10,68	$10,68 + 9,67 (\alpha - 1)$
Рудки-Минск-Вильнюс и	8480	0,74	9,45	1	7,49	2,12	10,62	$10,62 + 9,6 (\alpha - 1)$
Рудки-Самбор	8480	0,722	9,43	0,99	7,46	2,13	10,59	$10,59 + 9,58 (\alpha - 1)$
Угерско-Старый, Угерско-Гнездичи, Киев,	0400	0,722	9,43	0,99	7,40	2,13	10,39	10,39 + 9,38 (u - 1)
Угерско-Львов								
Брянск-Москва	8910	0,776	9,91	1,06	7,84	2,2	11,11	$11,11 + 10,07 (\alpha - 1)$
Шебелинка-Острогожск,	8910	0,770	9,96	1,00	7,84	2,21	11,16	$11,11 + 10,07 (\alpha - 1)$ $11,16 + 10,12 (\alpha - 1)$
Шебелинка-Острогожск, Шебелинка-Днепропетровс	0910	0,781	9,90	1,07	7,00	2,21	11,10	11,10 + 10,12 (u - 1)
к, Шебелинка-Харьков								
Шебелинка-Брянск-Москва	9045	0,776	9,98	1,07	7,9	2,22	11,19	$11,19 + 10,14 (\alpha - 1)$
Кумертау-Ишимбай-Магнит	8790	0,858	9,74	1,06	7,79	2,13	10,98	$10.98 + 9.9 (\alpha - 1)$
огорск	0170	0,030	2,74	1,00	1,15	2,13	10,50	10,76 + 7,7 (u - 1)
Газли-Коган	8740	0,75	9,32	0,98	7,38	2,11	10,47	$10,47 + 9,47 (\alpha - 1)$
Промысловск-Астрахань	8370	0,733	9,72	1,04	7,69	2,18	10,91	$10,91 + 9,88 (\alpha - 1)$
Ходси-Абад-Фергана	9160	0,832	10,03	1,09	7,97	2,10	11,26	$11,26 + 10,19 (\alpha - 1)$
Джаркак-Ташкент	8760	0,748	9,74	1,04	7,7	2,18	10,92	$10,92 + 9,9 (\alpha - 1)$
Газли -Коган-Ташкент	8660	0,751	9,64	1,03	7,64	2,16	10,83	$10,83 + 9,79 (\alpha - 1)$
Ставрополь-Невинномыск-	8510	0,728	9,47	1,03	7,49	2,14	10,63	$10,63 + 9,62 (\alpha - 1)$
Грозный	0510	0,720	7,17	1	7,12	2,11	10,03	10,03 + 7,02 (u 1)
Карабулак-Грозный	10950	1,036	12,21	1,41	9,68	2,54	13,63	$13,63 + 12,41 (\alpha - 1)$
Салушко-Лог-Волгоград	8390	0,741	9,32	0,98	7,39	2,1	10,48	$10,48 + 9,47 (\alpha - 1)$
Коробки -Лог-Волгоград	8560	0,766	9,51	1,02	7,54	2,13	10,69	$10,69 + 9,66 (\alpha - 1)$
Коробки-Жирное-Камыши	9900	0,901	10,95	1,22	8,68	2,35	12,25	$12,25 + 11,13 (\alpha - 1)$
Карадаг-Тбилиси-Ереван	8860	0,766	9,85	1,05	7,79	2,19	11,04	$11,04 + 10,01 (\alpha - 1)$
Бухара-Урал	8770	0,785	9,73	1,04	7,7	2,18	10,91	$10,91 + 9,89 (\alpha - 1)$
Урицк-Сторожовка	8710	0,789	9,7	1,04	7,7	2,16	10,89	$10,89 + 9,86 (\alpha - 1)$
Линево-Кологривовка-Воль	8840	0,782	9,81	1,05	7,77	2,18	11,0	$11.0 + 9.97 (\alpha - 1)$
ск	0040	0,762	7,01	1,03	1,11	2,10	11,0	11,0 + 9,97 (u - 1)
Средная Азия-Центр	8970	0,776	9,91	1,07	7,84	2,21	11,11	$11,11 + 10,07 (\alpha - 1)$
Игрим-Лунга-Серов-Нижни	8710	0,770	9,68	1,07	7,66	2,17	10,86	
й Тагил	0/10	0,771	7,00	1,03	,,00	-,1/	10,00	10,00 1 7,07 (u - 1)
Оренбург-Совхозное	9080	0,883	10,05	1,08	9,74	2,23	11.25	$11,25 + 10,21 (\alpha - 1),$
1 - JF		го, ооз (ный газ нес					.,	ı ·,=- ··,=- (w ··),
Азнефть	8704	0,835	9,66	1,09	7,63		10,87	$10,87 + 9,82 (\alpha - 1)$
Бугурусланнефть	9529	0,984	10,44	1,18	8,35	2,21	11,74	$11,74 + 10,61 (\alpha - 1)$
Грогнефть:			,	-,-0	,,,,,	_,	,,,	-, 10,01 (1)
Октябрьский р-н	15180	1,408	16,52	2,03	10,08	3,21	18.32	$18,32 + 16,79 (\alpha - 1)$
Старый р-н	10493	0,902	11,67	1,3	9,22	2,49		$13,01 + 11,86 (\alpha - 1)$
Дагестаннефь	10600	0,998	11,63		9,23			$13,01 + 11,80 (\alpha - 1)$ $13,01 + 11,82 (\alpha - 1)$
Mar oo rannio App	1 3000	I 5,270	11,00	1,57	7,23	_, -, -	15,01	1 15,01 · 11,02 (u - 1)

	Теплота сгорания	Плотност				продук 1, нм ³ /:		Полный объем продуктов сгорания
Γ	низшая	ь при 0° С						при $\alpha = \alpha_i$.
Газопровод	сухая	и 760 мм		17	X 7 0	T 7 0	0	$V_{\Gamma} = V_{\Gamma}^{o} + V_{\Gamma} K (\alpha - 1)$
	Q ^c _H	рт. ст., кг/нм ³	V°	V_{RO_2}	$V_{N_2}^{o}$	$V_{\rm H_2Oo}^{\rm o}$	$V_{\scriptscriptstyle H}^{\rm o}$	1), где К = 1,0161,
	ккал/нм ³							Hm^3/Hm^3
1	2	3	4	5	6	7	8	9
Ишимбаево	12700	1,288	14,96	1,68	11,89	3,18	16,75	$16,75 + 15,2 (\alpha - 1)$
Калининнефть	8477	0,936	9,57	1,09	7,61	3,43	12,13	$12,13 + 9,72 (\alpha - 1)$
Майнефть:								
Сажевый завод	10580	1,036	11,71	1,36	9,31	2,44	13,11	$13,11 + 11,9 (\alpha - 1)$
Широкая балка	9225	0,8	10,33	1,12	8,17	2,27	11,56	$11,56 + 10,5 (\alpha - 1)$
Прикамнефть	8234	1,107	9,11	1,05	7,49	1,88	10,42	$10,42 + 9, 26 (\alpha - 1)$
Туркменнефть:								
Небитдаг	9697	0,887	10,92	1,23	8,64	2,33	12,2	$12,2 + 11,1 (\alpha - 1)$
Челекен	9010	0,812	10,17	1,11	8,07	2,21	11,39	$11, 39 + 10, 33 (\alpha - 1)$
Эмбанефть	8536	0,82	9,46	1,04	7,44	2,07	10,55	$10,55 + 9,61 (\alpha - 1)$

Приложение 4 Характеристика применяемых топок для различных котлов и видов топлива [1, 7, $\underline{10}$]

	Тип	Коэффиц	иент избыт топке α ,		уха в	Вид
топки	котла	Каменны й уголь, антрацит	Каменны й уголь	Бурый уголь		используемого топлива
обслуживанием	Е-04/9ГН; Е-1-9-(ГН); «Универсал»; «Энергия»; КЧ; НР-18; КЧМ-2, 2У, 3; НРЧ; «Стрела»; «Стребела»; «Минск-1»; «Тула-3»; «Кировец»; ВНИИСТО Мг-2; «Тула-1»	1,4	1,3	-	-	Все виды угля, кроме бурого
Топка с пневмозабрасывателем и поворотными колосниками ПМЗ, $P\Pi K q_3 = 0.5 - 1 \%$	E-04/9ГК; E-1-9 (ГН); ДКВР	1,4 - 1,5	1,6 - 1,7	-	-	Кроме бурых углей и антрацита повышенной влажности
Топка с шурующей планкой ТШП $q_3 = 2 - 3$		-	-	1,4	-	Бурые угли
	KB-100, 200M, 300M	-	1,5 - 1,6	-	-	Только антрациты
Топка с ПМЗ и ЦР прямого хода $q_3 = 0.5$ -	КВ-100, 200М, 300М; ДКВР; НРЧ; «Минск-1»; «Тула-3»; «Кировец»	1,3 - 1,4	-	-		Все виды угля, кроме антрацита
	КВ-100, 200М, 300М; ДКВР	1,3 - 1,4	-	1,3 - 1,4	-	Все виды угля, кроме антрацита
*	ТМЗ; МЗК; КПА; Е-1-9М (Г); ЭК-100; НИИСТУ-У; АГВ; ТГВ; «Универсал»; ДЕ; КВГ; КВГМ; ПТВМ	-	-	-		Газ, мазут
Пылеугольная топка $q_3 = 0.05 - 0.1 \%$	ТМ3; М3К; КПА; Е-1-9М (Г); ЭК-100; НИИСТУ-У; АГВ; ТГВ; «Универсал»; ДЕ; КВГ; КВГМ; ТГВМ; ПТВМ; КПА-500	1,1	1,1	-	-	Пылеугольное топливо

Приложение 5 Пересчет объемных концентраций газов и паров в весовые и наоборот (при 25 °C и 160 мм рт. ст.) [2]

1 2 1 24,45 2 12,25 3 8,15	ость на 1 млн. = мг/нм ³ 3 0,041 0,082
1 24,45 2 12,25 3 8,15	0,041 0,082
2 3 12,25 8,15	0,082
3 8,15	
l '	0.123
6,113	0,123 0,164
5 4,69	0,204
6 4,075	0,245
7 3,493	0,286
3,056	0,327
9 2,717	0,368
10 2,445	0,409
11 2,223	0,45
12 2,038	0,491
13 1,881	0,532
14 1,746	0,573
15 1,63	0,614
16 1,528	0,654
17 1,438	0,695
18 1,368	0,736
19 1,287	0,777
20 1,223	0,818
21 1,164	0,859
22 1,11	0,9
23 1,063	0,941
1,019	0,982
25 0,978	1,022
26 0,94	1,063
27 0,906	1,104
28 0,873	1,145
29 0,843	1,86
30 0,815	1,227
31 0,789	1,268
32 0,764	1,309
33 0,741	1,35
34 0,719	1,391
35 36 0,699 0,679	1,432 1,472
37 0,661	1,513
38 0,643	1,554
39 0,627	1,534 1,595
40 0,611	1,636
41 0,596	1,677
42 0,582	1,718
43 0,569	1,759
44 0,556	1,8
45 0,543	1,84
46 0,532	1,881
47 0,52	1,922
48 0,509	1,963
49 0,499	2,04
50 0,489	2,045
51 0,479	2,086
52 0,47	2,1277
53 0,461	2,168
54 0,453	2,209
55 0,445	2,25
56 0,437	2,29

Молекулярный вес	1 мг/м ³ = частей на 1 млн.	1 часть на 1 млн. = мг/нм ³
1	2	3
57	0,429	2,331
58	0,422	2,372
59	0,414	2,413
60	0,408	2,454
61	0,401	2,495
62	0,394	2,54
63	0,308	2,58
64	0,382	2,62
65	0,376	2,66
66	0,37	2,7
67	0,365	2,74
68	0,36	2,78
69	0,354	2,82
70	0,349	2,86
71 72	0,344 0,34	2,9
72 73		2,94
73	0,335 0,33	2,99 3,03
75	0,33	3,03
73	0,320	3,07
77	0,318	3,15
78	0,313	3,19
79	0,309	3,23
80	0,306	3,27
81	0,302	3,31
82	0,298	3,35
83	0,295	3,39
84	0,291	3,44
85	0,288	3,48
86	0,284	3,52
87	0,281	3,56
88	0,278	3,6
89	0,275	3,64
90	0,272	3,63
91	0,269	3,72
92	0,266	3,76
93	0,263	3,8
94	0,26	3,84
95	0,257	3,89
96 97	0,255	3,93
97	0,252	3,97
98	0,2495 0,247	4,01 4,05
100	0,247	4,03
101	0,2421	4,13
102	0,2397	4,17
103	0,2374	4,21
104	0,2351	4,25
105	0,2329	4,29
106	0,2307	4,34
107	0,2285	4,38
108	0,2264	4,42
109	0,2243	4,46
110	0,223	4,5
111	0,2203	4,54
112	0,2183	4,58
113	0,2164	4,62
114	0,2145	4,66
115	0,2126	4,7
116	0,2108	7,74
117	0,209	4,79

Молекулярный вес	$1 \text{ мг/м}^3 = \text{частей на } 1 \text{ млн.}$	1 часть на 1 млн. = мг/нм ³
1	2	3
118	0,2072	4,83
119	0,2055	4,87
120	0,2038	4,91
121	0,2021	4,95
122	0,2004	4,99
123	0,1988	6,03
124	0,1972	5,07
125	0,1956	5,11
126	0,194	5,16
127 128	0,1925	5,19 5,24
128	0,191 0,1895	5,24 5,28
130	0,1893	5,32
131	0,1866	5,36
132	0,1852	5,4
133	0,1838	5,44
134	0,1825	5,48
135	0,1811	5,52
136	0,1798	5,56
137	0,1785	5,6
138	0,1772	5,64
139	0,1759	5,69
140	0,1746	5,73
141	0,1734	5,77
142	0,1722	5,81
143	0,17	5,85
144	0,1698	5,89
145	0,1686	5,93
146	0,1675	5,97
147	0,1663	6,01
148 149	0,1652	6,05 6,09
150	0,1641 0,163	6,13
151	0,163	6,18
152	0,1609	6,22
153	0,1598	6,26
154	0,1588	6,3
155	0,1577	6,34
156	0,1567	6,38
157	0,1557	6,42
158	0,1547	6,46
159	0,1537	6,5
160	0,1528	6,54
161	0,1519	6,58
162	0,1509	6,63
163	0,15	6,67
164	0,1491	6,71 6.75
165 166	0,1482 0,1473	6,75 6,79
166	0,1473	6,83
167	0,1455	6,87
169	0,1447	6,91
170	0,1438	6,95
171	0,143	6,99
172	0,1422	7,03
173	0,1413	7,08
174	0,1405	7,12
175	0,1397	7,16
176	0,1389	7,2
177	0,1381	7,24
178	0,1374	7,28

Молекулярный вес	$1 \text{ мг/м}^3 = \text{частей на } 1 \text{ млн.}$	1 часть на 1 млн. = мг/нм ³
1	2	3
179	0,1366	7,32
180	0,1358	7,36
181	0,1351	7,4
182	0,1343	7,44
183	0,1336	7,48
184	0,1329	7,53
185	0,1322	7,57
186	0,1315	7,61
187	0,1308	7,65
188	0,1301	7,69
189	0,1294	7,73
190 191	0,1287 0,128	7,77 7,81
191	0,128	7,81 7,85
193	0,1273	7,83 7,89
194	0,126	7,93
195	0,1254	7,98
196	0,1247	8,02
197	0,1241	8,06
198	0,1235	8,01
199	0,1229	8,14
200	0,1223	8,18
201	0,1216	8,22
202	0,121	8,26
203	0,1204	8,3
204	0,1199	8,34
205	0,1193	8,38
206	0,1187	8,43
207	0,1181	8,47
208	0,1175	8,51
209	0,117	8,55
210	0,1164	8,59
211	0,1159	8,63
212	0,1153	8,67
213	0,1148	8,71 8,75
214 215	0,1143 0,1137	8,75 8,79
213	0,1137	8,83
217	0,1127	8,88
218	0,1127	8,92
219	0,1116	8,96
220	0,1111	9
221	0,1106	9,04
222	0,1101	9,08
223	0,1096	9,12
224	0,1092	9,16
225	0,1087	9,2
226	0,1082	9,24
227	0,1077	9,28
228	0,1072	9,33
229	0,1068	9,37
230	0,1063	9,41
231	0,1058	9,45
232	0,1054	9,49
233	0,1049	9,43
234	0,1045	9,57
235	0,104	9,61 0,65
236 237	0,1036 0,1032	9,65 9,69
237	0,1032 0,1027	9,69
238	0,1027	9,73 9,78
L 43)	1 0,1023),/0

Молекулярный вес	$1 \text{ мг/м}^3 = \text{частей на } 1 \text{ млн.}$	1 часть на 1 млн. = мг/нм ³
1	2	3
240	0,1019	9,82
241	0,1015	9,86
242	0,101	9,9
243	0,1006	9,94
244	0,1002	9,98
245	0,0998	10,02
246	0,0994	10,06
247	0,099	10,1
248	0,0986	10,14
249	0,0982	10,18
250	0,0978	10,22
251	0,0974	10,27
252	0,097	10,31
253	0,0966	10,35
254	0,0963	10,39
255	0,0959	10,43
256	0,0955	10,47
257	0,0951	10,51
258	0,0948	10,55
259	0,0944	10,59
260	0,094	10,63
261	0,0937	10,67
262	0,0933	10,72
263	0,093	10,76
264	0,0926	10,8

Пример пользования таблицей прил. $\underline{5}$. Сернистого ангидрида SO_2 в помещении имеется 25 объемных частей на 1 млн. объемных частей воздуха*, т.е. 25 мл/м³ воздуха.

Молекулярный вес μ so₂ = 32 + 2 × 16 = 64 ед. Определить, какова концентрация газа в мг/м³. В гр. 1 таблицы находим цифру 64. На той же строчке в гр. 3 читаем, что при таком молекулярном весе 1 часть на 1 млн. соответствует 2,62 мг/м³. Следовательно, интересующая нас концентрация составляет: 2,62 × 25 = 65,5 мг/м³. Также производится и обратный пересчет концентрации в мг/м³ в объемные концентрации, только при этом приходится пользоваться цифрами, приведенными в гр. 2.

* В литературе объемная часть вещества на миллион объемных частей воздуха часто обозначается РРТ.

Например, концентрация сернистого ангидрида в воздухе помещений составляет 5

мг/м³. Определить, какова объемная концентрация. Молекулярный вес μ ^{SO2} составляет 64. Находим в гр. 1 таблицы цифру 64 и на той же строчке в гр. 2 читаем, что 1 мг/м³ соответствует 0,382 частей на 1 млн. Следовательно, интересующая нас концентрация составляет: $5 \times 0,382 = 2,91$ часть на 1 млн. По этой же таблице производится пересчет концентраций, выраженных в объемных процентах в концентрации, выраженных в мг/м³ и наоборот (1 часть на 1 млн. равняется 0,0001 объемн. %; 1 объемн. % равен 10000 частей на 1 млн.).

<u>Пример:</u> концентрация составляет 0,0025 объемн. %. Определить, какова концентрация газа в мг/м³. Зная, что 1 объемн. % равен 10000 частей на 1 млн., находим, что 0,0025 объемн. % составит 25 частей на 1 млн. А затем по молекулярному

весу и по таблице определяем концентрацию газа в мг/м 3 . Молекулярный вес μ $^{\text{SO}_2}$ составляет 64 ед. В гр. 1 таблицы находим цифру 64, а в гр. 3 значение 1 части на 1 млн. = 2,62 мг/м 3 , следовательно, концентрация газа составит:

$$2.62 \times 25 = 65.5 \text{ M}\Gamma/\text{M}^3$$
.

Общая формула для пересчета мг/м³ в объемные %:

где Т - абсолютная температура, К;

µ - молекулярный вес;

Р - абсолютное давление, мм рт. ст.

Формула для пересчета объемных % в мг/м³:

1 объемн.
$$\% = \mu P/0,006236 \text{ T M}\Gamma/\text{M}^3$$
.

Общая формула для пересчета мг/м³ в части на 1 млн. частей воздуха:

$$1 \text{ мг/м}^3 = 62,36 \text{ T/µP}$$
 частей на 1 млн. ;

1 часть на 1 млн. =
$$\mu P/62,36$$
 Т мг/м³.

Например, в отходящих газах концентрации CO - 100 частей на 1 млн., температура газов 50 °C, давление 746 мм рт. ст. Определить концентрацию CO:

$$C_{CO} = \frac{28 \times 745 \times 100}{62,36 \times (273 + 50)} = 103,56$$
_{MΓ/M³}.

Приложение 6 Характеристика физико-технических показателей котлов различных типов и производительностей, а также выбросов в атмосферу загрязняющих веществ от них при сжигании различного вида топлива, используемого в Московской области

					Низшая				Низшая Удельный							Количество выбросов в атмосферу M, г/с, загрязняющих веществ от котла и концентрация вредных веществ в уходящих газах C, мг/м 3										
Тип котла	Номинальная производительность	КПД	Бид		Установочный расход	объем отходящих	Температура отходящих	Объем уходящих	диокси	да азот	o NO	окси углерод	іда	диок	сида		іли	пятис ванади								
тип когла	производительность $Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^в , ккал/кг	топлива B_{ycr} , кг/ч (м ³ /ч)	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K_{NO_2}	2			С _{со} , мг/м	M_{SO_2}	C_{SO_2}	Мп, г/с	С _п ,		$C_{V_2O_5}$							
				KKUJI/ KI		, ,			, кг/ГДж	, г/c	$M\Gamma/M^3$		3		мг/м ³			, г/с	, MΓ/M ³							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20							
Е-04/9ГН	0,256	58	КУ	5700	75	10,56	260	0,43	0,18	0,083	193	1,36	3175	0,81	2895	0,24-0, 47	550-11 00	-	-							
		60	A	6030	50	10,34	260	0,28	0,08	0,057	203,5	1,32	1708	0,4	923		2340-3	_	_							
								,	,					,		,-	810									
TM3-0,4-9	0,256	86	Γ	8620	35	12,7	260	0,24	0,08	0,028	115	0,025	106	-	<u>-</u>	-			-							
			M	9620	31	13,6	260	0,23	0,08	0,028	126	0,033	144	0,4	747	0,005-	21-42	0,001-0	4,2-8,3							
МЗК-8АГ	0,256	86	Γ	8620	35	12,7	260	0,237	0,08	0,028	116	0,025		-	-	-	-	ļ ´ -	-							
КПА-5001	0,256	80	Γ	8620	37,1	12,7	260	0,26	0,08	0,003	114	0,021	105	-	-	-	-	-	-							
ТМ3-Л18	0,64	86	Γ	8620	86,3	12,7	260	0,6	0,08	0,075	125	0,064	106	-	-	-	-	-	-							
Е-1-9ГН	0,64	58	КУ	5700	187	10,56	260	1,1	0,195	0,157	142	3,41	3103	0,96	873	2,5-4,1	2520-4 100	-	-							
			A	6030	177	10,34	260	1	0,11	0,088	88	-	-	-	-	-	594-66 0	-	-							
М3К-7АГ-1	0,64	86	Γ	8620	86,3	12,7	260	0,6	0,087	0,075	125	0,064	106	-	_	_	-	_	-							
E-1-9	0,64	60	КУ	5700	158,1	10,56	260	0,9	0,195	0,19	210	2,9	3200	0,84	930	2,13-3,		-	-							
E-1-9M	0,64	82	M	9620	81,1	13,6	260	0,6	0,08	0,07	120	0,09	144	0,8	956	5 0,01-0,	_ ′	0,002-0	4-11							
Е-1-9Г	0,64	86	Γ	8620	86,3	12,7	260	0,6	0,08	0,07	115	0,06	106	_	_	03	5	,007								
	0,07		M	9620	77,4	13,6	260	0,57	0,08	0,07	121	0,08	145	0,76	1331	0,01-0,	20-55	0,002-0	4-11							
ISD 100	0.115		3.4	0.620	1404	12.6	260	0.11	0.00	0.012	101	0.016	145	0.15	1222	04	20.55	,007	, ,							
КВ-100	0,115	80	M	8620	14,94	13,6	260	0,11	0,08	0,013	121	0,016	145	0,15	1332	0,002-	20-55	0,0004- 0,001	4-11							

				Низшая		Удельный			Количе							шонкнен Тишки		еств от	котла и
Тип котла	Номинальная производительность	КПД котпа	Бид		Установочный расход	объем отходящих	Температура отходящих	Объем уходящих	диокси	ида азот	a NO	окси углерод	1 да	диок	сида	пы		пятис ванади	- 1
12	Q _{ном} , Гкал/ч	η	топлива	топлива Q $_{^{\mathrm{H}}}^{\mathrm{p}}$, ккал/кг	топлива B_{ycr} , кг/ч (м ³ /ч)	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	112 / 0	К _{NO2} , кг/ГДж	F/0	C_{NO_2}	M _{CO} , Γ/c	C_{CO} , $M\Gamma/M$	M _{SO₂}	C_{SO_2} , $M\Gamma/M^3$	М _п , г/с	$C_{\rm m}$, $M\Gamma/M^3$	$M_{ m V_2O_5}$, Γ/c	$C_{\mathrm{V_2O_5}}$
1	2	3	4	5	6	7	8	9	10	11	мг/м ³	13	14	15	16	17	18	19	20
1	0,064	76	КУ	5700	14	10,56	260	0,08	0,15	0,013	162	0,256	3200				2360-3	-	-
	,,,,,	, 0	110		1.	10,00	_00	0,00	0,10	0,012	102	0,200	2200	0,20	5200	3	850		
КВ-200М	0,2	80	M	9620	26	13,6	260	0,19	0,085	0,023	122	0,028	146	0,03	146	0,003- 0,01	20-55	0,0006- 0,002	4-11
	0,128	76	КУ	5700	28	10,56	260	0,16	0,165	0,03	178	0,51	3200	0,51	3200	0,32-0, 62	2360-3 850	-	-
КВ-300М	0,288	80	M	9620	37,42	13,6	260	0,28	0,08	0,035	126	0,04	143	0,04	143	0,005- 0,021	19-55	0,001-0 ,003	4-11
	0,192	76	КУ	5700	42	10,56	260	0,24	0,17	0,044	184	0,71	3200	0,71	3200	0,57-0, 92	2360-3 850	-	-
	0,236	80	M	9620	33,26	13,6	260	0,25	0,08	0,03	118	0,035	142	0,035	142	0,005- 0,013	19-55	0,001-0 ,003	4-11
ДКВР-2/8	1,28	80	Г М	8620 9620	185,6 166,3	12,7 13,6	260 260	1,28 1,23	0,09 0,09	0,167 0,167	130 136	0,14 0,18	107 144	- 1,63	- 1327	0,024-	- 19-55	- 0,005-0	- 4-11
			_													0,06		,012	
ДКВР-2,5/13	1,6	90	Г	8620	204,4	12,7	260	1,41	0,09	0,185	131	0,15	108	1.02	1220	- 0.027	10.55	- 0.05.0	-
		89,6	M	9620	185,6	13,6	260	1,37	0,09	0,186	136	0,2	145	1,82	1329	0,027- 0,075	19-33	0,005-0 ,016	4-11
ДКВР-4/13	2,56	90,8	Γ	8620	327	12,7	260	2,55	0,09	0,3	118	0,24	95	-	-	-	-	-	-
		89,6	M	9620	297	13,6	260	2,2	0,092	0,3	138	0,32	144	2,91	1325	0,07-0, 125	19-55	0,008-0 ,012	4-11
ДКВР-6,5/13	4,16	91,8 89,6	Г М	8620 9620	525,7 483,2	12,7 13,6	260 260	3,62 3,57	0,095	0,5 0,51	138 143	0,39 0,51	107 144	- 4,74	1226	- 0,07-0,	10.55	- 0,0014-	- 4-11
					ŕ	ŕ				ŕ				4,/4	1320	2	19-33	0,0014-	4-11
ДКВР-10/13	6,4	91,8	Г М	8620	808,8	12,7	260	5,56	0,098	0,79	142	0,6	107	7.20	1226	- 0 11 0	10.55	-	-
		89,5		9620	744,1	13,6	260	5,5	0,098	0,81	147	0,79	144	7,29	1320	0,11-0, 3	19-55	0,02-0, 03	4-11
ДКВР-20/13	12,8	90,6	Γ	8620	1639	12,7	260	11,3	0,1	1,635	145	1,21	107	-	1227	-	-	-	-
		90	M	9620	1478,4	13,6	260	10,93	0,1	1,645	150	1,22	111	14,5	1327	0,21-0, 6	19-55	0,01-0,	4-11

									Количе									еств от	котла и
				Низшая		Удельный				конце	ентрац	ия вред	ных в	еществ	в в уход	дящих г	газах С.	$M\Gamma/M^3$	
	Номинальная	кпд	Вид	теплотворная	Установочный	объем	Температура	Объем	пиоког	ида азот	a NO	оксі			сида	ПЫ		пятис	киси
Тип котла	производительность		1	способность	расход	отходящих	отходящих	уходящих	диокс	1да азот	<i>a</i> 110 ₂	углеро,	да СО	серы	ı SO ₂	11101	IJIVI	ванади	я V ₂ O ₅
Tim Roma	$Q_{\text{ном}}$, Гкал/ч	η	топлива	p	топлива Вуст,	газов V _{уд} ,	газов Т, °С	газов V,	K_{NO_2}		C_{NO_2}		C _{co} ,		C_{SO_2}				
	YHOM, I IKKSI/ I	''	Tomme	топлива Q н ,	кг/ч (м³/ч)	нм ³ /кг	1 4302 1, C	M^3/c	1102	M_{NO_2}	$\sim NO_2$		мг/м	M_{SO_2}	302	M _п , г/с		$M_{V_2O_5}$	$C_{V_2O_5}$
				ккал/кг		(HM^3/M^3)			, /EH	, г/c	,	г/с	3	, г/c	, ,	1, 1, 0	$M\Gamma/M^3$, r/c	, мг/м ³
		<u> </u>		_					кг/ГДж		MΓ/M ³				MΓ/M ³				
l	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ДЕ-6,5-14ГМ	5,24	91,15		8620	667	12,7	162	3,75	0,097	0,8	180	0,604	136	-		-	-	-	-
(E-6; 5-14ΓM)	4,5	89,84	M	9620	443	13,6	195	3,8	0,097	0,562	148	0,55	146	5,1	1344	0,075-	20-55	0,015-0	4-11
TE 10 14EM	0.15	02.1		0.620	751	10.7	146	2.00	0.000		257	0.750	105			0,2		,04	
ДЕ-10-14ГМ	8,15	92,1	Γ	8620	751	12,7	146	3,89	0,098	1 0 072	257	0,758	195		1002	-	-	-	-
(E-10-24ΓM)	7	90,49	M	9620	673	13,6	174	4,17	0,098	0,873	209	0,854	205	7,85	1882	0,11-0,	21-//	0,02-0,	4-11
ДЕ-16-14ГМ	11.62	01.03	Г	9620	1167.0	12.7	1.47	0	0.1	1 46	183	1.00	135			32		06	
(E-16-14ΓM)	11,63 10	91,92 90,89		8620 9620	1167,8 1087	12,7 13,6	147 173	8 6,73	0,1 0,1	1,46 1,27	183	1,08 1,22	181	11,2	1667	0,165-	30-70	0.03-0.	- 4-11
(E-10-141 M)	10	190,89	IVI	9020	1087	13,0	1/3	0,73	0,1	1,2/	109	1,22	101	11,2	1007	0,163-	30-70	0,03-0,	4-11
КВГ-6,5	6,5	92,2	Γ	8620	822,6	12,7	146	4,45	0,098	0,8	180	0,6	136	_		0,46		09	_
КВГ-0,3	0,3 14	89	<u>Г</u>	8620	1445,5	12,7	150	7,9	0,098	1,78	226	1,35	126,5		_	_	_	_	_
КВГМ-10	10	92	Γ	8620	1260	12,7	145	6,8	0,038	1,78	185	0,93	137	_	-	-	-	_	_
KDI WI-10	10	88	M	9620	1220	13,6	230	12,7	0,1	1,31	104	1,26	99,3	11,6	923	0,17-0,	13-38	0,03-0,	4-11
		00	1V1	9020	1220	15,0	230	12,7	0,1	1,51	104	1,20	79,5	11,0	123	48	13-36	1	4-11
КВГМ-20	20	89	Г	8620	2520	12,7	155	13,9	0,103	2,7	193	1,92	138			70		1	
KDI WI-20	20	87	M	9620	2450	13,6	242	27,4	0,103	2,74	100	2,55	93	23,45	856	0,35-0,	13-35	0,07-0,	4-11
		"	141	7020	2130	13,0	212	27,1	0,103	2,71	100	2,55		25,15	050	96	15 55	2	
КВГМ-30	30	89	Γ	8620	3860	12,7	160	21,6	0,105	4,1	190	2,9	134	l _	l _	_	_	_	_
REFINE SO	50	87	M	9620	3680	13,6	250	24,4	0,105	4,2	100	3,83	90	35,17	830	0,52-1,	21-60	0,1-3,3	4-11
		"				15,0		, .	0,100	-,-	100	2,02		00,17	020	45		0,1 0,0	
КВГМ-50	50	92,5	Γ	8620	6260	12,7	180	22,1	0,11	6,7	311	4,63	210	_	_	-	_	-	-
		91,1	M	9620	5750	13,6	190	38,65	0,11	7	181	6,09	158	56	1448	0,82-2,	21-60	0,16-0,	4-11
		,				- , -			,			- ,				3		46	
ТГВМ-30	30	89,9	Γ	8620	1170	12,7	190	25	0,105	4,05	162	2,86	114	-	-	-	-	-	-
		88,1	M	9620	3700	13,6	237	26,2	0,105	4,14	158	3,78	144	34,7	1326	0,5-1,4	20-57	0,1-0,2	4-11
									_							3		8	
ПТВМ-30	40	90,1	Γ	8620	5200	12,7	162	29,2	0,107	4,81	165	3,33	114	_	-	-	-	-	-
	35	87,9	M	9620	4355	13,6	250	31,6	0,107	4,93	156	4,12	140	40,6	1285	0,6-1,6	19-53	0,12-0,	4-11
																7		34	
ПТВМ-50	80	89,6	Γ	8620	6720	12,7	180	39,3	0,11	7,1	181	4,18	122	-	-	-	-		-

				Низшая		Удельный			Количе							иониен Начиния Начиния		еств от мг/м ³	котла и
Тип котла	Номинальная производительность	КПД	Бид		±	объем отходящих	Температура отходящих	уходящих	диокси	іда азот	o NO	окси углерод	1 Да	диок	сида	ПЫ		пятис ванади	
THII KOIJIU	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^р ккал/кг	топлива B_{ycr} , $\kappa \Gamma / \Psi \left(M^3 / \Psi \right)$	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K _{NO2}		C_{NO_2}	M _{CO} , Γ/c	M1 / M	M_{SO_2}	C_{SO_2}	M _π , г/c	С _п ,		
						(11111 / 1111)			кг/ГДж	, г/c	$M\Gamma/M^3$		3	, г/c	$M\Gamma/M^3$		IVII / IVI	, г/c	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		87,8	M	9620	6340	13,6	190	40,7	0,11	7,25	178	6,32	155	58,1	1426	0,85-9, 4	21-60	0,17-0, 47	4-11
ТГВ-4р	4,3	90,5	Γ	8620	551,2	12,7	220	3,22	0,095	0,52	132	0,41	126					.	
		92,5	M	9620	483,2	13,6	220	3,02	0,095	0,51	169	0,32	171	4,74	1570	0,07-0,	23-65	0,014-0	4-11
ТГВ-8	8,3	91,5	Г	8620	1052,3	12,7	225	6,16	0,092	0,97	157	0,78	126			2		,04	
11 D-0	8,3 10	93,5	M	9620	1032,3	13,6	225	7,16	0,092	1,1	100	1,1	170	10,9	1565	0,16-0,	- 23-65	0,032-0	- 4-11
	10	75,5	171	7020	1111,5	15,0	223	7,10	0,072	1,1	100	1,1	170	10,5	1303	45	25 05	,09	7 11
HP-18	0,32-0,64	60	A	6030	58,3-114,4	10,34	170	0,11-0,23	0,11	0,05	436	1,46-2,	124,5	0,41-0,	5125	0,25-0,	2122-4	0,5-1	4240-8
	, ,					,				ĺ		92		82		51	270		260
	0,3-0,58	55	БУ	2940	68,4-134,3	5,7	170	0,18-0,34	0,17	0,07-0,	430	1,34-2,	7550	0,8-1,6	6560	2,01-3,	11200-	0,04-6,	
	0.0.46			6020	45.05.0	10.24	150		0.1	15	222	6	6400	0.26.0	1005	26	118	52	23600
Б-1,2	0,2-0,46	70	A	6030	47,3-97,2	10,34	170	0,2-0,25	0,1	0,03-0,	222	0,91-2,	6480	0,26-0, 52	1925		800-15 90	0,3-0,6	
	0,2-0,46	65	БУ	2940	109	5,7	170	0,5-0,6	0.16	08 0,05-0,	95	0,9-2,1	2600	· -	1575	32 1,94-2,		0,68-1,	180 5400-8
	0,2-0,40	05	БУ	2940	109	3,7	170	0,5-0,0	0,10	12	93	0,9-2,1	2000	0,32-1,	13/3	1,94-2,	310	3	620
«Универсал»	0,09-0,25	60	A	6030	25-69	10,34	200	0,12-0,32	0.09	0,01-0,	130	0,48-1,	4100	0.135-	1687	0,08-0,		0,27-0,	1960-3
1 1	, ,					,		, ,	,	05		33		0,27		17	87	54	880
«Универсал-3	0,16-0,42	65	A	6030	45,3-116	10,34	200	0,21-0,34	0,09-0,	0,03-0,	128	0,85-2,	4100			0,15-0,	707-14	0,39-0,	-
»									095	07		24		48	2286	3	09	79	
	0,13-0,32	60	БУ	2940	73,7-181,4	5,7	200	0,19-0,47	1 1		186	0,68-1,	3560	0,4-0,8		1-1,63		2,5-4	13100-
«Универсал-4	0,19-0,5	68,2	A	6030	52,5-138,2	10,34	200	0,25-0,65	0,165	09	144	1 07 2	4070	0,28-0,	4200	0.19.0	600 706 10	0,47-0,	21160 1856-3
« универсал-4 »	0,19-0,3	00,2	A	0030	32,3-136,2	10,54	200	0,23-0,03	105	0,03-0,	144	67	4070	0,28 - 0, 56	2280	35	00-10	52	100
"	0,17-0,41	60	БУ	2940	96,4-849,4	5,7	200	0,24-0,67		٧,	191	0,88-2,	3544			0,33-2,			3900-2
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17	13	-,-	3		04	4170	15	613	6	2650
«Универсал-5	0,18-0,51	75	A	6030	50-141	10,34	200	0,2-0,6		0,03-0,	135	0,96-2,	4030			, ,	696-13	0,48-0,	1856-3
»							_		108	1		76		54	2250	33	87	93	900
		85	Γ	8620	35-98,6	12,7	200	0,2-0,6			117	0,03-0,	125	-	-	-	-	-	-
				l				l	085	07		07			l				

				II		V			Количе									еств от	котла и
Тип котла	Номинальная производительность	КПД	Бид	Низшая теплотворная способность	Установочный расход	отходящих	Температура отходящих	Объем уходящих	диоксі	конце	a NO	ия вред окси углерод	іда	еществ диок серы	сида	т хиших г пы		мг/м ³ пятис ванади	
тин котла	производительность $Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^р ккал/кг	топлива B_{ycr} , кг/ч (м ³ /ч)	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	,	r/c	,	М _{со} , г/с	C_{CO} , $M\Gamma/M$	M _{SO₂}	,	М _п , г/с	С _п , мг/м ³	$M_{V_2O_5}$	$C_{V_2O_5}$
1	2	3	4	5	6	7	8	9	кг/ГДж 10	11	$\frac{\text{M}\Gamma/\text{M}^3}{12}$	13	14	15	мг/м ³	17	18	19	20
1	0,15-0,43	70	4 КУ	5700	43-127	10,56	200	0,2-0,6	0,168-			0,8-2,2					2950-4	1,7-2,8	
	0,13-0,43	/0	KJ	3700	45-127	10,50	200	0,2-0,0	0,188	15	233	7	3700	46	2324	96	812	1,7-2,0	4000
	0,1-0,3	60	БУ	2940	56,7-170	5,7	200	0,15-0,45			189	0,52-1,	3475					2,3-3,8	
	0,17-0,47	90	M	9620	28,6-81,5	13,7	200	0,18-0,5	0,08	0,03-0,	145	0,031-	175	0,29		0,16-0,		0,44-0,	
	0,17 0,47		141	7020	20,0 01,3	13,7	200	0,10 0,5	0,00	0,03 0,	143	0,031	175	0,27	1003	31	47	86	800
«Универсал-5	0,22-0,62	70	Агр	6030	54,5-153,2	10,34	200	0,24-0,66	0,095		142		4480	0,3-0,6	1230-	0,18-0,	762-15	0,5-1	2147-3
M»			1			,				09		96			2460	36	19	ŕ	010
	0,17-0,5	60	Аряд	5800	43,7-127,6	9,39	200	0,21-0,61	0,095	0,03-0,	125	0,81-2,	3900			/ /	673-13	0,4-0,5	
										08		4			2175	28	41	6	950
	0,1-0,28	65	КУгр	5700	28,2-78,9	10,56	200	0,14-0,38	0,155	0,02	177	. 1	3400			0,35-0,		0,6-1,6	7000-1
«Универсал-6	0,28-0,65	70	Агр	6030	69,8-161	10,34	200	0,34-0,8	0,1-0,1	0,04-0,	140	3 1,34-3,	3900	28 0,38-0,	980 1106-	57 0,23-0,	100 685-13	-	1400
»			•		ŕ	,			1	11		1		75	2212	46	65		
																0,53-1,			
																1	200		
	0,22-0,51	60	Аряд	5800	36-88	9,39	200	0,18-0,41	0,095		190		5900	0,3-0,6		0,18-0,		-	-
										08		43			3284	36	025		
																0,42-0, 54	700		
	0,14-0,33	60	КУряд	5700	39-89	10,56	200	0,2-0,46	0.165	0,04-0,	190	0.67-1	3350	0 19-0	972_1	0,5-0,8		_	_
	0,14-0,55	00	КУрид	3700	37-67	10,50	200	0,2-0,40	0,103	0,04-0,	170	58	3330	38	844	0,5-0,6	022		_
										0)		30		30		1,2-1,9			
																, ,-	250		
«Универсал-6	0,69	77	КУгр	5700	169,1	10,56	150	0,7	0,195	0,19	295	2,87	3700	0,83-1,	1082-	2,11-5,	2746-4	-	-
» c			_											66	2164	82	480		
механической																2,11-5,			
топкой	0.04.0.50	_					4=0	. ==								82	480		
«Универсал-6	0,34-0,59	70	Агр	6030	165,8-286	10,34	170	0,77-1,33	0,1	0,05-0,	71	, ,	2110	, ,		0,28-0,		-	-
l M»		l l							l	1		82	l	80	186	56	2		l

				Низшая		Удельный			Количе							шонкне Тиших г		еств от :	котла и
Тип котла	Номинальная производительность	КПД	Вид			объем отходящих	Температура отходящих	Объем уходящих	диоксі	ида азот	o NO	окси углеро,	1 да	диок	сида	пы,		пятис	
Tim Roma	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^р ккал/кг	топлива B_{ycr} , $\kappa \Gamma / \Psi \left(M^3 / \Psi \right)$	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K _{NO₂}		C_{NO_2}	M _{CO} , Γ/c	IVI 1 / IVI	M_{SO_2}	C_{SO_2}	Мπ, г/с	C_{II} , $M\Gamma/M^3$	$M_{V_2O_5}$	
				Tereway res					кг/ГДж	, г/c	$M\Gamma/M^3$		3	, г/c	$M\Gamma/M^3$, г/c	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	0,27-0,46	60	Аряд	5800	134-331	9,39	170	0,57-0,98	0,1	0,04-0,	120	1.29-2.	2250	0,36-0,		0,49-0, 98 0,22-0,	74	_	_
	-,-, -, -,					2,52	2.0	2,2 / 2,5 2	,,,	16		2		72	277	44 0,38-0,	900 6640-1		
«Универсал-6 М»	0,19-0,23	60	КУряд	5700	79-149,4	10,56	170	0,38-0,71	0,17	0,05-0, 06	113	0,89-1, 1	2330	0,26-0, 59	388	0,67-1, 09	2300 1700-2 870	-	-
	0,17-0,29	65	КУгр	5700	44,5-75,9	10,56	170	0,21-0,35	0,17	0,06-0, 08	230	0,79-1, 35	3780	0,24-0, 48		0,8-1,2 3 0,6-0,9	400	-	-
														40	2240	1-1,7	4860-8 000		
	0,34-0,59	85	Γ	8620	50,3-81,3	12,7	170	0,24-0,66	0,08	0,03-0, 09	142	0,03-0, 082	125	-	-	-	-	-	-
«Энергия-3»	0,37-0,74	70	A	6030	102	10,3	190	0,5-0,96	0,1-0,1 1	0,07	133	1,97-3, 95	4000	-		0,34-0, 88 0,68-1,	687-13 69 1380-2	-	-
		85	Γ	8620	71,6-143	12,7	190	0,43-0,86	0,082	0,06	117	0,05-0,	108	-	-	36 -	740 -	-	-
		82	М	9620	38,46-77	13,6	190	0,25-0,5	0,086	0,06	140	11 0,07	140	0,63-1, 26	2500- 5000	-	-	-	-
	0,26-0,52	65	КУ	5700	70-152	10,56	190	0,4-0,83	0,18-0, 19	0,084	215	1,35	3384	0,4-0,8		1,02-1, 67 2-3,34	2560-4 170 5120-8	-	-
	0,3-0,59	60	БУ	2940	170-340	5,7	190	0,39-0,8	0,15-0, 18	0,09-0, 18	225	1,6	4017	0,5-1	1100- 2200	2,35-3, 8	340	-	-

				Низшая		Удельный			Количе							шоннег Т хишкр		еств от мг/м ³	котла и
Тип котла	Номинальная производительность	КПД	н вид			объем отходящих	Температура отходящих	уходящих	диоксі	ида азот	o NO	окси углерод	1 Да	диок	сида	ПЫ		пятис ванади	
THII ROTHA	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^р ккал/кг	топлива B_{yct} , $\kappa \Gamma/\Psi (M^3/\Psi)$	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K _{NO₂}	1102	C_{NO_2}	М _{со} ,	IVI 1 / IVI	M_{SO_2}	C_{SO_2}	М _п , г/с	С _п ,	$M_{V_2O_5}$	
									кг/ГДж		$M\Gamma/M^3$		3	, г/c	мг/м ³			, г/c	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17 4,7-7,6	18 12050-	19	20
«Энергия-3М »	0,3-0,6	65	КУгр	5800	70,9-111,7	10,56	190	0,35-0,7	0,18-0, 19	0,09-0, 11	235	1,29	3680	0,38-0, 76		0,97-1, 58	19480	-	-
	0,25-0,51	60	КУряд	5700	62,7-125,5	10,34	190	0,31-0,61	0,18-0, 19	0,07	220	1,12	3610		1070- 21400	2 0,84-1, 37	040	-	-
«Энергия-5»	0,6-0,105	70	A	6030	162-283,4	10,34	190	0,79-1,38	0,09-0, 12	0,09-0, 21	130	2,95	3740	0,83-1, 66	1050- 2100	74	870 650-12 97 1300-2	-	-
	0,72-1,26	85	Г	8620	128,5-224	12,7	190	0,77-1,35	0,088	0,11-0,	117	0,095	123	-	-	-	590 -	-	-
	0,54-0,94	60	БУ	2940	282,5-492	5,7	190	0,76-1,32	0,17-0, 19	0,15	200	2,6	3426	1,53-3, 06	2011- 4026	3,9-6,3 1 5,86-1	310	-	-
	0,73-1,26	82	M	9620	115	13,6	190	0,76-1,32	0,088	0,11-0, 2	146	0,02	100	-	-	0	15000 21,6-5 7,5 100	0,003-0	3,5-7,6
«Энергия-6»	0,33-0,63	70	A	6030	91-179	10,56	190	0,45-0,85	0,1-0,1 1	0,06	132	1,16	3911	0,5-1	2200	0,3-0,6 0,57-1,	57	-	-
		85	Г	8620	142-267	12,7	190	0,38-0,71	0,08-0, 09	0,05	116	0,047	105	-	-	0,37-1, 14 -	600	-	-

				Низшая		Удельный			Количе							шоннер Таминер		еств от мг/м ³	котла и
Тип котла	Номинальная производительность	КПД	Бид		Установочный расход	объем отходящих	Температура отходящих	уходящих	диоксі	ида азот	o NO	окси углерод	іда	диок серы	сида		іли	пятис ванади	
T FIII KO I SIG	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^н , ккал/кг	топлива B_{ycr} , $\kappa \Gamma / \Psi \left(M^3 / \Psi \right)$	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K_{NO_2}		C_{NO_2}	M _{CO} , Γ/c	M17M	${ m M_{SO_2}}$	C_{SO_2}	M _п , г/с	С _п ,		$C_{V_2O_5}$
						(HM /M)			, кг/ГДж	, г/c	$M\Gamma/M^3$		3	, г/c	$M\Gamma/M^3$, г/c	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		65	КУ	5700		10,56	190	0,35-0,65		0,06	132	1,79	3920	0,5-1		0,3-0,6		-	-
									19						3200	0.55.1	50		
																0,57-1,			
	0,25-0,44	60	БУ	2940	142-267	5,7	190	0,38-0,71	0 14 0	0,07	186	1 205	2126	0.77.1	2020	14 1,3-2,1	600		
	0,23-0,44	00	БУ	2940	142-207	3,7	190	0,36-0,71	165	0,07	100	1,303	3430	0,77-1, 54	1040	2	705		
									103					J-T		2,3-3,7			
																_,5 5,7	280		
	0,31-0,58	82	M	9620	53,7-100	13,6	190	0,35-0,65	0,08-0,	0,05	140	0,057	164	0,53	1500	1,96-3,		0,002-0	3,71-3
					ŕ	ĺ			09			ŕ				17	300	,004	
																3,67-5,			
																94	5500		
КЧ-1	0,14-0,23	70	A	6030	35,7	10,34	190	0,17-0,28	0,09	0,02-0,	123	0,7	4000			0,12-0,		-	-
										03				38	2280	23	12		
																0,02-0, 04	704-14 08		
		65	КУ	5700	37,8	10,56	190	0,19-0,31	0.165	0.06-0	304	0,69	3600	0.2-0.4	1052-	0,51-0,		_	_
		0.5	IC)	3700	37,0	10,50	170	0,17 0,51	0,103	1	304	0,07	3000	0,2 0,4	2100	8	210		
										1						0,84-1,			
																37	400		
		82	M	9620	22,4	13,6	190	0,14-0,23	0,05	0,02-0,	154	0,024	171	0,22-0,			23-50	0,0006-	5-20
										035				44	3540			0,093	
																0,05-0,	35-10		
	0.11.0.20	(0)	EV	2040	57 (151 7	5.7	100	0.15.0.41	0 142	0.025	100	0.52.1	2525	0.21.0	2076	015	5260.0		
	0,11-0,29	60	БУ	2940	57,6-151,7	5,7	190	0,15-0,41		0,025-	190	U,33-1,	3333	0,31-0, 62	4150	0,75-1, 28	5260-8 560		
									0,103	0,078		1		02	4130		4880-7		
																2 3,2	890		
КЧМ-2	0,012-0,045	76	Γ	8620	1,83-6,9	12,7	200	0,01-0,04	0,05	0,001-	85	0,001	100	-	-	-	-	-	-
										0,003									

				Низшая		Удельный			Колич							шонкы Тамингы		еств от	котла и
Тип котла	Номинальная производительность	КПД	н вид			объем отходящих	Температура отходящих	јуходящих	диокс	ида азот	o NO	окси углеро,	1 да	диок	сида	пы		пятис ванади	
TIMI RODIA	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^р ккал/кг	топлива B_{ycr} , $\kappa \Gamma / \Psi \left(M^3 / \Psi \right)$	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K _{NO2}	1102	C_{NO_2}	M _{CO} , Γ/c	M1 / M	M_{SO_2}	C_{SO_2}	М _п , г/с	C_{Π} , $M\Gamma/M^3$	$M_{V_2O_5}$	$C_{V_2O_5}$
				KKa31/ KI					, кг/ГДж	, г/с	$M\Gamma/M^3$		3	, г/c	$M\Gamma/M^3$, г/c	, мг/м ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		72	M	9620	1,84-6,15	13,6	200	0,071	0,05	0,001- 0,003	51	0,0017	159	0,016- 0,03		0,0002	21	0,00005	4-30
																6 0,0006 -0,000	54-60		
		70	A	6030	2,6-9,8	10,34	200	0,015-0,4	0,05	0,081- 0,003	40	0,05-0, 17	3370	0,014- 0,02	947-1 900	8 0,009- 0,018	30	-	-
		70	КУ	5700	2,02-9,82	10,56	200	0,011-0,0	0.115	0.0018	163	0,05-0,	4543	0.015-	1330-	0,027- 0,036 0,037-	00	_	
		/0	IC.	3700	2,02 9,02	10,50	200	4	0,113	0,0010	103	17	7373	0,03	2660	0,06 0,4-0,2 3	450		
КЧМ-2М	0,14-0,05	76	Γ	8620	2,14-7,63	12,7	200	0,013-0,0	0,05	0,001- 0,003	82	0,0016 -0,005	121	-	-	-	-	-	-
		72	M	9620	1,91-6,85	13,6	200	0,012-0,0	0,05	0,001- 0,003	83	0,002- 0,006	170	0,019- 0,03		0,0003 -0,000 9	20	0,0006	4-13
																0,001- 0,003			
КЧМ-2У	0,02-0,06	70	КУ	5700	4,5-13,5	10,56	200	0,022-0,0	0,115	0,003-0,01	145	0,08-0, 24	3730	0,024- 0,04	2170	0,06-0, 1 0,2-0,3	480	-	-
КЧМ-3	0,014-0,05	70	КУ	5700	3,2	10,56	200	0,016-0,0	0,115	0,002- 0,006	125	0,06-0, 2	3636	0,016- 0,03	1023- 2046		375 2860-4	-	-
КЧМ-3М	0,014-0,06	76	Γ	8620	2,1	12,7	200	0,012-0,0	0,05	0,001-	83	0,0016	133	-	-	33	660	-	-

				Низшая		Удельный			Количе							дэняющ тамих г		еств от мг/м ³	котла и
Тип котла	Номинальная производительность	КПД	Вид		Установочный расход	объем отходящих	Температура отходящих	Объем уходящих	диоксі	ида азот	o NO	окси углерод	іда	диок серы	сида	пы		пятис ванади	
Triii Roisia	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^н , ккал/кг	топлива B_{ycr} , кг/ч (м ³ /ч)	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, м ³ /с	K_{NO_2}		C_{NO_2}	M _{CO} , Γ/c	M1/M	${ m M_{SO_2}}$	C_{SO_2}	Мп, г/с	C_n , $M\Gamma/M^3$		ا ا
				KKU31/KI		(HM /M)			кг/ГДж	, г/c	$M\Gamma/M^3$	1/0	3	, г/c	$M\Gamma/M^3$		MII / MI	, г/c	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
			M	9620	1,89	13,6	200	2 0,012-0,0 5	0,05	0,003 0,001- 0,003	83	-0,006 0,002- 0,008	168	0,018- 0,03		0,0003	20	0,0006	4-12
иФамату	0.96	85	г	8620	100.6	12.7	200	0.67	0.000	0.1	144	0.00	02			9 0,001- 0,003	20-60		
«Факел» ГОСТ 7252-54	0,86 0,1-0,42	70	Γ A	6030	109,6 23,69	12,7 10,34	200 250	0,67 0,13-0,55	0,088 0,09	0,1 0,013- 0,06	144 107	0,08 0,46-1, 9	92 3490	- 0,13-0, 26	000	- 0,08-0, 16 0,34-0,	612-12 24	-	-
НРЧ	0,3-0,52	65	A	6030	71-124,4	10,34	250	0,39-0,68	0,1	0,04-0, 07	115	1,37-2, 38	3495	0,39-0, 78		68 0,24-0, 48	20	-	-
		60	КУ	5700	62,35	10,56	250	0,35-0,61	0 18-0	0,	124		3915			0,42-0, 87 1-1,65	612-12 24		
			Ky	3700	02,33	10,30	230	0,33-0,01	19	0,07-0,	124	38	3913	0,4-0,6	2280	1,73-2, 86	710	-	-
	0,11-0,17	55	КУ	2940	53,4-82,6	5,7	250	0,16-0,25	0,15-0, 18	0,025- 0,05	156	0,49-0, 84	3350	0,3-0,6	1600- 3600	0,75-1, 2	4580-7 450	-	-
«Стрела»	0,11-0,17	65	A	6030	26,1-40,3	10,34	250	0,14-0,22	0,09	0,015	107	0,59-1	4530	0,16-0, 32	1180- 2360	1,13-1, 85 1-2	4000-7 480 729-19 60	-	-
«Стребела»	0,08-0,13	65	A	6030	20,4-33	10,34	250	0,11-0,16	0,09	0,01-0,	100		3580	0,11-0,	1000-	1,7-3,4 0,07-0,	770-15 40 623-12	-	_
										016		42		22	2000	14 0,11-0,	46 1000-2		

				Низшая		Удельный			Количе							язняющ 1 хишкр			котла и
Тип котла	Номинальная производительность	КПД	Бид		Установочный расход	объем отходящих	Температура отходящих	Объем уходящих	диоксі	тда азот		окси углерод	іда	диок	сида	пы		пятио ванади	
T FIII KO I JI	$Q_{\text{ном}}$, Гкал/ч	η	топлива	топлива Q ^р ккал/кг	топлива В _{уст} , кг/ч (м ³ /ч)	газов $V_{yд}$, $HM^3/K\Gamma$ (HM^3/M^3)	газов Т, °С	газов V, M^3/c	K_{NO_2}	_	C_{NO_2}	M _{CO} , Γ/c	1011 / 101	${ m M_{SO_2}}$	C_{SO_2}	M _п , г/с	C_n , $M\Gamma/M^3$		
				KKGJI/ KI		(HM /M)			, кг/ГДж	, г/c	, мг/м ³		3	, г/c	мг/м ³			, г/c	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
«Минск-1»	0,46-0,69	70	Агр	6030	122,2-216,4	10,3	250	0,62-1,19	0.005	0.07.0	113	2 16 0	3520	0.01.1	080 1	22 0,38-0,	000 607 12		
«WINHCK-1»	0,40-0,09	/0	Alp	0030	122,2-210,4	10,5	230	0,02-1,19	0,093	13	113	2,10-9,	3320	22	960	76	14	-	_
												_				0,73-1,			
																46	26		
«Минск-1»	0,23-0,44	65	Аряд	5800	38,3	9,39	250	0,29-0,56	0,1	0,04-0, 08	126	1,08-2,	3720	0,3-0,6	1030- 2060	0,19-0, 38	607-12 14	-	-
										00		1				0,37-0,			
																73	14		
	0,19-0,37	60	КУряд	5700	48,2-93,7	10,56	250	0,27-0,5		0,05-0,	190		3470			0,66-1,		-	-
									18	I		74		52	920	1 28 2	150 2570-5		
																2	140		
ЭК-100	0,086	60	Γ	8620	10,63	12,7	250	0,11	0,08	0,013	121	0,012		-	-	-	-	=.	-
«Тула - 3»	0,47-0,82	70	Агр	6030	115,5-201,5	10,34	250	0,03-1,15	0,1	0,075-	119	0,7-1,4	1110			0,39-0,		-	-
										0,14				26	2000	78 0,73-1,	30		
																48	90		
	0,28-0,53	65	КУгр	5700	72,8-137,8	10,56	250	0,41-0,77	0,085	0,038-	93	1,33-2,	3237	0,76-1,	1860-	0,93-1,	7700	-	-
										0,07		5		52	3720	624			
																2,12-3, 96	2400-3 900		
	0,27-0,514	60	КУряд	5700	70,2-135	10,56	250	0,39-0,75	0.085	0,035-	93	1 32-2	3250	0 37-0	953-1	0,93-1,		_	_
	-,-,-,		}		''',			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	0,06	, ,	4		79	906	6	700		
																2,12-3,			
«Кировец»	0,22-0,525	69	КУ	5700	58,5-133,5	10,56	250	0,33-0,75	0.083	0.03.0	93	1127	2220	0306	040-1	8 0,8-1,2	2400-3		
«кировец»	0,22-0,323	09	КУ	3700	30,3-133,3	10,50	230	0,33-0,73	0,003	06	73	1,1-4,/	3230	0,5-0,0	980	8	900	-	-
																1,53-2,			
																9			

				Низшая		Удельный			Количе			ов в атмо ция вред						цеств от 1 , мг/м ³	котла и
Тип котла	Номинальная производительность	КПД	Н Вид	теплотворная		і объем отходящих	Температура	улодящих	`	ида азот		OTTO	ида	диок	ксида	пы	лпи	пятио ванади:	
Thii Roma	$Q_{\text{ном}}$, Гкал/ч	η	топпира	топлива Q^{p} ,	топлива B_{ycr} , $\kappa \Gamma/\Psi \left(M^3/\Psi \right)$	$HM^3/K\Gamma$	газов Т, °С	газов V, м ³ /с	K_{NO_2}	M_{NO_2}	C_{NO_2}	007	С _{со} , мг/м		C_{SO_2}	M _п , г/с	C_{n}	$M_{V_2O_5}$	$C_{V_2O_5}$
				ккал/кг		(HM^3/M^3)		<u> </u>	, кг/ГДж	, г/с	, MΓ/M ³	_	3	E/0	$M\Gamma/M^3$		M17M	,1/0	, MΓ/M ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ВНИИСТО	0,005-0,01	69	Агр	6030	1,2-2,4	10,34	270	0,007-0,0	0,05	0,0004	1 56	1 /	3310			0,04-0,			1 -
	1	1 '	1	1 '	1	1	'	14	'			0,05	'	0,01	864	008	50	1 1	1
	1	'	1	1 '	'	1	'	1	'			'	'	1 '	'		576-11	1 '	1
	1	1 '	1	1	'	1	'	1	'	1 '	1	' ' '	1 '	1 '	'	0,016	50	1 1	1
	0,01-0,042	77	Γ	8620	1,5-6,3	12,6	270	0,1-0,04	0,05	0,008-	- 93	0,01-0,	, 111	-	- '	- !	-	-	-
ниисту у	0,39-0,56	85	Γ '	8620	69,6-100	12,6	250	0,55	_ '	0,063	116	0,06	105	_	_ '	1 - '	_	1 - 1	1 -
АГВ-80	0,006	50	Γ '	8620	1,39	12,6	150	0,008	0,05	0,0004	1		128,6		_ '	1 - '	-	1 - !	1 -
АГВ-120	0,012	50	Γ '	8620	2,78	12,6	150	0,016		0,0008					- '	1 - '	-	1 - 1	1 -
CKE-1	0,01	70	Γ	8620	1,66	12,6	200	0,01	0,05	0,005		0,0065		- '	- '	1 - '	-	1 - 1	1 -
APЭ-1,2	1	'	1	1 '	<u> </u>		'	'				′ '	'	- '	- '	1 - '	- !	1 - 1	1 -
KC-2	1	'	1	1 '	1	1	'	'	'	1		'	'	- '	- '	1 - '	- !	1 - 1	-
KC-3	1	'	1	1 '	1	1	'	1	'	1		'	'	- '	- '	1 - '	-	1 - 1	1 - 1
ЗИО	1,26	80	Γ	8620	243,6	12,6	220	1,5	0,09	0,22	146	0,18	120	-	- '	1 - '	-	1 - 1	-
Шухова-Берл		80	Γ	8620	623,5	12,6	220	3,94	0,1	0,62	158	0,46	117	- '	- '	1 - '	- !	1 - !	1 -
ина		'	1	1 '	1	1	'	1	'	1		'	'	1 '	'	1 '	'	1 1	1
KE-35-40	35	67-9	Γ	8620	4667	12,6	190	21,7	0,105	4,89	225	3,45	1,59	-	- '	- '	-	-	-
KE-35-40	35	1 87-9	M	9620	4182	13,7	250	60,48	0,105	4,89	160	4,46	146	41,03	1346	0,6-1,8	20-55	0 12-0.	4-11
. 122 55 15	'	1 1	1	'0=0 '		15,,	-50	00,.0	,,,,,,,	.,,,,	100	','`	' ' '	'',"	15.0	7	20 00	33	
ВВД-1,3 (140-13)	2,56	85	Γ	8620	349,4	12,6	250	2,34	0,095	0,33	142	0,258	110	- '	- '	- '	-	-	-

Примечания: 1. Представленное в таблице количество выбросов пироксида серы и его концентрация в уходящих газах - при использовании малосернистого мазута (S_p

 $M_{SO_2}^{C} = M_{SO_2}^{MC} \cdot 2,83;$ $C_{SO_2}^{C} = C_{SO_2}^{MC} \cdot 2,83;$ $C_{SO_2}^{C} =$

^{2.} Количество выбросов пятиокиси ванадия и его концентрация в уходящих газах даны при условии сжигания сернистого мазута - $(S_p = 1,4 \%)$, сернистого мазута $(S_p = 0,5)$, высокосернистого мазута $S_p = 3 \%$.

^{3.} Количество выбросов пыли в уходящих газах и ее концентрация при зольности топлива и максимальной поверхности нагрева котла (например, для КЧ-1 при Q_{ном} =

- $0.14~\Gamma$ кал/ч, $M_{\pi}=0.007~$ при $A^p=7.3~\%$ (гр. 18), $M_{\pi}=0.014~$ при $A^p=14.1~\%$ (гр. 18); при $Q_{\text{ном}}=0.23~$ Γ кал/ч, $M_{\pi}=0.009~$ при $A^p=7.3~\%$ (гр. 20), $M_{\pi}=0.018~$ при $A^p=14.1~\%$ (гр. 20)).
- 4. Таблица может быть использована для других марок топлив с введением коэффициентов на изменение соответствующими коррективами количества выбросов и концентраций вредных веществ в уходящих газах.

ЛИТЕРАТУРА

- 1. Борщов Д.Я. Устройство и эксплуатация отопительных котельных малой мощности. М.: Стройиздат, 1982.
- 2. Волков Э.П., Сапаров М.И., Фетисов Е.И. Источники, состав и контроль выбросов промышленных предприятий. М.: МЗИ, 1988.
- 3. Кровоногов Б.М. Повышение эффективности сжигания газа и охрана окружающей среды. Л.: Недра, 1986.-192 с.
- 4. Методические указания по расчету выбросов загрязняющих веществ в атмосферу с дымовыми газами отопительных и отопительно-производственных котельных МЖКХ РСФСР. М.: ОНТИ АКХ им. К.Д. Памфилова, 1986.
- 5. Методические указания по расчету выбросов загрязняющих веществ при сжигании топлива в котлах производительностью до 30 т/ч. М.: Гидрометеоиздат, 1985. 24 с.
- 6. Методика определения валовых выбросов вредных веществ в атмосферу от котлов тепловых электростанций. М.: СПО «Союзтехэнерго», 1984. 19 с.
- 7. Роддатис К.Ф., Полторецкий А.Н.: Справочник по котельным установкам малой производительности. М.: Энергоатомиздат, 1989.
- 8. Сигал И.Я. Защита воздушного бассейна при сжигании топлива. М.: Недра, 1977. 294 с.
 - 9. Справочные материалы по защите атмосферы. М.: Гипромез, 1988.
- 10. Тепловой расчет котельных агрегатов. Нормативный метод. М.: Энергия, 1973. 296 с.
 - 11. Угли СССР: Справочник. М.: Недра, 1975. 308 с.
- 12. Чмовж В.Е., Аничков С.Н., Бабий В.Ф. и др. Энергетика и окружающая среда: Тезисы докладов БО ВНИПИэнергопром. ч. I, 1980.
 - 13. Шаприцкий В.Н. Защита атмосферы в металлургии. М.: Металлургия, 1984.
 - 14. Энергетическое топливо СССР: Справочник. М.: Энергия, 1979. 128 с.

СОДЕРЖАНИЕ

Общие положения	1
Расчет расхода топлива	2
Расчет выбросов в атмосферу загрязняющих веществ	3
Расчет концентраций и валовых выбросов вредных веществ в дымовых газах	11
Пример расчета	12
Практические рекомендации	14
Приложения	14
Приложение 1 Паропроизводительность, эквивалентная 1 мВТ тепловой мощно	сти
14	
Приложение 2 Некоторые показатели топок и применяемых топлив	14
Приложение 3 Расчетные характеристики твердых, жидких и газообразных топл	<u>ІИВ</u>
16	
Приложение 4 Характеристика применяемых топок для различных котлов и ви	<u> 1ДОВ</u>
<u>топлива</u>	22
Приложение 5 Пересчет объемных концентраций газов и паров в весовь	<u>іе и</u>
<u>наоборот (при 25 °C и 160 мм рт. ст.)</u>	23
Приложение 6 Характеристика физико-технических показателей котлов различ	ных
типов и производительностей, а также выбросов в атмосферу загрязняю	ЩИХ
веществ от них при сжигании различного вида топлива, используемог	<u>Ю</u> В
Московской области	29
Литература 42	