Algorithm Analysis and Big-O Notation

worksheet
Arjun Chandrasekhar

Counting Constant-Time Operations

For the purposes of this worksheet the following operations are considered constant time
operations:

Variable assignment/update

Arithmetic operations

Comparison operations

Reading or writing an array element

Print statements

How many constant-time operations are in the code below?

int n = 17;
int x = 0;
int y = 5;
if(x < vy)

{

int z = x + y;

}

How many constant-time operations are in the code below?

int n = 10;
int sum = 9;
for(int i = 0; i < n; i++)
{
sum += 1ij;

}

How many constant-time operations are in the code below?

int n = 150;
while(n > 1)
{

System.out.println(n);
n /= 2;

How many constant-time operations are in the code below?

int[] arr = {10, 20, 30};
int n = arr.length;
for(int i = 0; i < n; i++)
{

int z = arr[i];

arr[i] = z + 2;

Analyze the code below and answer the following questions:

How many times does each loop run?

How many constant-time operations are involved in each iteration of the inner loop?
How many constant-time operations are involved in each iteration of the outer loop?
How many constant-time operations are there in total?

honh =

for (int i = 1; i <= 4; i++)

{ for (int j = 1; j <= 3; j++)
{
System.out.println(i * j);
¥
}

Deriving runtime formulas

Give a formula for the number of constant-time operations in each code snippet below.
Your formula should be in terms of n, i.e. T(n) = ...

Don’t overthink this one!

int n = 17;
int x = 0;
int y = 5;

if(x < y)

int z = x + y;

int n = ???; // could be any number
int sum = 9;

for(int i = 0; i < n; i++)

{

sum += i;

This one is tricky, and will illustrate why we like to use big-O! But do your best. It may help to try
it with a few different values of n. Examining powers of 2 (and some neighboring numbers) may
prove helpful!

int n = ???; // could be any number
while(n > 1)
{

System.out.println(n);

n /= 2;

int[] arr = ???; // could be any array of integer values
int n = arr.length;
for(int i = 0; i < n; i++)
{
int z = arr[i];
arr[i] = z + 2;

Analyzing Growth of Functions

Compare the growth rates of the following functions as n increases asymptotically. For
each pair of functions, indicate which function grows fasteras n —» o

of(n)=n2+3n+4
e gn) =2"
e h(n) = 1000logn

f(n) vs g(n)

f(n) vs h(n)

g(n) vs h(n)

Rank the following functions from fastest-growing to slowest-growing:

Big-O notation

n!

1081081081018101 logn

9999999n

17n°

45n2

n

3 -2

n

2 -3

Prove each of the following statements. In particular, supply a constant value C that
proves the statement true.

Prove that 4n”
Prove that 4n”
Prove that 4n”
Prove that 4n”

Prove that 4n2 +

+
+
+
+

100 +
100n +
100n +
100n +
100n +

Prove that 99999! € 0(1)
Prove that nlogn € O(nz). You may use the fact that logn € 0(n)

9999
9999
9999
9999
9999

M M M M M

on’)
omn’)
Q(n)
amd)
o(n’)

Reasoning About Big-O Complexity

For each of the following code snippets, state the time complexity in terms of Big-O
notation. Briefly justify your answer.

for (int i = 0; i < n; i++) {

}

System.out.println(i);

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
System.out.println(i + ", " + j);
}
}
for (int i = 0; i < n; i++) {
for (int j =0; j < i; j++) {
System.out.println(i + ", " + j);

}

int x = 1;

while (x < n) {
System.out.println(x);
X Y= 28

Algorithm Runtime Characterization

Answer the following questions

1. An algorithm takes 1 second to process an input of size 1,000. Assuming the algorithm

has a time complexity of O(nz), estimate how long it will take to process an input of size

10,000.

Suppose you have two sorting algorithms:

e Algorithm A has a runtime of T'(n)

e Algorithm B has a runtime of T'(n)

Characterize the big-O runtime of each algorithm.

100nlog2n + 45n + 50

2n2

State which values of n for which Algorithm A

is faster, and state which values for which Algorithm B is faster.

3.

If an algorithm's runtime doubles every time the input size doubles, what is the likely time

complexity of the algorithm? Explain your reasoning.

Putting it all together

Write a java method that takes an int[] as input and computes the value of the maximum
element. Give a formula for the number of constant time operations in terms of N (where N is
the length of the input array). Give the tightest time complexity (i.e. express it in 0(.) form) and
justify your classification by supplying the appropriate constants.

Custom String ADT

Take a look at your code for the array-based implementation of the String ADT. Answer the
following questions:

What is the big-O runtime of the indexOf method? Here the input size N refers to the
number of characters in the ArrayCustomString object that is calling the method.
What is the big-O runtime of the substring method? Here the input size N refers to the
number of characters in the ArrayCustomString object that is calling the method.
What is the big-O runtime of the 1ength method? Here the input size N refers to the
number of characters in the ArrayCustomString object that is calling the method.
What is the big-O runtime of the replace method? Here the input size N refers to the
number of characters in the ArrayCustomString object that is calling the method.
What is the big-O runtime of the concat method? Here the runtime should be in terms of
M and N, where N refers to the number of characters in the ArrayCustomString object
that is calling the method and M refers to the number of characters in the input value.

o Suppose we have a loop that operates K times and calls the concat method

inside the loop. What will be the big-O runtime of the algorithm?

What is the big-O runtime of the contains method? Here the runtime should be in terms
of M and N, where N refers to the number of characters in the ArrayCustomString
object that is calling the method and M refers to the number of characters in the input
value.

	Algorithm Analysis and Big-O Notation worksheet
	Counting Constant-Time Operations
	Deriving runtime formulas
	Analyzing Growth of Functions
	Big-O notation
	Reasoning About Big-O Complexity
	Algorithm Runtime Characterization
	Putting it all together
	Custom String ADT

