
Prebid Server and First Party Data
Updated Feb 15, 2023

1. Overview
1.1. OpenRTB Interface
1.2. OpenRTB Examples

2. Prebid Server Core FPD Requirements
2.1. /openrtb2/auction endpoint
2.2. /openrtb2/amp endpoint

Appendix - Change Log

1. Overview

The First Party Data (FPD) feature set provides a standard way for the clients to supply first
party data and control which bidders have access to it.

Objectives:
1. Establish a standard convention for where pages, apps, and dooh requests can place

first party data
2. Give the publisher control over which bidders are allowed to see the first party data
3. Adapters should be updated to read from the standard location, mapping values to their

bidder-specific locations.
4. Use OpenRTB conventions where possible. This means that OpenRTB standard

attributes like domain, keywords, etc are handled differently than arbitrary attributes.
5. Support Prebid.js, Prebid SDK, and AMP
6. Try to utilize as much FPD as possible. FPD will become increasingly important to

improve bid values.
7. Prebid Server must support bidder-specific overrides for the following ORTB objects:

site, app, user, and dooh for all supported versions of ORTB. It should support
bidder-specific overrides for all valid ORTB fields.



1.1. OpenRTB Interface

PBJS and the SDK place values in a number of OpenRTB locations as described in the
following table.

OpenRTB Attribute Description PBJS
Source

SDK
Source

AMP
Source

PBS
Support

ext.prebid.data.bidders[] If specified, only these
bidders are allowed to see
fields in
{site/app/user/dooh}.ext.data.

n/a addBidder
ToAccess
ControlList
()

bidders Java only
so far

site.ATTR Only standard OpenRTB
attributes should be in the
root level: name, domain, cat,
sectioncat, pagecat, page,
ref, search, keywords, etc.

Notes: 'site.content.data[]' is
where taxonomy data is
placed. 'site.ext.data' is where
generic FPD is placed.

setConfig(
{ortb2.site.
ATTR});

n/a site.ATTR both Java
and Go
pass to
adapters,
some fields
subject to
bidder
permission
s as
defined
below.

app.ATTR Only standard OpenRTB
attributes should be in the
root level: name, bundle,
domain, storeurl, cat,
sectioncat, pagecat,
keywords, etc.

Notes: 'app.content.data[]' is
where taxonomy data is
placed. 'app.ext.data' is
where generic FPD is placed.

setConfig(
{ortb2});

n/a n/a both Java
and Go
pass to
adapters,
though
some fields
subject to
bidder
permission
s

user.ATTR Only standard OpenRTB
attributes should be in the
root level: yob, gender,
keywords, etc.

Note: user.ext.data is where
generic FPD is placed.

setConfig(
{fpd.user.
ATTR});

n/a user.ATTR both Java
and Go
pass to
adapters



user.data[] Prebid.js specifications used
user.data rather than
user.ext.data. Hard to change
this now. PBS behavior is: if
data is an array, keep it as-is.
If data is an object, merge
into user.ext.data and remove
user.data.

setConfig(
{fpd.user.d
ata.ATTR}
);

n/a user.data both Java
and Go
pass to
adapters,
subject to
bidder
permission
s

dooh.ATTR Only standard OpenRTB
attributes should be in the
root level: venuetype,
keywords, etc.

Notes: dooh.content.data[]' is
where taxonomy data is
placed. 'dooh.ext.data' is
where generic FPD is placed.

n/a n/a n/a TBD

imp[].ext.ATTR AdUnit-specific attributes go
here

AdUnit.ort
b2ImpExt

n/a AMP ATTR
goes into
imp.ext.dat
a.ATTR

both Java
and Go
pass to
adapters

ext.prebid.bidderconfig.or
tb2

Bidder-specific config is
merged into the object of
record for the specified
bidders.

setBidder
Config()

stored
request

stored
request

both Java
and Go
pass to
adapters

1.2. OpenRTB Examples
Example 1

{
ext: {

prebid: {
data: { bidders: [ "bidderA" ] } // limit bidders that receive global data

}
},
site: {

keywords: "",
search: "",
ext: {

data: {
// only seen by bidderA as named in ext.prebid.data.bidders[]
GLOBAL CONTEXT DATA

}
}

},
user: {

keywords: "",
gender: "",
yob: 1999,
geo: {},
ext: {

data: {
// only seen by bidderA as named in ext.prebid.data.bidders[]



GLOBAL USER DATA }
}

},
imp: [

...
ext: {

// everyone sees this data
gpid: "/11111/homepage#uniquifier",
data: {

ADUNIT SPECIFIC CONTEXT DATA
}

}
]

}

Example 2

{
ext: {

prebid: {
bidderconfig: [ {

bidders: [ 'bidderA', 'bidderB' ],
config: {

"ortb2": {
"site": {

"ext": {
"data": {

"customsite": "customsite1"
}

}
},
"user": {

"ext": {
"data": {

"customuser": "customuser1"
}

}
}

}
}

},{
bidders: [ 'bidderC' ],
config: {

ortb2: { site: { ... }, user: { ...} }
}

}]
}

}
}



2. Prebid Server Core FPD Requirements
The job of PBS-Core in relation to OpenRTB First Party Data is:

1) Validate and normalize certain pieces of first party data
2) Control which bidders see first party data attributes
3) In some instances, modify or remove privacy-sensitive data

Here’s the algorithm:

All merges should prefer source over destination. e.g. if we're merging a bidder-specific
bidderconfig into the ortb2 object and the "site.BLAH" field exists in both, PBS would override
site.BLAH with the new value.

1. For the raw request only:
a. If user.data exists as an object, merge it into user.ext.data and remove user.data.

This is to cover older versions of Prebid.js where the specifications defined
user.data{}. Hard to change this now.
i. "Merge" is defined as a deep JSON merge with arrays being replaced

instead of appended.
b. To transition legacy FPD bidder permissions, if

ext.prebid.bidderconfig[].config.fpd exists:
i. Merge ext.prebid.bidderconfig[].config.fpd.context.data into

ext.prebid.bidderconfig[].config.ortb2.site.ext.data
ii. Merge ext.prebid.bidderconfig[].config.fpd.context into

ext.prebid.bidderconfig[].config.ortb2.site.
iii. Merge ext.prebid.bidderconfig[].config.fpd.user.data into

ext.prebid.bidderconfig[].config.ortb2.user.ext.data
iv. Merge ext.prebid.bidderconfig[].config.fpd.user into

ext.prebid.bidderconfig[].config.ortb2.user.
c. Normalize all fields defined with an “alternative data type” instead of throwing

them away
d. JSON validation
e. Note: storedrequests are not normalized

2. When creating the bidder-specific request:
a. Copy the whole OpenRTB JSON for that bidder
b. If ext.prebid.data.bidders[] exists and this bidder isn’t in it, remove site.ext.data.*,

app.ext.data.*, dooh.ext.data.*, and user.ext.data.*, and
{site,app,dooh}.content.data[] and user.data[].



c. If ext.prebid.bidderconfig exists and this bidder is in scope, merge supplied
values (in config.ortb2 only) to the bidder ORTB, but if ext.prebid.data.bidders
exists, only for bidders named there.
i. If the same bidder was seen in more than one

ext.prebid.bidderconfig.bidder, reject the request with a string warning:
"the same bidder may not have more than one bidderconfig entry."

ii. Bidderconfig.config.ortb2 entries may contain any valid ORTB field.
iii. Any value in bidderconfig.config outside of ortb2 should be ignored.

d. If the resulting request has more than one of {app,site,dooh}, reject request for
this bidder

e. Copy imp[].ext.prebid.bidder.BIDDER to imp[].ext.bidder
f. Remove any imps[] that don’t contain this bidder
g. Remove all other imp[].ext.BIDDERs
h. Remove ext.prebid.data.bidders
i. Remove ext.prebid.bidderconfig
j. Privacy controls

i. Process COPPA, LMT, USP, and GDPR rules -- remove user IDs and
round addresses/geo as required.

Note: the /openrtb2/video endpoint is out of scope for First Party Data.

2.1. /openrtb2/auction endpoint

Requirements

1) Attributes should be validated against any defined data types.
2) Where transformations are specified, attributes should be normalized to the defined data

types.
3) If an attribute doesn't pass defined validation checks, it should be removed from the

request with a warning placed in the messages section of debug output and a log
message emitted N% of the time. The auction should continue.

4) When a transformation is done on the data, a warning may be placed in the debug
output to encourage originators to adhere to the preferred standard.

5) Attributes defined in ext.prebid.bidderconfig.config.ortb2 should be merged into the
OpenRTB object for the bidders named in ext.prebid.bidderconfig.bidders, but if
ext.prebid.data.bidders exists, the bidder needs to be in that list. Here's how the merge
should work:

a) If ext.prebid.bidderconfig.config.ortb2 is a valid ORTB field, merge it to the
bidder's request.
i) The definition of merge is: bidder-specific override takes precedence.

Arrays are replaced rather than appended.
b) If the request is now invalid because it contains more than one of site, dooh, and

app, reject the request for this bidder.



6) Privacy rules:
a) Follow COPPA anonymization rules
b) Follow us_privacy anonymization rules
c) Follow TCF2 rules

7) If the ext.prebid.data.bidders field is specified, remove the OpenRTB attributes flagged
as in-scope for permissions from any bidder (or alias) not present in the array.

a) Note: PBS should not reject the whole request if there's an unrecognized bidder
or alias in this array.

8) The server should be able to handle future changes to OpenRTB relating to the site,
app, dooh, and user objects. For instance, in ORTB2.6, new fields such as site.cattax
were added. These should be supported at a bidder-specific level.

The following table details all the fields that can come into Prebid Server. Column descriptions:
● Attribute - a first party data attribute or pattern of attributes. Important: any attribute

flagged as "Requires Permissions" in the last column can come from either the top level
OpenRTB or ext.prebid.bidderconfig.config.ortb2.

○ Note that {site,app,user}.data isn't mentioned here because they should have
been merged into {site,app,user}.ext.data by this point

● Normalized Data Type - the expected data type of the attribute, and how it should be
passed to bidder adapters.

● Alternate Data Types - the web is a messy place. Data comes in unexpected formats.
This column defines the data transformations that Prebid Server should do to convert
data to the Normalized Data Type.

○ Note: fields in ext.prebid.bidderconfig.ortb2.* should follow the same
normalization rules as their destination. E.g.
ext.prebid.bidderconfig.ortb2.site.name=[“a”,”b”] would be normalized to
site.name=”a” because ‘name’ is one of the special OpenRTB attributes that
maps into the site object and there is a normalization rule defined for it.

○ In contrast, ext.prebid.bidderconfig.ortb2.site.id=[“1”,”2”] maps to site.ext.data.id,
which doesn’t have any normalization rules defined, so the value is left
untouched.

● Description - notes about the attribute
● Requires Permissions - defines whether an attribute is in-scope for First Party Data

permissions, Prebid Server treats it specially:
○ This field will be removed from the bidder copy of the OpenRTB if it's not

permitted by ext.prebid.data.bidders.
○ The attributes flagged as 'meta' are always removed before going to a bidder.

Attribute Normalized
Data Type

Alternate Data
Types (PBS-Java
only)

Description In-Scope
for
Perms?



{site/app/dooh}.id string array of strings.
Use first element.

OpenRTB attribute N

{site/app/dooh}.nam
e

string array of strings.
Use first element.

OpenRTB attribute N

app.bundle string array of strings.
Use first element.

OpenRTB attribute N

app.storeurl string array of strings.
Use first element.

OpenRTB attribute N

{site/app/dooh}.dom
ain

string array of strings.
Use first element

OpenRTB attribute N

{site/app}.cat array of
strings

- OpenRTB attribute N

{site/app}.sectioncat array of
strings

- OpenRTB attribute N

{site/app}.pagecat array of
strings

- OpenRTB attribute N

site.page string array of strings.
Use first element

OpenRTB attribute N

site.ref string array of strings.
Use first element

OpenRTB attribute N

site.search string array of strings.
Use first element

OpenRTB attribute N

{site/app/dooh}.cont
ent.ATTR other than
'data'

various - OpenRTB attribute N

{site/app/dooh}.cont
ent.data

array - OpenRTB attribute Y

{site/app/dooh}.publi
sher

object - OpenRTB attribute N

{site/app/dooh}.key
words

string array of strings.
Concatenate array
elements with
commas

OpenRTB attribute N



site.mobile integer - OpenRTB attribute N

{site/app}.privacypol
icy

integer - OpenRTB attribute N

site.ext.data.ATTR any - OpenRTB attribute Y

app.ext.data.ATTR any - OpenRTB attribute Y

{site/app}.ext.* n/a - OpenRTB attribute N

{site/app}.ATTR any - OpenRTB attribute N

user.keywords string array of strings.
Concatenate array
elements with
commas

OpenRTB attribute N

user.gender string array of strings.
Use first element

OpenRTB attribute N

user.yob integer - OpenRTB attribute N

user.geo object - OpenRTB attribute N

user.data object - OpenRTB attribute Y

user.ext.data.ATTR any - OpenRTB attribute Y

user.ATTR any - OpenRTB attribute N

imp[].ext.ATTR any - Arbitrary attributes N

ext.prebid.data.bidde
rs

array of
strings

- If present, instructs
Prebid Server to
remove first party data
fields from global
sections for some
bidders.

meta

ext.prebid.bidderconf
ig

object - If present, instructs
Prebid Server to inject
the named data into
the ORTB object for
the named bidders.

meta



2.2. /openrtb2/amp endpoint

Assumptions
● The AMP "TGT" macro is resolved from json.targeting. Because these values are also

utilized by GAM, there cannot be any additional structure imposed on this object.
● Dynamic values (e.g. user IDs or segments) are not supported in AMP. When they are,

we will revise this spec.
● We could add additional fields to pass static data through the AMP call, but it's easier to

just store them in the storedrequest database.
● No one started making use of the original FPD implementation. No need for backwards

compatibility.

Requirements

1) The AMP openrtb in the stored request must be able to carry global site data.
2) The stored request must also be able to define bidder permissions either with

ext.prebid.data.bidders or ext.prebid.bidderconfig.
a) It's ok if both kinds of permission are specified: i.e. every entry in

ext.prebid.bidderconfig[].bidders would also need to be in ext.prebid.data.bidders
or it will be ignored.

3) Some fields defined in the stored request will be overridden by values coming in on the
query string:

a) curl overwrites site.page
b) account overwrites site.publisher.id if it's valid

4) Read the 'targeting' attribute on the AMP query string. Add all key-value-pairs found
there to imp[].ext.data.

5) PBS must adhere to privacy rules as for other interfaces:
a) Follow COPPA anonymization rules
b) Follow usp_privacy anonymization rules
c) Follow TCF2 rules

Example

<amp-ad width="300" height="50"
type="doubleclick"
data-slot="/1111/amp_test"
data-multi-size-validation="false"
rtc-config='{"vendors": {"prebidrubicon": {"REQUEST_ID": "blah"}}}'
json='{ "targeting": {"gam-key1": "val1","gam-key2": "val2"}}' >

</amp-ad>



GET
/openrtb2/amp?tag_id=blah&w=300&h=250&ow=&oh=&ms=&slot=%2F1111%2Famp_test&tar
geting=%7B%22gam-key1%22%3A%22val1%22%2C%22gam-key2%22%3A%22val2%22%
7D&...

OpenRTB results

{
...
"imp": [
...
"ext": {

"data": {
"gam-key1": "val1",
"gam-key2": "val2"

}
}

]
}

Appendix - Change Log

Date Person Update

Jul 11, 2022 bretg Added Req 10: The server should be able to handle
future changes to OpenRTB. For instance, in ORTB2.6,
new fields such as cattax and wlangb were added.
These should all be supported at a bidder-specific
level.

Oct 11, 2022 bretg By request: allowing bidder-specific config to contain
valid ORTB fields other than site/app/user.

Removed previous changes and struck-out redundant
passages.

Feb 15, 2023 bretg Added DOOH.


