
Licensing 
MIT license ✔ 

Implementation language 
TypeScript Rust ✔ 

Todo list  

AFAIK thoroughly out of date 
Currently working on: 

●​ A Polytope.prototype.circumcenter function. 
●​ A function to build a cyclic polygon from its edge lengths and orientations. 
●​ A Polytope.prototype.petrial function. 

 
Short term: 

●​ Allow exporting into other formats, such as STL or GGB. 
●​ Add duals and petrials. 
●​ Add various render types: projection, wireframe, expansion, spherical (?), as well as 

further options (fill type, projection type, view distance, …). 
●​ Render vertices and edges, or at least have an option to render them. 
●​ Create functions for some polyhedron operators: truncating, stellating, faceting, … 
●​ Expand on the Scene class, make a basic HTML interface. 
●​ Render only on demand. 
●​ Implementing triangulating algorithms for different fillings, to allow for general polyhedra 

to be displayed. 
 
Medium term: 

●​ Generate convex polytopes from their vertices (we’ll probably port QHull’s code for this). 
●​ Create compressed file formats to efficiently store polytopes as files. 
●​ Generate simple polytopes from Coxeter diagrams. 
●​ Import some localization library 
●​ Generate incidence matrices from polytopes for structural verification. 

 
Long term: 

●​ Create an extensive polytope library, including functionality for the infinite families, and 
with as many of the following as is reasonable built in: 

○​ Regulars/Uniforms 



○​ Scaliforms 
○​ Semiuniforms 
○​ CRFs 

●​ Also allow generation of infinite families of interest, like 
○​ Simplexes, orthoplexes, hypercubes 
○​ Products of polytopes 
○​ Antiprisms 
○​ Pyramids, bipyramids 
○​ Cupolas 
○​ Orthohemihypercubes (aka thah and friends), and other uniforms that generalize 

to higher dimensions 
○​ Demihypercubes. 

Petitions 
●​ Ability to rotate polytope and not only view. 

Backend stuff 
Potential representation: Symmetry group, flags in each element of symmetry group, realization 
of the symmetry group, realization of each flag class 
Another representation: Vertex positions, abstract polytope 
Variant of the first representation: Symmetry group, elements in each domain and generators 
under which they’re invariant, realization of the symmetry group, realization of each element 
class 
Advantages: Element count is generally lower than flag count 
Disadvantages: Some operations are more awkward 
Groups can be represented as rewriting systems for strings of generators or matrices 
Strings of generators: 
Pros: Works for Grünbaumians easily, easy to enumerate elements 
Cons: Slow to generate, requires manual handling of starry groups 
Matrices: 
Pros: Easy to generate, straightforward handling of starry groups 
Cons: Grünbaumians are kinda awkward (but doable), hard to enumerate elements AFAIK 
At any rate, we can use both so yeah 
Representing compounds with the first format requires the ability to have multiple root flags, or 
just assume that all flags are reachable which might require awkward messing around with the 
symmetry group 
We really need to work out our data structures somewhere 
Algorithms for the stuff in the big list below 

●​ Faceting: I don’t really care, figure it out yourself 



●​ Semiuniform morphs: No changes to the abstract structure, just change the lengths of 
the edges and solve, numerically or otherwise (note that the vertex may cross mirror 
planes, for polyhedra where symmetries always have (supersymmetries with) reflectional 
domains AFAIK you can just bounce off the plane, but in 4D+ some symmetries don’t 
work like that). For non-snub Wythoffians, choosing the vertex position for particular 
edge lengths is straightforward. 

●​ Truncation rotation: The right half is moving the point along the original polytope’s edge, 
the left half is continuing past the end of the original edge but projecting back onto the 
original cube so the point doesn’t go to infinity at 9 o’clock (it would probably be simpler 
to just move the point along a great circle parallel to an edge) 

●​ Tribe generation: If you just want to be able to move freely around the configuration 
space, then that’s fairly straightforward. If you want to draw a picture of all teepee 
representatives like in the glossary, then you need to find the ridges between teepees, 
which can probably be done by generating subtribes (?) from setting one edge length to 
0. 

●​ Generating polytope from verf: Dual, fit the resulting shapes together somehow, dual. Of 
course, the hard part is figuring out how the verf duals fit together, so good luck with that. 
It’s much easier if you already have a construction of another regiment member since 
then you already know how copies of the dual of the verf fit together. Better ways exist. 

●​ List valid verf facetings: Recursively I guess 
●​ Honeycombs: Instead of generating/drawing all elements, only draw elements close to 

the camera. This might also be a good idea for highly complex spherical polytopes. 
●​ Generate polytope from Wythoff triangle/Coxeter diagram: Generating the domain is 

easy, but determining the flags in each domain isn’t. I think it’s easier to find centers of 
elements that intersect with the domain and then build the flags from those. Any mirror 
that is not incident with the vertex generates an edge. (Including edges from mirrors 
incident with the vertex produces degenerate edges, which might be useful for some 
stuff) Place this edge’s center on the domain facet corresponding to this mirror. (Exact 
location doesn’t matter since we’re building the abstract polytope.) For each mirror 
incident with the vertex, if said mirror is perpendicular to the mirror being used to 
generate an edge, move the center to be incident with this mirror. A similar procedure 
can be used for generating faces and higher elements, except you start with an 
edge/higher element center and after the initial placement of the center, you must align 
the new center to be incident with the mirror(s) that generated the edge/higher element. 
After generating centers of all elements, the flags of this domain can be generated by 
tracing all paths from the nulloid to the full polytope using only elements within this 
domain. The physical vertex position can then be derived using the normals of the 
mirrors, which can be computed from reflection matrices as the eigenvectors with 
eigenvalue -1. For snubs, do the construction for the corresponding non-snub, abstractly 
holoalternate like in the Grünbaumian thing, delete degenerate elements, and readjust 
the vertex position numerically. 

●​ Generate polytope from a more general fundamental domain: There are probably ways 
to do this similar to the above, but they’re probably more complicated (eg directly 



building snub polyhedra requires a pentagonal domain with various types of connectivity 
between edges) 

●​ Deleting degenerate elements: For this, you need to select two dimensions: the 
dimension of the element to delete and the dimension of elements to merge. For 
example, when deleting digonal faces from an alternated cube, dimension to delete=2 
and dimension to merge=1 since we’re deleting faces and merging the incident edges. 
For each flag class of the element to delete, modify the flag class reached from a change 
(element of dimension to delete) operation to go to the flag obtained from changing 
(element of dimension to merge) and then (element of dimension to delete) from the 
chosen representative of the element to delete. Then, delete the degenerate flag 
classes. Since we’re removing only degenerate elements the only modifications to the 
realization are making sure the realization doesn’t reference any classes that no longer 
exist. 

●​ Blending: This is equivalent to making an overlapping compound, finding overlapping 
elements, rearranging the classes in the overlapping elements into degenerate 
elements, and deleting those degenerate elements. Compounding and removing 
degenerates are discussed elsewhere, so here I’ll focus on finding overlapping elements 
of compounds and rearranging them into degenerate elements. Finding overlapping 
elements is just looking for flags with identical physical realizations excluding the 
components themselves (which in most cases should be identical to flags such that the 
vertex, edge center, face center, etc are identical, for a suitable choice of center), and to 
rearrange the overlaps into degenerates, you need to change the 
(facet-of-overlapping-element)-change operation of each overlapping flag to point to the 
flag it overlaps. This changes the overlapping elements into ditopes, which can be safely 
eliminated. If you want to mess with fissary ridges/etc, instead of only ignoring the 
full-dimension components when finding flags, ignore any elements of dimension higher 
than the dimension of elements you would like to modify. If there’s more than two 
overlapping elements, choice of overlapping elements to merge doesn’t really matter as 
long as you’re consistent within an element. Something else that should work for facet 
elimination is instead of rearranging the overlapping facets into degenerate facets, 
disconnect them from the rest of the polytope. This can be done by replacing the 
(overlapping-element-dimension)-change operation instead of the 
(facet-of-overlapping-element)-change operation. Then you can simply eliminate the 
relevant flag classes. 

●​ Compounding: The two interesting types of compounding (AFAIK) are compounds of 
same-symmetry polytopes and compounds of lower-symmetry polytopes with higher 
symmetry. The first one is probably trivial so I’ll describe the algorithm for the second 
one here. First, apply the monomorphism from the smaller symmetry group to the larger 
symmetry group to the group elements in the description of the compound component. 
Then, add root flags for each pair of root flags from the initial polytope and 
representatives of the left (I think) cosets of the smaller symmetry group in the larger 
symmetry group. This might not be necessary depending on how it’s implemented. For 
example, applying this to o4x2x using the monomorphism from o4o2o to o4o3o gives the 



compound of 3 cubes, and doing something similar using s4s2x and s4s2o to o4o3o 
gives the compound of 6 cubes with rotational freedom. 

●​ Decreasing symmetry: To decrease the symmetry of a polytope, first choose 
representatives of the left (I think) cosets of the smaller symmetry group in the larger 
symmetry group. Then, for each old flag class, create (order of larger group)/(order of 
smaller group) new classes, where each one corresponds to a member of the old flag 
class in a domain in one of the cosets. Connect the new classes according to that and 
copy the concrete realizations of the vertices (if necessary) in a similar way. 

●​ Matching vertices: Again, dunno what this is supposed to be. 
●​ Measures of polytopes: Someone else do this one I don’t really care about it 
●​ General truncation operators: The abstract half is just applying the algorithm in the 

“Generate polytope from Wythoff triangle/Coxeter diagram” section to get a mapping 
from flags of the original to flags of the result, then applying this to a general polytope. 
For most polytopes, I’m pretty sure you can assume that all flags have linear CD 
diagrams, but just to be on the safe side you might want to assume a complete CD 
diagram. For the concrete half, for any particular truncation operator it’s fairly easy to find 
the new location of each vertex as a linear combination of the relevant vertex, edge 
center, face center, etc. if you don’t mind messed-up edge lengths. If you do, then that 
probably leads to a bunch of messy equations that you might as well just do numerically 
somehow. 

●​ Duals: Taking the dual of an abstract polytope in the flag format is fairly trivial. For the 
concrete polytope, place the new vertices at the centers of the old facets and rescale if 
you care about that. 

●​ Element counts: Number of elements of a particular type=Symmetries of the 
polytope/symmetries of one of the elements, in the context of the whole polytope (aka 
how Spirit says element symmetries should work). Note that symmetries of one of the 
elements in context=symmetries of that element alone/number of classes of flag used to 
represent it in the full polytope. 

●​ Incidence matrices: Diagonal entries are simply element counts. There’s probably some 
easy way to get the rest of the entries but I can’t seem to figure it out so yeah idk ask 
Klitzing. 

●​ Circumradius: For uniform polytopes, you can apply a simple formula to the verf 
circumradius to get the full polytope’s circumradius. (I’m pretty sure this also works for 
isogonal polytopes with multiple edge lengths.) Of course, we already know where the 
vertices are, so the verf thing is only really useful if we want an exact answer. 

●​ Vertex coordinates: Start with each vertex within a domain and reflect it around. If you 
want to compress sets of vertices that are equivalent under certain subgroups of 
hypercubic symmetry (“[even] permutations and [even] sign changes of ...”), it’s more 
complicated. 

●​ Generate troops of a regiment: Starting from a collection of flag classes corresponding to 
the relevant facet regiment members, with every connection except “change facet” 
already defined, link the classes that correspond to adjacent facets.  



●​ Fundamental domain information: Determining the measures of general 
spherical/Euclidean/hyperbolic simplices is quite difficult and I dunno if there’s a general 
method for that. 

●​ Symmetry group information: For Coxeter groups, we can determine the order quickly 
using the hypervolume of the fundamental domain, taking into account the fact that 
starry Coxeter groups will multiply cover the sphere. The density of a starry Coxeter 
group is not always obvious, however. For other groups, the best thing I can think of is to 
try to describe it as an extension of a cyclic group, which probably isn’t too hard to check 
and if possible reduces the order significantly. Once you reach a group with no cyclic 
quotients, it’s probably not that easy to do better than just enumerating all the elements. 
However, for most groups in 6 dimensions or less, it should be safe to simply enumerate 
all elements, or doing so after removing diagram-automorphism extensions, splitting 
prismatics, and taking the chiral subgroup (after those, I think the largest possible group 
is order-25920 chiral E6). Actually, if we use a rewriting-system group representation, 
then orders can actually be computed without checking every element of the group by 
keeping track of the number of elements of a particular length that end with a prefix of 
one of the LHSes of the rewriting system and no longer prefix. To compute the number of 
elements of length (n+1) from a table of numbers of elements of length (n) in each suffix 
class, for each suffix class, append a generator and repeatedly delete the first generator 
of the suffix until it becomes a prefix of an LHS of a rewrite rule of the system. If this 
prefix is an LHS of a rewrite rule, then these elements are or will be counted elsewhere, 
so don’t count them. Otherwise, do count them. Of course, this is still one of those 
places where matrix representations suck. 

●​ Exporting media files: I don’t know and I don’t care. There’s probably guides online for 
this kind of stuff. 

●​ Slices: Slicing a 1D polytope is trivial, everything higher’s kinda tough 
●​ Polytope filling: Really even figuring out how to actually render nonconvex polytopes in a 

not completely shitty way is somewhat nontrivial. Other people probably already know 
1D and lower elements are trivial, and for everything higher you can just compute which 
facet planes you’d hit if you went in a random direction from the point you’re checking, 
check how many of those facets you actually collide with, and react accordingly, but this 
is probably kinda slow. URL posted an algorithm for this on the server. It’s probably not 
that fast in higher dimensions but it should work, at least for solid/binary filling. 

●​ Rendering as a sphere tessellation: Yeah I dunno 
●​ Generate nets for model making 

Frontend stuff 
1.​ Faceting 

a.​ Faceting diagrams 
b.​ Faceting criteria: tame, feral, wild, orientable, isohedral, semiuniform, same 

edges etc. 



c.​ Manual faceting from faceting diagrams 
2.​ Semiuniform morph stuff 

a.​ Truncation rotation 
b.​ Generating tribes 

3.​ Generating polytope from verf 
a.​ List out valid verfs 

4.​ Rendering for Euclidean and hyperbolic polytope possibly with multiple projections. 
5.​ Generate polytope from wythoff triangle, coxeter diagram, etc. 
6.​ Easier blending, and matching vertices 
7.​ Detailed information for each polytope, such as exact expressions for measures, their 

symmetry groups, etc. 
8.​ Support for general truncation operators. 
9.​ Duals 
10.​Research features (for higher dimensional solids and stuff that cant be displayed too) 

a.​ Element counts 
b.​ Metrics 

i.​ Circumradii 
ii.​ Vertex coordinates 

c.​ Generate troops of a regiment 
11.​Information on fundamental polytopes (fundamental domains) and symmetry groups. 
12.​Export to image, video, and 3d files (transparent backgrounds) 
13.​Slices 
14.​Multiple filling methods 
15.​Polytopes can be spheres. 
16.​Generate nets from polytope. 
17.​REMEMBER SETTINGS! 
18.​Stellation (include internal structure). 
19.​Change symmetry of a polytope (including chiral ones, so like chiral cube) 
20.​Show elements and flags 
21.​Augment and excavate polytopes. 
22.​Use minimal surfaces for skew polytopes. (nah, way too hard) 
23.​Generate conjugate if a polytope. 
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