Moles From Mass

Mass must be in g. Not for solutions (acids, alkalis etc)

Moles From Volume & Concentration

* Concentration in mol/dm³

* Volume must be in dm³

*Convert cm³ to dm³ by dividing by 1000

UNITS

concentratio volume mol dm⁻³

MOLES = CONCENTRATION (moldm⁻²) x VOLUME (dm²)

BUTIF...

concentrati volume mol cm³

MOLES = CONCENTRATION (moldm⁻³) x VOLUME (cm³)

Moles From Volume of Gas

You are told Molar Gas Volume = 24 dm³

UNITS

concentration

tion mol dn dm³

MOLES = CONCENTRATION (mol dm⁻³) x VOLUME (dm³

concentration

mol dm⁻³ cm³

MOLES = CONCENTRATION (moldm⁻³) x VOLUME (cm³)

CONC x VOLUME

Ellesmere College

PES 2019

MOLES

ONC x VOLUME

Steps in a Mole Calculation

1. Calculate moles of one reactant

2. Write down reactant:product ratio

3. Calculate moles of product

4. Convert to mass or Concentration

You begin with 25 cm³ 0.1 mol/dm³ Acid & an excess of Magnesium. What mass of H_2 is made? $2HCl + Mg \rightarrow MgCl_2 + H_2$

1. Moles of HCl = Vol x (Conc/1000) = $0.1 \times (25/1000) = 0.0025 \text{mol}$

HCl: H₂

= 2:1

3. Moles of $H_2 = 0.0025/2 = 0.00125 \text{ mol}$

4. Mass of $H_2 = Mols \times Mr = 0.00125 \times 2 = 0.0025g$

Atom Economy

A reaction that makes a lot of waste products is likely to be bad for the environment

ATOM ECONOMY is the mass of product you want as a % of the mass of all the products you make

Atom Economy = $\frac{56}{(56 + 44)} = \frac{56}{100} = \frac{56}{6}$ %

Percentage Yield

18a

 $Percent \ yield = \frac{Actual \ Yield}{Theoretical \ Yield} \times 100\%$

Reactions sometimes make the wrong products as well as those you expect

1: Expected & Actual Mass of Product given

You begin with enough Acid & Magnesium to make 5g of Hydrogen but only make 3.5 g.

ANS: (3.5/5) x 100 = 70% yield

2: Given Mass of Reactant & Product

You begin with excess Acid & 6g of Magnesium. You make 0.1g of Hydrogen \Rightarrow MgCl₂ + H₂

Moles of Mg = Mass/ A_r = 6/24 = 0.25 mol

 $Mg: H_2 = 1:1$

Expected Moles of H₂ = 0.25 mol

Expected Mass = Mols x Mr = $0.25 \times 2 = 0.5g$

Yield = (0.1/0.5) x 100 = 20%

The other Concentration

