
THIS DOCUMENT IS CURRENTLY IN DRAFT AND ACTIVELY BEING WORKED ON

Blueprints (ABOM + BOB)
Use Cases and Requirements

OWASP CycloneDX Workgroup Blueprints FWG

Ecma Technical Committee TC54

Ecma Task Group N/A

Meeting Invite Google Calendar Link

GitHub Issue CycloneDX/specification/issues/463

Behavior Taxonomy https://docs.google.com/spreadsheets/d/1Ztbpb
_DCbJoEzE2Bt8mUJIBBmlfPt2eamnvVqvbzjs8/
edit

Slack Channel #workstream-blueprints (invite)

The concept of "Blueprints," proposed to be introduced in CycloneDX v1.7, will mark a
significant evolution in software and system transparency. This new feature comprises two key
elements: the Architectural Bill of Materials (ABOM) and the Bill of Behaviors (BOB). The ABOM
provides a comprehensive description of how software or a system is architected, detailing the
structural components and their interrelationships. The BOB, on the other hand, delineates the
expected behavior of the system, and can also capture deviations by describing the actual
behavior observed.

Blueprints aim to empower defenders by offering detailed insights into both the architecture and
behavior of systems, enabling a more proactive and informed defense strategy. Historically,
defenders have derived limited direct benefit from Software Bill of Materials (SBOM). However,
with the introduction of Blueprints, OWASP CycloneDX envisions a paradigm shift towards
active defense through enhanced transparency and understanding of software and systems.

Use Case Categories

K1: Threat Modeling
Understand attack surface, security defenses, risky behaviors, and backend connections.
Identify risks -- missing, broken, and misused security defenses. Diffs between versions,
including desired vs. as-built. Evaluate changes to security architecture, such as new attack
surface, risky behaviors, and backend connections.

https://tc54.org/
https://calendar.google.com/calendar/event?action=TEMPLATE&tmeid=NHUyaHBsZDB2cW0wNnRobHZ0ZDdxczQybWVfMjAyNDA4MjNUMTgwMDAwWiBjXzg4NGRlY2RlNWExNTI5MDJiYjUxYTYyZjg5NTUwZDBmMzc0ODQ4NDUzNGYwOGM2Mzc5MmYyZTY1NGYyYTdlYmNAZw&tmsrc=c_884decde5a152902bb51a62f89550d0f3748484534f08c63792f2e654f2a7ebc%40group.calendar.google.com&scp=ALL
https://github.com/CycloneDX/specification/issues/463
https://docs.google.com/spreadsheets/d/1Ztbpb_DCbJoEzE2Bt8mUJIBBmlfPt2eamnvVqvbzjs8/edit
https://docs.google.com/spreadsheets/d/1Ztbpb_DCbJoEzE2Bt8mUJIBBmlfPt2eamnvVqvbzjs8/edit
https://docs.google.com/spreadsheets/d/1Ztbpb_DCbJoEzE2Bt8mUJIBBmlfPt2eamnvVqvbzjs8/edit
https://cyclonedx.slack.com/archives/C072ZBUEPS8
https://cyclonedx.org/slack/invite

THIS DOCUMENT IS CURRENTLY IN DRAFT AND ACTIVELY BEING WORKED ON

K2: Vulnerability Management
Understand impact of risks in context of entire system. Put risks in context, score risks,
prioritize, explain vulnerability and attacks.

K3: Incident Response
Understand criticality of an incident by putting it in the context of the entire system. Identify and
explain defense options. Communicate risks and their context to system owners, management,
legal, users and other stakeholders.

K4: Penetration Testing
Ensure testing of the entire attack surface. Identify viable attacks that are relevant for each
attack endpoint. Accelerate testing by focusing on tests that are viable for each attack endpoint.
Understand the target assets reachable from each attack endpoint.

K5: Security Architecture
Capture both as-built and desired architectures. Identify Unexpected behavior.

K6: Compliance
capture and communicate security architecture to establish compliance with requirements or
regulations.

Use Cases

U1: As a consumer, I need to defend my organization against
unexpected behavior.
In order to achieve this, expected behavior must be communicated.

THIS DOCUMENT IS CURRENTLY IN DRAFT AND ACTIVELY BEING WORKED ON

U2: As a consumer, I need to dynamically protect the organization
in part by identifying the expected behaviors.
Possible scenarios are IPs an app needs to reach out to as being expected behavior, either the
addition of new IPs and the removal of them. Host-based behaviors such as EDR potentially
dangerous things are expected behaviors. By identifying them, we can potentially reduce false
positives in security tools.

U3: As a consumer, I need to predict if changes in behaviors will
alter the outcomes of an application or process.
Given two or more BOBs, it would be possible to identify potential incompatibilities between
behaviors. This is especially important in national security and public safety.

U4: As a quality or security engineer, I need to validate that the
system or application is behaving as documented.
Anomalies may be due to product defects, configuration issues, etc

U5: As a consumer, quality or security engineer, I need to inform
the manufacturer about variances in behavior.
This could be applicable to manufacturing, forensics, etc.

U6: As a product manufacturer, I need to communicate the
architecture of an application or system for regulatory or
compliance purposes.

U7: As a security engineer, I need to know what is my attack
surface based on the architecture of an application or system.

THIS DOCUMENT IS CURRENTLY IN DRAFT AND ACTIVELY BEING WORKED ON

U8: As an operating supervisor, I need to know the potential
impact on the behavior of a process or system should one of the
components in the architecture go down or have problems.
This goes into resilience.

Requirements

R1: Each “thing” described in the architecture should be able to
reference o..n behaviors.

R2: Reuse or support existing standards where applicable and
provide more of a summary/abstract of a given architecture.

R3: Integrate with the optional diagrams and assets described in
TM-BOM.

NOTES:
Things that we should capture:

●​ Attack surface
○​ A metadata component which includes nothing but services. However, we may

want to think about using “provides” or creating a new dependency type called
“exposes” to make it clear that the application provides the services, not depends
on them.

●​ security controls
○​ High level categories such as authn/authz, input validation, encryption, logging,

etc

THIS DOCUMENT IS CURRENTLY IN DRAFT AND ACTIVELY BEING WORKED ON

○​ Possibly start with an enum, but absolutely make it extensible. Some security
controls haven’t been invented yet.

○​ Include details such as info typically found in a CBOM or for authn/z include MFA,
OIDC, SAML, etc. Basically, include some of the details to provide context.

○​ What types of logging (including format), API, console, debug, audit, authn/z,
where are the logs going (syslog, splunk, etc)

○​

●​ dangerous behavior
○​ Possibly a slope. A badnessometer. Is it at the root cause of a vulnerability class,

such as SQLi.
○​ A lack of badness needs to be flushed out. Needs to be able to describe what the

tool senses so that the absence of badness can be identified as either a true lack
of badness, or a limitation of the tools (false negative).

○​ Needs to be extensible.
○​

●​ outbound initiated connections

○​ Which thing initiates a connection may be a gap
○​

NOTES:
●​ Possible need for a taxonomy to describe expected behavior, or at a minimum a way to

describe the “core functionality” so that deviations can be observed.
●​ Will need to take into consideration configuration components and how configuration

alters behavior.
●​ Spec should be able to document expected behavior (proactive), as-built (the reality),

and “bad” behaviors to look out for. Spec should account for iterative improvements over
time.

	Blueprints (ABOM + BOB)
	Use Case Categories
	K1: Threat Modeling
	K2: Vulnerability Management
	K3: Incident Response
	K4: Penetration Testing
	K5: Security Architecture
	K6: Compliance

	Use Cases
	U1: As a consumer, I need to defend my organization against unexpected behavior.
	U2: As a consumer, I need to dynamically protect the organization in part by identifying the expected behaviors.
	U3: As a consumer, I need to predict if changes in behaviors will alter the outcomes of an application or process.
	U4: As a quality or security engineer, I need to validate that the system or application is behaving as documented.
	U5: As a consumer, quality or security engineer, I need to inform the manufacturer about variances in behavior.
	U6: As a product manufacturer, I need to communicate the architecture of an application or system for regulatory or compliance purposes.
	U7: As a security engineer, I need to know what is my attack surface based on the architecture of an application or system.
	U8: As an operating supervisor, I need to know the potential impact on the behavior of a process or system should one of the components in the architecture go down or have problems.

	Requirements
	R1: Each “thing” described in the architecture should be able to reference o..n behaviors.
	R2: Reuse or support existing standards where applicable and provide more of a summary/abstract of a given architecture.
	R3: Integrate with the optional diagrams and assets described in TM-BOM.
	NOTES:

