
Algorithm Analysis and Big-O Notation 
worksheet 
Arjun Chandrasekhar 

Counting Constant-Time Operations 
For the purposes of this worksheet the following operations are considered constant time 
operations: 

●​ Variable assignment/update 
●​ Arithmetic operations 
●​ Comparison operations 
●​ Reading or writing an array element 
●​ Print statements 

 
How many constant-time operations are in the code below? 
 

int n = 17; 

int x = 0;​
int y = 5;​
if(x < y)  

{​
    int z = x + y;​
} 

 
How many constant-time operations are in the code below? 
 

int n = 10; 

int sum = 0;​
for(int i = 0; i < n; i++)  

{​
    sum += i;​
} 

 
How many constant-time operations are in the code below? 
 

int n = 150;​
while(n > 1)​
{​



    System.out.println(n);​
    n /= 2;​
} 

 
How many constant-time operations are in the code below? 
 

int[] arr = {10, 20, 30}; 

int n = arr.length;​
for(int i = 0; i < n; i++)​
{​
    int z = arr[i];​
    arr[i] = z + 2;​
} 

 
Analyze the code below and answer the following questions: 
 

1.​ How many times does each loop run? 
2.​ How many constant-time operations are involved in each iteration of the inner loop? 
3.​ How many constant-time operations are involved in each iteration of the outer loop? 
4.​ How many constant-time operations are there in total? 

 

for (int i = 1; i <= 4; i++)  

{​
    for (int j = 1; j <= 3; j++)  

    {​
        System.out.println(i * j);​
    }​
} 

Deriving runtime formulas 
Give a formula for the number of constant-time operations in each code snippet below. 
Your formula should be in terms of n, i.e. T(n) = … 
 
Don’t overthink this one! 
 

int n = 17;  

int x = 0;​
int y = 5;​
if(x < y)  



{​
    int z = x + y;​
} 

 
 

int n = ???; // could be any number 

int sum = 0;​
for(int i = 0; i < n; i++)  

{​
    sum += i;​
} 

 
This one is tricky, and will illustrate why we like to use big-O! But do your best. It may help to try 
it with a few different values of n. Examining powers of 2 (and some neighboring numbers) may 
prove helpful! 
 

int n = ???; // could be any number​
while(n > 1)​
{​
    System.out.println(n);​
    n /= 2;​
} 

 
 

int[] arr = ???; // could be any array of integer values 

int n = arr.length;​
for(int i = 0; i < n; i++)​
{​
    int z = arr[i];​
    arr[i] = z + 2;​
} 

Analyzing Growth of Functions 
Compare the growth rates of the following functions as n increases asymptotically. For 
each pair of functions, indicate which function grows faster as  𝑛 →  ∞
 

●​  𝑓(𝑛) =  𝑛2 +  3𝑛 +  4

●​  𝑔(𝑛) =  2𝑛

●​  ℎ(𝑛) =  1000 log 𝑛



 
 

f(n) vs g(n)  

f(n) vs h(n)  

g(n) vs h(n)  

 
Rank the following functions from fastest-growing to slowest-growing: 

●​  𝑛!
●​  1081081081018101 log 𝑛
●​  9999999𝑛

●​  17𝑛3

●​  45𝑛2

●​  3 · 2𝑛

●​  2 · 3𝑛

Big-O notation 
Prove each of the following statements. In particular, supply a constant value C that 
proves the statement true. 
 

●​ Prove that  4𝑛2 +  100𝑛 +  9999 ∈  𝑂(𝑛2)

●​ Prove that  4𝑛2 +  100𝑛 +  9999 ∈  𝑂(𝑛5)

●​ Prove that  4𝑛2 +  100𝑛 +  9999 ∈  Ω(𝑛)

●​ Prove that  4𝑛2 +  100𝑛 +  9999 ∈  Ω(𝑛2)

●​ Prove that  4𝑛2 +  100𝑛 +  9999 ∈  Θ(𝑛2)
●​ Prove that  99999! ∈ 𝑂(1)

●​ Prove that . You may use the fact that  𝑛 log 𝑛 ∈ 𝑂(𝑛2) log 𝑛 ∈ 𝑂(𝑛)
 

Reasoning About Big-O Complexity 
For each of the following code snippets, state the time complexity in terms of Big-O 
notation. Briefly justify your answer. 
 

for (int i = 0; i < n; i++) {​
    System.out.println(i);​
} 



 
 

for (int i = 0; i < n; i++) {​
    for (int j = 0; j < n; j++) {​
        System.out.println(i + ", " + j);​
    }​
} 

 
 

for (int i = 0; i < n; i++) {​
    for (int j = 0; j < i; j++) {​
        System.out.println(i + ", " + j);​
    }​
} 

 
 

int x = 1;​
while (x < n) {​
    System.out.println(x);​
    x *= 2;​
} 

Algorithm Runtime Characterization 
Answer the following questions 
 

1.​ An algorithm takes 1 second to process an input of size 1,000. Assuming the algorithm 

has a time complexity of , estimate how long it will take to process an input of size 𝑂(𝑛2)
10,000. 
 

2.​ Suppose you have two sorting algorithms: 
●​ Algorithm A has a runtime of   𝑇(𝑛) =  100𝑛 log

2
𝑛 +  45𝑛 +  50

●​ Algorithm B has a runtime of  𝑇(𝑛) =  2𝑛2

 
Characterize the big-O runtime of each algorithm. State which values of  for which Algorithm A 𝑛
is faster, and state which values for which Algorithm B is faster. 

 
3.​ If an algorithm's runtime doubles every time the input size doubles, what is the likely time 

complexity of the algorithm? Explain your reasoning. 



Putting it all together 
Write a java method that takes an int[] as input and computes the value of the maximum 
element. Give a formula for the number of constant time operations in terms of N (where N is 
the length of the input array). Give the tightest time complexity (i.e. express it in  form) and Θ(.)
justify your classification by supplying the appropriate constants. 

Custom String ADT 
Take a look at your code for the array-based implementation of the String ADT. Answer the 
following questions: 

●​ What is the big-O runtime of the indexOf method? Here the input size N refers to the 
number of characters in the ArrayCustomString object that is calling the method. 

●​ What is the big-O runtime of the substring method? Here the input size N refers to the 
number of characters in the ArrayCustomString object that is calling the method. 

●​ What is the big-O runtime of the length method? Here the input size N refers to the 
number of characters in the ArrayCustomString object that is calling the method. 

●​ What is the big-O runtime of the replace method? Here the input size N refers to the 
number of characters in the ArrayCustomString object that is calling the method. 

●​ What is the big-O runtime of the concat method? Here the runtime should be in terms of 
M and N, where N refers to the number of characters in the ArrayCustomString object 
that is calling the method and M refers to the number of characters in the input value. 

○​ Suppose we have a loop that operates K times and calls the concat method 
inside the loop. What will be the big-O runtime of the algorithm? 

●​ What is the big-O runtime of the contains method? Here the runtime should be in terms 
of M and N, where N refers to the number of characters in the ArrayCustomString 
object that is calling the method and M refers to the number of characters in the input 
value. 


	Algorithm Analysis and Big-O Notation worksheet 
	Counting Constant-Time Operations 
	Deriving runtime formulas 
	Analyzing Growth of Functions 
	Big-O notation 
	Reasoning About Big-O Complexity 
	Algorithm Runtime Characterization 
	Putting it all together 
	Custom String ADT 

