
Content Navigation API redesign

2015/7/6
clamy@chromium.org

Overview
Background
Detailed design

NavigationHandle
New WebContentsObserver methods
NavigationThrottle
Current navigation implementation
PlzNavigate
Example code with the new interface

Overview

The goal of this document is to present a new API for embedders of content/ interested in
navigations. This new API defines a clearer interface for tracking and interacting with
navigations, that will have the following benefits:

-​ simpler code for embedders of content/ that interact with navigation.
-​ greater dissociation between the interface for navigations and its actual implementation

in content/. This is particularly important as this part of content/ is rapidly changing (in
particular with Out-of-Process iFrames and PlzNavigate).

For quick reference (the tl;dr version) there is a cheat sheet showing which navigation observer
methods were replaced and which were not.

Background

WebContentsObserver has several signals related to navigation. All are slightly different in their
parameters, and lead to overly complex code for implementers of the API. In particular, there is
no good way to keep track of a single navigation without reproducing some of the logic inside
content/. This gets even more complex when realizing that there can be more than one
navigation happening simultaneously in a FrameTreeNode (a class not part of the public
content/ API), with one of them canceling the other.

For the record, the WebContentsObserver methods used to track navigations are:

-​ WebContentsObserver::RenderFrameDeleted /
WebContentsObserver::RenderViewDeleted (to check for the cancellation of a
cross-site navigation following a faster commit of a same-site navigation)

mailto:clamy@chromium.org
https://docs.google.com/document/d/1HTLT1PI2LiS7rh29eW2OSh2zG-xqFEynv-T7vn39OLc/edit?usp=sharing

-​ WebContentsObserver::AboutToNavigateRenderFrame (deprecated but still used by
DevTools for example)

-​ WebContentsObserver::DidStartNavigationToPendingEntry (only for
browser-initiated navigations)

-​ WebContentsObserver::DidStartProvisionalLoadForFrame
-​ WebContentsObserver::DidCommitProvisionalLoadForFrame
-​ WebContentsObserver::DidFailProvisionalLoad
-​ WebContentsObserver::DidNavigateMainFrame
-​ WebContentsObserver::DidNavigateAnyFrame
-​ WebContentsObserver::DidStartLoading
-​ WebContentsObserver::DidStopLoading
-​ WebContentsObserver::DidFinishLoad
-​ WebContentsObserver::DidFailLoad
-​ WebContentsObserver::NavigationEntryCommitted

At the same time, a certain number of Chrome components are interested in network events
happening during navigations. This can be done by implementing some WebContentsObserver
methods:

-​ WebContentsObserver::DidGetResourceResponseStart
-​ WebContentsObserver::DidGetRedirectForResourceRequest

(note that some sub-systems in Chrome still use the obsolete notification system for that
purpose).
Another option, especially if the component wants to act on the request, is to implement a
ResourceThrottle and install it as a ResourceHandler in ResourceDispatcherHost. The
Throttle can then pause the request at various points in time (WillSendRequest,
WillRedirectRequest, WillProcessResponse). The Throttle then messages the component on
the UI thread, where the navigation is identified by the RenderViewHost routing
ID/RenderProcessHost child ID pair.

With the development of Out-of-Process IFrames and of browser-side navigation (aka
PlzNavigate) this has a certain number of issues:

●​ the whole content/loader stack works with RenderViewHost ids instead of
RenderFrameHost ids, which is a problem in OOPIF. It is also a problem with
PlzNavigate, since requests made to the ResourceDispatcherHost cannot have a RFH id
+ child id. The only kind of ID available would be a FrameTreeNode id.

●​ in order to track navigations, several components (captive portal detector,
WebNavigation API initially, etc.) have come to mimic what was once done in content by
tracking the pending_render_view_host. This doesn’t work with PlzNavigate.

Detailed design

We propose to expose a new API to embedders of content that will allow them to explicitly track
a single navigation from start to finish, as well as interact with the request in a similar way the
ResourceThrottles currently do on the IO thread. This will be achieved by exposing a new
object, the NavigationHandle (or NavigationInstance: exact naming still TBD), along with a
new interface: NavigationThrottle. The NavigationHandle would be passed as an argument to
several new WebContentsObserver methods, that should eventually replace most of the current
WebContentsObserver methods tied to navigation. In particular, all navigation-related methods
tied to a RenderFrameHost should go away. Ideally, only DidStartLoading and DidStopLoading,
which aggregates navigations on per-WebContents basis should remain.

The advantages of using a specific object instead of a list of parameters passed to
WebContentsObserver methods are the following ones:

-​ Observers such as the WebNavigation API can explicitly track a single navigation by
relying on the NavigationHandle address. Currently they do that using the
RFH/provisional RFH; they will still need a way to do so in a new model. An alternative to
an object for this purpose could be to provide a unique id on each call, but it will not
address the two other following points.

-​ Other Observers are interested to know at commit time information that was given
earlier, e.g. the net error code from DidFailProvisionalLoad. They usually implement their
own tracking to do that. It would be simpler to have a single object explicitly implement
the tracking, instead of various observers implementing it by themselves. This would
lead to less duplicated code in the long term.

-​ Ultimately we want to not have ResourceThrottles in the network stack act on
navigations. In order to provide a similar mechanism in the UI thread, it is easier to have
a single object on which to register and call resume than separated calls in WebContents
(each linked to a sort of navigation id).

NavigationHandle

The NavigationHandle is created when the navigation starts, and destroyed when the navigation
finishes, ie when the navigation commits or is aborted. WebContentsObserver are informed of
the start of a navigation in any of the frames of the WebContents by implementing a new
method: WebContentsObserver::DidStartNavigation, which will include the newly created
NavigationHandle object. For further interaction with the navigation, embedders should register
a NavigationThrottle with the NavigationHandle.

A navigation is associated with a FrameTreeNode, that remains an invariant during the whole
navigation. Therefore the NavigationHandle should expose a const FrameTreeNode id.

The NavigationHandle should also expose several parameters associated with the navigation
if/when they become available:

-​ Original url + current URL:
-​ const GURL& GetOriginalURL()

-​ const GURL& GetURL() (the current URL)
-​ we may also store the chain of redirects if needed

-​ RenderFrameHost (once known - see graph below)
-​ RenderFrameHost* GetRenderFrameHost()

-​ FrameNavigateParams
-​ FrameNavigateParams* GetNavigateParams()

-​ LoadDetails
-​ LoadCommittedDetails* GetLoadDetails()

-​ Net error code in case of failure
-​ int GetNetErrorCode()

-​ NavigationState (see below)
-​ NavigationHandle::State GetState()

The NavigationHandle should also keep track of the state the navigation is in, as can be seen in
the following diagram:

The NavigationState should include:

-​ DID_START: this is the initial state
-​ WILL_SEND_REQUEST: a network request will be made. This allow the throttles to

modify/cancel the request if needed.

-​ WILL_REDIRECT_REQUEST: the request will be redirected. This allow the throttles to
modify/cancel the request if needed.

-​ DID_REDIRECT: the request was redirected.
-​ WILL_PROCESS_RESPONSE: a response was received in the network stack.
-​ DID_FAIL: the request in the network stack failed.
-​ DID_COMMIT: the navigation committed.
-​ DID_COMMIT_ERROR_PAGE: an error page was committed for the navigation failure.

The NavigationHandle should also have two methods used in conjunction with
NavigationThrottles:

-​ void Resume() (for when the navigation was paused)
-​ void Abort() (to stop a navigation before commit)

New WebContentsObserver methods

The WebContentsObserver interface should have the following methods:
-​ void DidStartNavigation(NavigationHandle* navigation_handle)
-​ void DidRedirectNavigation(NavigationHandle* navigation_handle)
-​ void DidFailNavigation(NavigationHandle* navigation_handle)
-​ void DidCommitNavigation(NavigationHandle* navigation_handle)
-​ void DidFinishNavigation(NavigationHandle* navigation_handle)
-​

Note that the states prefixed by WILL* are of interest to the NavigationThrottles only, therefore
they should not be signaled through the WebContentsObserver interface.

NavigationThrottle

The NavigationThrottle allows implementers to pause the navigation at various points in time:
network request start, redirects, and response received. Its interface should then be:

-​ void WillSendRequest(bool* defer)
-​ void WillRedirectRequest(bool* defer)
-​ void WillProcessResponse(bool* defer)
-​ NavigationHandle* navigation_handle()
-​ void OnNavigationHandleDestroyed()

Current navigation implementation

In the current implementation, the implementation of the NavigationHandle should be created
when receiving a DidStartProvisionalLoad for a new navigation in a RenderFrameHost and
should be owned by this RenderFrameHost until commit. There are a few edge cases:

-​ navigation failure: we will receive a DidStartProvisionalLoad marking the start of the error
page load. This should not be considered as the start of a new navigation.

-​ transferring navigations: the NavigationHandle object should be passed from the first
RenderFrameHost to the second one and the DidStartProvisionalLoad in the second
renderer should not count as a new navigation.

DidFailProvisionalLoad and DidCommitProvisionalLoad will trigger state changes to
DID_FAIL_REQUEST/DID_COMMIT respectively.

For the network events, we can use the NotifyRedirectOnUI and NotifyResponseUI from
ResourceDispatcherHost (along with a NotifyRequestOnUI that would have to be created).

The throttle part should be handled by implementing a NavigationResourceThrottle on the IO
thread that would bounce back with the NavigationHandle owned by the RenderFrameHost on
the UI thread. The end goal there is to have throttles for navigations be handled by the
NavigationHandle, and have throttles for the subresources continue to be handled by the
ResourceDispatcherHost.

PlzNavigate

The NavigationHandle should be created along with the NavigationRequest and then owned by
the NavigationRequest. When a response was received/the navigation failed, the
NavigationHandle should be passed to the RenderFrameHost that will commit the
navigation/error page. The commit is still signaled by receiving the DidCommitProvisionalLoad
from the renderer. However the DidStartProvisionalLoad/DidFailProvisionalLoad IPCs will not be
taken into account for changing the state of the NavigationHandle.

For the interaction with the IO thread, we already have an interface, the NavigationURLLoader
that can be used instead of a NavigationResourceThrottle.

Example code with the new interface

Below is a rewrite of the CaptivePortalTabHelper with the new interface. The current version
explicitly keeps track of the pending RenderViewHost and the last seen net error code. With the
new interface, this is not needed. Instead, the CaptivePortalTabHelper can implement the
following WebContentsObserver methods:

void CaptivePortalTabHelper::DidStartNavigation(
 content::NavigationHandle* navigation_handle) {
 if (navigation_handle->IsInMainFrame()) {
 tab_reloader_->OnLoadStart(
 navigation_handle->GetURL().SchemeIsCryptographic());
 }
}

void CaptivePortalTabHelper::DidRedirectNavigation(
 content::NavigationHandle* navigation_handle) {
 if (navigation_handle->IsInMainFrame()) {
 tab_reloader_->OnRedirect(
 navigation_handle->GetURL().SchemeIsCryptographic());

https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/captive_portal/captive_portal_tab_helper.h&cl=GROK&l=57&gsn=CheckBrowseUrl&q=captiveportaltab&sq=package:chromium

 }
}

void CaptivePortalTabHelper::DidCommitNavigation(
 content::NavigationHandle* navigation_handle) {
 if (navigation_handle->IsInMainFrame()) {
 tab_reloader_->OnLoadCommitted(navigation_handle->GetNetErrorCode());
 }
}

void CaptivePortalTabHelper::DidFinishNavigation(
 content::NavigationHandle* navigation_handle) {
 if (navigation_handle->IsInMainFrame() &&
 navigation_handle->State() != NavigationHandle::DID_COMMIT) {
 tab_reloader_->OnAbort();
 }
 login_detector_->OnStoppedLoading();
}

An example of what a NavigationThrottle paired with a WebContentsObserver could look like:

public class ThrottleCreatingObserver : public WebContentsObserver {
 public:
 void OnNavigationStarted(NavigationHandle* navigation_handle) override {
 throttles_.push_back(linked_ptr<InterceptThrottle>(
 new InterceptThrottle(navigation_handle, this));
 }
 void RemoveThrottle(InterceptThrottle* throttle) {
 for (ThrottlesList::Iterator iter = throttles_.begin();
 iter != throttles_.end(); ++iter) {
 if (*iter == throttle) {
 throttles_.erase(iter);
 return;
 }
 }
 }
 private:
 typedef std::list<linked_ptr<InterceptThrottle> > ThrottlesList;
 ThrottlesList throttles_;
}

public class InterceptThrottle : public NavigationThrottle {
 public:
 InterceptThrottle(NavigationHandle* navigation_handle,
 ThrottleCreatingObserver* observer)
 : NavigationThrottle(navigation_handle),
 throttle_creating_observer(observer) {

 }

 void WillSendRequest(bool *defer) override {
 *defer = true;
 PerformAsynchronousChecks();
 }

 void WillRedirectRequest(bool *defer) override {
 *defer = true;
 PerformAsynchronousChecks();
 }

 void OnNavigationHandleDestroyed() override {
 throttle_creating_observer_->RemoveThrottle(this);
 }

 void OnChecksPerformed(bool resume) {
 if (resume) {
 navigation_handle()->Resume();
 } else {
 navigation_handle()->Abort();
 }
 }

 private:
 void PerformAsynchronousChecks() {
 // Do interesting stuff here with the info you can get from the
 // NavigationHandle* (using navigation_handle()).
 }

 ThrottleCreatingObserver throttle_creating_observer_;
}

	Content Navigation API redesign
	
	Overview
	Background
	Detailed design
	NavigationHandle
	New WebContentsObserver methods
	NavigationThrottle
	Current navigation implementation
	PlzNavigate
	Example code with the new interface

