
Prebid Server and First Party Data 
Updated Feb 15, 2023 

 

1. Overview 
1.1. OpenRTB Interface 
1.2. OpenRTB Examples 

2. Prebid Server Core FPD Requirements 
2.1. /openrtb2/auction endpoint 
2.2. /openrtb2/amp endpoint 

Appendix - Change Log 
 

1. Overview 
 
The First Party Data (FPD) feature set provides a standard way for the clients to supply first 
party data and control which bidders have access to it. 
 
Objectives: 

1.​ Establish a standard convention for where pages, apps, and dooh requests can place 
first party data 

2.​ Give the publisher control over which bidders are allowed to see the first party data 
3.​ Adapters should be updated to read from the standard location, mapping values to their 

bidder-specific locations. 
4.​ Use OpenRTB conventions where possible. This means that OpenRTB standard 

attributes like domain, keywords, etc are handled differently than arbitrary attributes. 
5.​ Support Prebid.js, Prebid SDK, and AMP 
6.​ Try to utilize as much FPD as possible. FPD will become increasingly important to 

improve bid values. 
7.​ Prebid Server must support bidder-specific overrides for the following ORTB objects: 

site, app, user, and dooh for all supported versions of ORTB. It should support 
bidder-specific overrides for all valid ORTB fields. 



 

 

 

1.1. OpenRTB Interface 
 
PBJS and the SDK place values in a number of OpenRTB locations as described in the 
following table. 
 

OpenRTB Attribute Description PBJS 
Source 

SDK 
Source 

AMP 
Source 

PBS 
Support 

ext.prebid.data.bidders[] If specified, only these 
bidders are allowed to see 
fields in 
{site/app/user/dooh}.ext.data. 

n/a addBidder
ToAccess
ControlList
() 

bidders Java only 
so far 

site.ATTR Only standard OpenRTB 
attributes should be in the 
root level: name, domain, cat, 
sectioncat, pagecat, page, 
ref, search, keywords, etc. 
 
Notes: 'site.content.data[]' is 
where taxonomy data is 
placed. 'site.ext.data' is where 
generic FPD is placed. 

setConfig(
{ortb2.site.
ATTR}); 

n/a site.ATTR both Java 
and Go 
pass to 
adapters, 
some fields 
subject to 
bidder 
permission
s as 
defined 
below. 

app.ATTR Only standard OpenRTB 
attributes should be in the 
root level: name, bundle, 
domain, storeurl, cat, 
sectioncat, pagecat, 
keywords, etc. 
 
Notes: 'app.content.data[]' is 
where taxonomy data is 
placed. 'app.ext.data' is 
where generic FPD is placed. 

setConfig(
{ortb2}); 

n/a n/a both Java 
and Go 
pass to 
adapters, 
though 
some fields 
subject to 
bidder 
permission
s 

user.ATTR Only standard OpenRTB 
attributes should be in the 
root level: yob, gender, 
keywords, etc. 
 
Note: user.ext.data is where 
generic FPD is placed. 

setConfig(
{fpd.user.
ATTR}); 

n/a user.ATTR both Java 
and Go 
pass to 
adapters 



user.data[] Prebid.js specifications used 
user.data rather than 
user.ext.data. Hard to change 
this now. PBS behavior is: if 
data is an array, keep it as-is. 
If data is an object, merge 
into user.ext.data and remove 
user.data. 

setConfig(
{fpd.user.d
ata.ATTR}
); 

n/a user.data both Java 
and Go 
pass to 
adapters, 
subject to 
bidder 
permission
s 

dooh.ATTR Only standard OpenRTB 
attributes should be in the 
root level: venuetype, 
keywords, etc. 
 
Notes: dooh.content.data[]' is 
where taxonomy data is 
placed. 'dooh.ext.data' is 
where generic FPD is placed. 

n/a n/a n/a TBD 

imp[].ext.ATTR AdUnit-specific attributes go 
here 

AdUnit.ort
b2ImpExt 

n/a AMP ATTR 
goes into 
imp.ext.dat
a.ATTR 

both Java 
and Go 
pass to 
adapters 

ext.prebid.bidderconfig.or
tb2 

Bidder-specific config is 
merged into the object of 
record for the specified 
bidders. 

setBidder
Config() 

stored 
request 

stored 
request 

both Java 
and Go 
pass to 
adapters 

 

1.2. OpenRTB Examples 
Example 1 

{ 
    ext: { 
       prebid: { 
           data: { bidders: [ "bidderA" ] }  // limit bidders that receive global data 
       } 
    }, 
    site: { 
         keywords: "", 
         search: "", 
         ext: { 
             data: {  
                 // only seen by bidderA as named in ext.prebid.data.bidders[] 
                 GLOBAL CONTEXT DATA 
             }  
         } 
    }, 
    user: { 
        keywords: "",  
        gender: "",  
        yob: 1999,  
        geo: {}, 
        ext: { 
            data: { 
                // only seen by bidderA as named in ext.prebid.data.bidders[] 



                GLOBAL USER DATA }   
        } 
    }, 
    imp: [ 
        ... 
        ext: { 
                // everyone sees this data 
                gpid: "/11111/homepage#uniquifier", 
                data: { 
                    ADUNIT SPECIFIC CONTEXT DATA 
                } 
         } 
    ] 
} 

 
 
 
Example 2 

{ 
    ext: { 
       prebid: { 
           bidderconfig: [ { 
               bidders: [ 'bidderA', 'bidderB' ], 
               config: { 
                      "ortb2": { 
                            "site": { 
                                "ext": { 
                                    "data": { 
                                        "customsite": "customsite1" 
                                    } 
                                } 
                            }, 
                            "user": { 
                                "ext": { 
                                    "data": { 
                                        "customuser": "customuser1" 
                                    } 
                                } 
                            } 
                        } 
               } 
            },{ 
               bidders: [ 'bidderC' ], 
               config: { 
                  ortb2: { site: { ... }, user: { ...} } 
               } 
            }] 
       } 
    } 
} 

 



2. Prebid Server Core FPD Requirements 
The job of PBS-Core in relation to OpenRTB First Party Data is: 
 

1)​ Validate and normalize certain pieces of first party data 
2)​ Control which bidders see first party data attributes  
3)​ In some instances, modify or remove privacy-sensitive data 

 
Here’s the algorithm: 
 
All merges should prefer source over destination. e.g. if we're merging a bidder-specific 
bidderconfig into the ortb2 object and the "site.BLAH" field exists in both, PBS would override 
site.BLAH with the new value. 
 

1.​ For the raw request only: 
a.​ If user.data exists as an object, merge it into user.ext.data and remove user.data. 

This is to cover older versions of Prebid.js where the specifications defined 
user.data{}. Hard to change this now. 

i.​ "Merge" is defined as a deep JSON merge with arrays being replaced 
instead of appended. 

b.​ To transition legacy FPD bidder permissions, if 
ext.prebid.bidderconfig[].config.fpd exists: 

i.​ Merge ext.prebid.bidderconfig[].config.fpd.context.data into 
ext.prebid.bidderconfig[].config.ortb2.site.ext.data 

ii.​ Merge ext.prebid.bidderconfig[].config.fpd.context into 
ext.prebid.bidderconfig[].config.ortb2.site. 

iii.​ Merge ext.prebid.bidderconfig[].config.fpd.user.data into 
ext.prebid.bidderconfig[].config.ortb2.user.ext.data 

iv.​ Merge ext.prebid.bidderconfig[].config.fpd.user into 
ext.prebid.bidderconfig[].config.ortb2.user. 

c.​ Normalize all fields defined with an “alternative data type” instead of throwing 
them away 

d.​ JSON validation 
e.​ Note: storedrequests are not normalized 

2.​ When creating the bidder-specific request: 
a.​ Copy the whole OpenRTB JSON for that bidder 
b.​ If ext.prebid.data.bidders[] exists and this bidder isn’t in it, remove site.ext.data.*, 

app.ext.data.*, dooh.ext.data.*, and user.ext.data.*, and 
{site,app,dooh}.content.data[] and user.data[]. 



c.​ If ext.prebid.bidderconfig exists and this bidder is in scope, merge supplied 
values (in config.ortb2 only) to the bidder ORTB, but if ext.prebid.data.bidders 
exists, only for bidders named there. 

i.​ If the same bidder was seen in more than one 
ext.prebid.bidderconfig.bidder, reject the request with a string warning: 
"the same bidder may not have more than one bidderconfig entry." 

ii.​ Bidderconfig.config.ortb2 entries may contain any valid ORTB field. 
iii.​ Any value in bidderconfig.config outside of ortb2 should be ignored. 

d.​ If the resulting request has more than one of {app,site,dooh}, reject request for 
this bidder 

e.​ Copy imp[].ext.prebid.bidder.BIDDER to imp[].ext.bidder 
f.​ Remove any imps[] that don’t contain this bidder  
g.​ Remove all other imp[].ext.BIDDERs 
h.​ Remove ext.prebid.data.bidders 
i.​ Remove ext.prebid.bidderconfig 
j.​ Privacy controls 

i.​ Process COPPA, LMT, USP, and GDPR rules -- remove user IDs and 
round addresses/geo as required. 

Note: the /openrtb2/video endpoint is out of scope for First Party Data. 

2.1. /openrtb2/auction endpoint 
 
Requirements 
 

1)​ Attributes should be validated against any defined data types. 
2)​ Where transformations are specified, attributes should be normalized to the defined data 

types. 
3)​ If an attribute doesn't pass defined validation checks, it should be removed from the 

request with a warning placed in the messages section of debug output and a log 
message emitted N% of the time. The auction should continue. 

4)​ When a transformation is done on the data, a warning may be placed in the debug 
output to encourage originators to adhere to the preferred standard. 

5)​ Attributes defined in ext.prebid.bidderconfig.config.ortb2 should be merged into the 
OpenRTB object for the bidders named in ext.prebid.bidderconfig.bidders, but if 
ext.prebid.data.bidders exists, the bidder needs to be in that list. Here's how the merge 
should work: 

a)​ If ext.prebid.bidderconfig.config.ortb2 is a valid ORTB field, merge it to the 
bidder's request.  

i)​ The definition of merge is: bidder-specific override takes precedence. 
Arrays are replaced rather than appended. 

b)​ If the request is now invalid because it contains more than one of site, dooh, and 
app, reject the request for this bidder. 



6)​ Privacy rules: 
a)​ Follow COPPA anonymization rules 
b)​ Follow us_privacy anonymization rules 
c)​ Follow TCF2 rules 

7)​ If the ext.prebid.data.bidders field is specified, remove the OpenRTB attributes flagged 
as in-scope for permissions from any bidder (or alias) not present in the array. 

a)​ Note: PBS should not reject the whole request if there's an unrecognized bidder 
or alias in this array. 

8)​ The server should be able to handle future changes to OpenRTB relating to the site, 
app, dooh, and user objects. For instance, in ORTB2.6, new fields such as site.cattax 
were added. These should be supported at a bidder-specific level. 

 
The following table details all the fields that can come into Prebid Server. Column descriptions: 

●​ Attribute - a first party data attribute or pattern of attributes. Important: any attribute 
flagged as "Requires Permissions" in the last column can come from either the top level 
OpenRTB or ext.prebid.bidderconfig.config.ortb2. 

○​ Note that {site,app,user}.data isn't mentioned here because they should have 
been merged into {site,app,user}.ext.data by this point 

●​ Normalized Data Type - the expected data type of the attribute, and how it should be 
passed to bidder adapters. 

●​ Alternate Data Types - the web is a messy place. Data comes in unexpected formats. 
This column defines the data transformations that Prebid Server should do to convert 
data to the Normalized Data Type. 

○​ Note: fields in ext.prebid.bidderconfig.ortb2.* should follow the same 
normalization rules as their destination. E.g. 
ext.prebid.bidderconfig.ortb2.site.name=[“a”,”b”] would be normalized to 
site.name=”a” because ‘name’ is one of the special OpenRTB attributes that 
maps into the site object and there is a normalization rule defined for it. 

○​ In contrast, ext.prebid.bidderconfig.ortb2.site.id=[“1”,”2”] maps to site.ext.data.id, 
which doesn’t have any normalization rules defined, so the value is left 
untouched. 

●​ Description - notes about the attribute 
●​ Requires Permissions - defines whether an attribute is in-scope for First Party Data 

permissions, Prebid Server treats it specially: 
○​ This field will be removed from the bidder copy of the OpenRTB if it's not 

permitted by ext.prebid.data.bidders. 
○​ The attributes flagged as 'meta' are always removed before going to a bidder. 

 

Attribute Normalized 
Data Type 

Alternate Data 
Types (PBS-Java 
only) 

Description In-Scope 
for 
Perms? 



{site/app/dooh}.id string array of strings. 
Use first element. 

OpenRTB attribute N 

{site/app/dooh}.nam
e 

string array of strings. 
Use first element. 

OpenRTB attribute N 

app.bundle string array of strings. 
Use first element. 

OpenRTB attribute N 

app.storeurl string array of strings. 
Use first element. 

OpenRTB attribute N 

{site/app/dooh}.dom
ain 

string array of strings. 
Use first element 

OpenRTB attribute N 

{site/app}.cat array of 
strings 

- OpenRTB attribute N 

{site/app}.sectioncat array of 
strings 

- OpenRTB attribute N 

{site/app}.pagecat array of 
strings 

- OpenRTB attribute N 

site.page string array of strings. 
Use first element 

OpenRTB attribute N 

site.ref string array of strings. 
Use first element 

OpenRTB attribute N 

site.search string array of strings. 
Use first element 

OpenRTB attribute N 

{site/app/dooh}.cont
ent.ATTR other than 
'data' 

various - OpenRTB attribute N 

{site/app/dooh}.cont
ent.data 

array - OpenRTB attribute Y 

{site/app/dooh}.publi
sher 

object - OpenRTB attribute N 

{site/app/dooh}.key
words 

string array of strings. 
Concatenate array 
elements with 
commas 

OpenRTB attribute N 



site.mobile integer - OpenRTB attribute N 

{site/app}.privacypol
icy 

integer - OpenRTB attribute N 

site.ext.data.ATTR any - OpenRTB attribute Y 

app.ext.data.ATTR any - OpenRTB attribute Y 

{site/app}.ext.* n/a - OpenRTB attribute N 

{site/app}.ATTR any - OpenRTB attribute N 

user.keywords string array of strings. 
Concatenate array 
elements with 
commas 

OpenRTB attribute N 

user.gender string array of strings. 
Use first element 

OpenRTB attribute N 

user.yob integer - OpenRTB attribute N 

user.geo object - OpenRTB attribute N 

user.data object - OpenRTB attribute Y 

user.ext.data.ATTR any - OpenRTB attribute Y 

user.ATTR any - OpenRTB attribute N 

imp[].ext.ATTR any - Arbitrary attributes N 

ext.prebid.data.bidde
rs 

array of 
strings 

- If present, instructs 
Prebid Server to 
remove first party data 
fields from global 
sections for some 
bidders. 

meta 

ext.prebid.bidderconf
ig 

object - If present, instructs 
Prebid Server to inject 
the named data into 
the ORTB object for 
the named bidders. 

meta 

 



2.2. /openrtb2/amp endpoint 
 
Assumptions 

●​ The AMP "TGT" macro is resolved from json.targeting. Because these values are also 
utilized by GAM, there cannot be any additional structure imposed on this object. 

●​ Dynamic values (e.g. user IDs or segments) are not supported in AMP. When they are, 
we will revise this spec. 

●​ We could add additional fields to pass static data through the AMP call, but it's easier to 
just store them in the storedrequest database. 

●​ No one started making use of the original FPD implementation. No need for backwards 
compatibility. 

 
Requirements 
 

1)​ The AMP openrtb in the stored request must be able to carry global site data. 
2)​ The stored request must also be able to define bidder permissions either with 

ext.prebid.data.bidders or ext.prebid.bidderconfig. 
a)​ It's ok if both kinds of permission are specified: i.e. every entry in 

ext.prebid.bidderconfig[].bidders would also need to be in ext.prebid.data.bidders 
or it will be ignored. 

3)​ Some fields defined in the stored request will be overridden by values coming in on the 
query string: 

a)​ curl overwrites site.page 
b)​ account overwrites site.publisher.id if it's valid 

4)​ Read the 'targeting' attribute on the AMP query string. Add all key-value-pairs found 
there to imp[].ext.data. 

5)​ PBS must adhere to privacy rules as for other interfaces: 
a)​ Follow COPPA anonymization rules 
b)​ Follow usp_privacy anonymization rules 
c)​ Follow TCF2 rules 

 
Example 
 

  <amp-ad width="300" height="50" 
    type="doubleclick" 
    data-slot="/1111/amp_test" 
    data-multi-size-validation="false" 
    rtc-config='{"vendors": {"prebidrubicon": {"REQUEST_ID": "blah"}}}' 
    json='{ "targeting": {"gam-key1": "val1","gam-key2": "val2"}}' > 
  </amp-ad> 

 



GET 
/openrtb2/amp?tag_id=blah&w=300&h=250&ow=&oh=&ms=&slot=%2F1111%2Famp_test&tar
geting=%7B%22gam-key1%22%3A%22val1%22%2C%22gam-key2%22%3A%22val2%22%
7D&... 
 
OpenRTB results 

{ 
  ... 
  "imp": [ 
    ... 
    "ext": { 
       "data": { 
           "gam-key1": "val1", 
           "gam-key2": "val2" 
       } 
    } 
  ] 
} 

 
 

Appendix - Change Log 
 

Date Person Update 

Jul 11, 2022 bretg Added Req 10: The server should be able to handle 
future changes to OpenRTB. For instance, in ORTB2.6, 
new fields such as cattax and wlangb were added. 
These should all be supported at a bidder-specific 
level. 
 
 

Oct 11, 2022 bretg By request: allowing bidder-specific config to contain 
valid ORTB fields other than site/app/user. 
 
Removed previous changes and struck-out redundant 
passages. 

Feb 15, 2023 bretg Added DOOH. 

 
 


	Prebid Server and First Party Data 
	1. Overview 
	 
	 
	 
	1.1. OpenRTB Interface 
	1.2. OpenRTB Examples 

	2. Prebid Server Core FPD Requirements 
	2.1. /openrtb2/auction endpoint 
	2.2. /openrtb2/amp endpoint 

	Appendix - Change Log 

