
Py-spiffe

Usage

1.​ As a py-spiffe library user, I want to fetch an X.509 SVID to identify myself (e.g. establish a
TLS connection)

2.​ As a py-spiffe library user, I want to fetch X.509 bundles to validate the identity of other
workloads, including workloads from federated trust domains.

3.​ As a py-spiffe library user, I want to fetch a JWT SVID to identify myself
4.​ As a py-spiffe library user, I want to fetch the JWT public key bundles to validate JWT tokens

presented by other workloads.
5.​ As a py-spiffe user, I want to be able to establish mTLS connections using X509-SVIDs.
6.​ As a py-spiffe user on MacOs, I want to fetch the X.509 and JWT svids

Feature

with grpc.insecure_channel(NSPAddressLocal) as channel:Client API:

●​ JWT SVID functionality:
○​ Fetches a SPIFFE JWT-SVID from Workload API on one-shot blocking call.
○​ Fetches the JWT bundles for JWT-SVID validation, keyed by trust domain.
○​ Validates the JWT-SVID token.

■​ Parses and validates a JWT-SVID token using a set of JWT authorities (public
keys) and a set of target audiences. Validate a JWT SVID for the following:

●​ The peer presents a valid JWT-SVID
●​ The peer presents a particular SPIFFE Id (‘aud’ claim)

○​ Watches for JWT bundles updates.
■​ Set a watcher on the Workload API to call a callback function when a jwt

bundle rotation occurs
■​ Retry when the connection fails
■​ Additional error treatment

●​ X509 SVID functionality:

○​ Fetches an X.509 context on a one-shot blocking call.
■​ Parses an X.509 SVID (SpiffeId, certificate chain, private key) from a

WorkloadAPI X509-SVID response

■​ Parses or processes X.509 bundles from Workload API X509-SVID response
○​ Validates a X.509 certificate chain using a set of X.509 Bundles
○​ Watches for X.509 context updates.

■​ Set a watcher on the Workload API that calls a callback function when an
SVID rotation occurs.

■​ Retry when the connection fails
■​ Additional error treatment

●​ mTLS functionality
○​ Connect to an mTLS peer using credentials fetched from the Workload API

■​ ISSUE 1: loading certificate from memory. Only loading from disk is available
in Python https://bugs.python.org/issue16487!!!

■​ Possible solution: save the certificate and the key encrypted in disk, load it,
delete it. The key to encrypt the key is generated in memory whenever
needed.

■​ ISSUE 2: (ssl.SSLContext.load_verify_locations) - will need to save in disk and
this may be an issue

○​ Create an mTLS listener using credentials fetched from the Workload API
○​ Validate the peer for the following use cases:

■​ The peer presents a valid SVID
■​ The peer presents a SPIFFE Id in a particular trust domain.
■​ The peer presents a particular SPIFFE Id
■​ The peer presents a SPIFFE Id that matches an entry in a set of allowed

SPIFFE Ids

Basic SPIFFE

●​ Validate a URI string as a correct SPIFFE Id
●​ Validate a URI socket endpoint address

https://bugs.python.org/issue16487

High level abstractions

●​ Make use of PyJWT(preferred 1.7.1 but 2.0.0 is going to be released soon). It can be
used for bundles and keys.

○​ Version 1.5.1 has vulnerabilities reported so we should not allow the usage of
this. Suggestion is to require 1.7.1 at a minimum.

	Py-spiffe
	
	Usage
	Feature
	with grpc.insecure_channel(NSPAddressLocal) as channel:Client API:
	Basic SPIFFE

	High level abstractions
	
	●​Make use of PyJWT(preferred 1.7.1 but 2.0.0 is going to be released soon). It can be used for bundles and keys.

