YEAR 11 - MATHEMATICS

Preliminary Topic 15 - Further Trigonometric Identities

MATHEMATICS EXTENSION

LEARNING PLAN				
Learning Intentions Student is able to:	Learning Experiences Implications, considerations and implementations:	Success Criteria I can:	Resources	
Derive and use the sum and difference expansions for the trigonometric functions $sin(A \pm B)$, $cos(A \pm B)$ and $tan(A \pm B)$ $- sin(A \pm B) = sin A cos B$ $- cos(A \pm B) = cos A cos$ $- tan(A \pm B) = \frac{tan A \pm tan}{1 \pm tan A tan}$	value of tun o.	Derive and use the sum and difference expansions for the trigonometric functions $sin (A \pm B), cos (A \pm B)$ and $tan (A \pm B)$ $- sin (A \pm B) = sin A$ $- cos (A \pm B) = cos A$ $- tan (A \pm B) = \frac{tan A}{1 \pm ta}$		
derive and use the double angle formulae for <i>sin</i> 2 <i>A</i> , <i>cos</i> 2 <i>A</i> and <i>tan</i> 2 <i>A</i>	The double angle formulae for <i>cos</i> 2 <i>A</i> , <i>sin</i> 2 <i>A</i> and <i>tan</i> 2 <i>A</i> should be obtained explicitly as particular cases of the sum and difference formulae.	derive and use the double angle formulae for sin 2A, cos 2A and tan 2A	2016-3, 2013-8, 2009-3c	

$- \sin 2A = 2 \sin A \cos \cos A$ $- \cos 2A = \cos^2 A - \sin^2 A$ $= 2 \cos^2 A - 1$ $= 1 - 2 \sin^2 A$ $- \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$	Note: Expressions involving cos3A, for example, are in Year 12 Extension 1 topic T3.	$- \sin 2A = 2 \sin A \cos$ $- \cos 2A = \cos^2 A - \sin$ $= 2 \cos^2 A - 1$ $= 1 - 2 \sin^2 A$ $- \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$
derive and use expressions for $sin A$, $cos A$ and $tan A$ in terms of t where $t = tan \frac{A}{2}$ (the t -formulae) $- sin A = \frac{2t}{1+t^2}$ $- cos A = \frac{1-t^2}{1+t^2}$ $- tan A = \frac{2t}{1-t^2}$	• Denoting $tan \frac{A}{2}$ by t , the addition formula for the tangent gives $tan A = \frac{2t}{1-t^2}$ ($t \neq \pm 1$). The expressions for $cos A$ and $sin A$ in terms of t should also be derived.	derive and use expressions for $sin A$, $cos A$ and $tan A$ in terms of t where $t = tan \frac{A}{2}$ (the t -formulae) $- sin A = \frac{2t}{1+t^2}$ $- cos A = \frac{1-t^2}{1+t^2}$ $- tan A = \frac{2t}{1-t^2}$
derive and use the formulae for trigonometric products as sums and differences for $\cos A \cos B$, $\sin A \sin B$, $\sin A \cos B$ and $\cos A \sin B$ ($A CMSMMQ17) $	Practical application problems students investigate mathematically the superposition of waves. For example, when two waves of similar frequency are combined, the graph of the result can be interpreted as a wave with amplitude modified by another wave. In sound waves, this is heard as 'beats' and is used in tuning musical instruments. 	derive and use the formulae for trigonometric products as sums and differences for $\cos A \cos B$, $\sin A \sin B$, $\sin A \cos B$ and $\cos A \sin B$ (ACMSMM47) ϕ - $\cos A \cos B = [[\cos(A - B) + \cos(A + B)]$ - $\sin A \cos B = [[\sin(A + B) + \sin(A - B)]$ - $\cos A \sin B = [[\sin(A + B) - \sin(A - B)]$

For example, graphing software could be used to draw the functions	
$f(t) = 5(\cos\cos 3t - \cos\cos 3.1t)$ and $g(t) = 10(\sin\sin 3.05t)$ sin $\sin(0.05t)$ to show that they are equivalent, and trigonometric identities then used to establish the underlying result: $\cos\cos\alpha - \cos\cos\beta = -2\sin\sin\frac{1}{2}(\alpha + \beta)\sin\sin\alpha$.	