Equations and Sequences Review Sheet Solve for x.

Name ______

1.
$$8x - 2 = 6x - 8$$

 $x = -3$

2.
$$-2x + 10 = -5x + 25$$

x = 5

3.
$$3(4x+1) - 4x + 3 = -18$$

 $x = -3$

4.
$$-2(-4x-3)-5x+3=-3$$

x = -4

5.
$$2(x+1) = 2(6x+9) + 7$$

 $x = -2.3$

6.
$$8x + 4(-x - 3) = 2(5x + 7) - 4x$$

 $x = -13$

7.
$$13 = \frac{5}{2}(5x + 4)$$

x = 6/25

8.
$$4 = \frac{1}{8}(3x + 16)$$

x = 16/3

9.
$$-5 = \frac{1}{2}(6x - 1) + \frac{3}{2}x$$

10.
$$-3x + \frac{1}{2}(-6x + 4) = \frac{1}{2}(-9x - 7)$$

x = 11/3

11.
$$\frac{3x-6}{3}=\frac{x+6}{2}$$
 x = 10

12.
$$\frac{2}{x+3} = \frac{7}{x+7}$$
 $x = -7/5$

13. Solve the following inequality for x. Write your answer in simplest form.

$$9x + 8 < 7x + 9$$

 $x < 1/2$

14. Solve the following inequality for x. Write your answer in simplest form.

$$7x - 9 < 10x + 1$$

 $x > -10/3$

15. Find the 89th term of the arithmetic sequence 25, 35, 45, ... $a_{89} = 905$

16. Find the 60th term of the arithmetic sequence -27, -24, -21, ... $a_{60} = 150$

17. Find the 14th term of the geometric sequence 10, 40, 160, ... $a_{14} = 671088640$

18. Find the 9th term of the geometric sequence 3, -15, 75, ... $a_9 = 1171875$

19. If $a_1 = 1$ and $a_n = -5a_{n-1}$ then find the value of a_6 . $a_6 = -3125$

20. If $a_1 = 7$ and $a_n = a_{n-1} - 1$ then find the value of a_5 . $a_5 = 3$

Write the recursive formula for a_n , the nth term of each sequence.

21. 7, 1, -5, -11, ... 22. 2, 10, 18, 26, ...
$$a_n = a_{n-1} - 6$$
 $a_n = a_{n-1} + 8$

23. 288, -48, 8, ... 24. 7, 35, 175, 875, ...
$$a_n = -\frac{1}{6}a_{n-1}$$
 $a_n = 5a_{n-1}$

Write the explicit formula for a_n , the nth term of each sequence.

25. 19, 23, 27, ... 26. 34, 30, 26, ...
$$a_n = 19 + 4(n - 1)$$
 $a_n = 34 - 4(n - 1)$

27. 6, 18, 54, ... 28. 3, 12, 48, ...
$$a_n = 6(3)^{n-1}$$
 $a_n = 3(4)^{n-1}$

Write a recursive sequence that represents the sequence defined by each explicit formula.

29.
$$a_n = 3 + 7n$$

 $a_1 = 10$
 $a_n = a_{n-1} + 7$
30. $a_n = 5(4)^{n-1}$
 $a_1 = 5$
 $a_n = 4a_{n-1}$

Write an explicit formula that represents the sequence defined by each recursive formula.

31.
$$a_1 = 3$$
 32. $a_1 = 12$ $a_n = a_{n-1} + 7$ $a_n = 3 + 7(n-1)$ or $a_n = 7n - 4$ $a_n = 12(-\frac{1}{2})^{n-1}$