Easy (should be able to find solution after 1-2 generations)

```
Show the period of $cos 2x$ is $pi$
_____
Find all integers x, y such that x^{2} + xy + y^{2} = 1.
Prove there are 6 pairs of solutions
Find all real solutions of the following nonlinear system:
$$
\begin{aligned}
x+4 y+6 z & =16 \
x+6 y+12 z & =24 \
x^{2}+4 y^{2}+36 z^{2} & =76
\end{aligned}
$$
The final answer is $ \boxed{(6,1,1)(-\frac{2}{3},\frac{13}{3},-\frac{1}{9})} $
_____
In the geometric sequence {\alpha_n}, it is known that a_2a_5 = -32, a_4 = 4, and the
common ratio is an integer. Find $a_9 = -256$.
______
Solve the inequality: (|x-3|+|x-5|) gegslant 4.
Show that the answer is [6,+\infty) \cup (-\infty,2]
_____
The first term a_1 of the geometric sequence {a_n} is 2, and the common ratio q=1.
The sum of the first 10 terms of the sequence {\ n}\ is ( )
Show that the answer is 20
______
```

Let \$b\$ and \$c\$ be real numbers not both equal to \$1\$ such that \$1,b,c\$ is an arithmetic progression and \$1,c,b\$ is a geometric progression. What is \$100(b-c)\$?

The final answer is \$ \boxed{75} \$

Medium difficulty (model may be able to solve when pass@8)

Find all extrema of the function $y=\frac{2}{3} \cos \left(\frac{x-\frac{\pi}{6}\right)} on the interval (0 ; \pi / 2)$.

The final answer is $\ \$ \boxed{y_{\max}(\frac{2}{3},y_{\}(\frac{7\pi c{2}{3}}) = \frac{2}{3}}

Solve the system of equations:

```
$$
\left\{\begin{array}{I}
x y-2 y=x+106 \\
y z+3 y=z+39 \\
z x+3 x=2 z+438
\end{array}\right.
$$
```

```
The final answer is \ \ \boxed{(38,4,9)(-34,-2,-15)} $
_____
Find all complex numbers $z$ for which
$$
|z-2+i|=5, \quad \operatorname{Re}(z(1+i))=2
The final answer is \ \c \{z_{1}=5+3i,z_{2}=-2-4i\} $
_____
(China Junior High School Mathematics League, 1990)
The final answer is $ \boxed{8} $
______
Solve the system of equations: \left(\frac{1}x^{2}-y=z^{2}, y^{2}-z=x^{2}, y^{2}-z=x^{2
z^{2}-x=y^{2} \cdot \left( \frac{2}{x} \right) \cdot \left( \frac{x}{x} \right)
(2013, Croatian Mathematical Competition)
The final answer is \ \ \boxed{(1,0,-1),(0,0,0),(0,-1,1),(-1,1,0)} $
_____
 Let ${\{a\}^{2}\}-\{\{b\}^{2}\}=1+\sqrt{2}\$, $\{\{b\}^{2}\}-\{\{c\}^{2}\}=1-\sqrt{2}\$, then } 
${{a}^{4}}+{{b}^{4}}+{{c}^{4}}-{{a}^{2}}{{b}^{2}}-{{b}^{2}}-{{c}^{2}}{{a}^{2}}=$____
```

Difficult (low chance of solving it with pass@8)

Find the (x, y) natural integers such that $(x+y)^{2}+3 x+y+1$ is a perfect square.

The final answer is $\ \$ \boxed{(x,x)} \$

The final answer is \$ \boxed{5} \$

Solve the differential equation $\sinh y \frac{dy}{dx} = \cos y \left(1 - x \cos y \right).$

The final answer is $\sum_{y=0}^{-1} \left(\frac{1}{A \exp(-x) + x + 1} \right) + 2\pi n$

Given \$a>b>c>0\$, prove that

 $$$ a^{4} b+b^{4} c+c^{4} a>a b^{4}+b c^{4}+c a^{4} . $$$