
Fly me to the Moon!  
 
A Costly Venture 
 
Getting things in space is an expensive affair. Flying the guitar that Chris Hadfield used in his 
music video up into space probably cost NASA around $75,000, given the launch costs at the 
time. And that’s just a guitar. Imagine how much more it would take to get a satellite into orbit. 
Given that there is not much extra cash flow these days and that NASA’s budget has been 
repeatedly cut we thought it would be relevant to figure out: What is the minimum amount of fuel 
required to get a satellite from Low Earth Orbit (LEO) to the Moon?  
 
Depending on the rocket that is used, launch costs can range anywhere from around $4,000 to 
$30,000 per kilogram. Yes. Per kilogram. And so, just by slightly reducing the amount of fuel, or 
in other words, the weight that the rocket needs to carry up into orbit, we can greatly reduce the 
cost of the whole mission. 
 
 
The Simplified Solar System 
 
Before we optimized, we needed a realistic environment in which to run tests i.e. we needed to 
create the system in which our satellite would be travelling. The initial system consisted of three 
bodies interacting gravitationally - the Sun, the Earth, and the Moon - in a three dimensional 
space.  When setting up the system we assumed that the bodies were point masses and that 
they were only subjected to gravitational forces from the other objects.   
 
The gravitational force one body exerts on another can be calculated using Newton’s Law of 
Universal Gravitation: 
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​  
F : Magnitude of the force exerted by body 1 on body 2 (N) 

​ G : Gravitational constant (6.67×10−11 N·(m/kg)2) 
​ m1 : Mass of body 1 (kg) 
​ m2 : Mass of body 2 (kg) 
​ r : Distance between the two bodies (m) 
 
This law only applies to the gravitational interactions of binary systems. However, by adding all 
the forces from pairs of objects, the acceleration on a single object due to several others can be 
approximated. For example, the net gravitational force acting on the Moon would be the sum of 
the gravitational force due to the Earth and the gravitational force due to the Sun.  



 
 
Initial Conditions 
 
In order to replicate the behavior of the actual Sun, Earth, and Moon, we had to give the bodies 
in our model appropriate initial conditions. The masses of the bodies in our model were found 
with a quick Google search, but the initial positions and velocities were a little bit more tricky.   
 
To simplify things, we assumed that all three bodies had circular orbits when their initial 
velocities were given. The true velocity of an object as it orbits is not constant, but since the 
orbits of the Sun, Earth and Moon are all very close to circular we can use the average orbital 
velocity and still represent the system quite accurately. Using this assumption, the initial 
conditions of the Earth and the Moon can be determined relatively easily. Earth’s average orbital 
velocity is 29,783 m/s. The Sun also has an initial velocity, though it is very small. It can be 
found using conservation of momentum - the velocity of the Earth/Sun centre of mass is 
assumed to be zero, so the sum of the momenta of the Earth and Sun must also be zero 
resulting in a velocity of 0.0894267 m/s in the negative y direction. 
 
As for their positions in three dimensional space, they are given by the x,y,z coordinates of the 
objects. We simplified matters by assuming that all the objects start in the plane y = 0, i.e. in line 
with the x-axis (Fig. 1). This means the objects only had velocity in the y direction and so we did 
not have to worry about accurately splitting the velocities into their three dimensional 
components.  
 

 
Fig.1: Projection of initial positions of objects on x-y plane 

 
 
We treated the Sun’s initial position as the origin and the Sun’s orbital plane as the x-y plane.  
Because the Sun and the Earth move in essentially the same plane, the Earth’s initial x-position 
is quite simply the average distance from the the Earth to the Sun: 1.49 x 1011 m. 
 



Determining the Moon’s initial conditions was a little bit more complicated because its orbital 
plane is tilted by five degrees in relation to the Earth-Sun orbital plane (Fig.2). 

 
Fig.2: Tilt of Moon’s orbit with respect to the Earth and the Sun’s orbital plane 

 
The average distance from the Earth to the Moon is 3.84 x 108 m. Assuming the moon starts at 
its maximum x-position and maximum z-position (Fig.3), we can write the initial x-position of the 
moon as: the Earth’s initial x-position (1.49 x 1011) plus the x-component of the distance (3.84 x 
108 x cos(5)). In this system, the Moon is the only object that initially has a non-zero z-position. 
This is given by: 3.84 x 108  x sin(5).  
 

 
Fig.3: Close-up of the Moon’s position relative to the Earth 

 
When the moon is at its maximum x-position and maximum z-position, its velocity in the x and z 
directions is zero. And so at this point, its entire orbital velocity around the Earth can be 
expressed as a y-component. The moon is moving along with the Earth as it is orbiting, so the 
moon’s initial velocity (vm) must be the  vector sum of the Earth’s orbital velocity (v1)  in the 
Earth-Sun system and the moon’s orbital velocity (vom) . 



 
vm = v1 + vom 

 
An approximate three dimensional representation of the initial conditions of the system can be 
seen below (Fig.4). 

 
Fig.4: Representation of bodies in 3-dimensions 

 
 
Now that we had the initial positions and velocity of the Sun-Earth-Moon system, our model had 
to represent how these velocities and positions change with time. We knew the magnitude and 
direction of the forces that act on each of the bodies (from Newton’s Law of Universal 
Gravitation), and that we could divide these forces into their x-y-z components (Fig.5). 
 



 
Fig.5: Decomposition force vector a into its components 

 
Given F12, the force exerted on body 2 by body 1 (Fig.6), we determined the x-y-z components 
of this force with simple ratios. 
 

Fx12 = F12 
(𝑥1 − 𝑥2)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1 𝑡𝑜 2)

Fy12 = F12 
(𝑦1 − 𝑦2)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1 𝑡𝑜 2)

Fz12 = F12 
(𝑧1 − 𝑧2)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1 𝑡𝑜 2)

 



 
Fig.6: Gravitational interaction of two bodies 

 
In this manner, we can decompose all the forces acting on body 2, and then we could get the 
net force in the x-direction, y-direction, and z-direction. The forces due to the other objects can 
also be determined in this manner. By adding the components of the forces acting on a single 
object and dividing by the object’s mass we can determine the net acceleration of that body at a 
certain time. 
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Considering we have the initial positions and velocities of the bodies, we can perform one step 
of Euler to get the positions of the bodies after a timestep DT. 
 

(x1, y1, z1) = (x0, y0, z0) + (vx, vy, vz)*DT 
 
With two positions for each of the bodies, verlet’s method can be used to track the positions of 
the Sun/Earth/Moon as time elapses. This use of Verlet’s method makes the assumption that 
the acceleration of the bodies will remain constant for DT.  



 
(x2, y2, z2) = 2*(x1, y1, z1) - (x0, y0, z0) + (ax, ay, az)*(DT)2 

(x0, y0, z0) = (x1, y1, z1) 
(x1, y1, z1) = (x2, y2, z2) 

 
In this method, the acceleration is recalculated every iteration with respect to the new positions 
of the bodies. 
 
To see a video of our model at this stage click here. The moon appears to be directly on top of 
the Earth because of the large distance scales and the comparatively large images. 
 
 
Validating the Code 
 
To validate our simulation, we compared the properties of the Sun-Earth-Moon system in our 
model to the properties of the actual Sun-Earth-Moon system.  
 
After plotting the motion of the Earth over a certain amount of time it was shown that our 
simulation reproduced the motion of the actual Earth (Fig.7) 
 

 
Fig.7: Change in Earth’s x-position as time elapses 

 
As mentioned, we assumed that the orbit of the Earth was circular. The average distance from 
the Earth to the Sun is around 1.49 * 1011m, so it would make sense that the largest value for 
the x-position is around that number when the Earth all the way to the right or left. Also, we 
know that there is 365 days in a year and that a year is approximately one orbit. 365 days 
translates to ~32000000s, and if you look at the graph you can see that one rotation takes 
around that long. 
 

https://www.youtube.com/watch?v=DA4ZKRVvZqs


Similarly after plotting the motion of the Moon over a certain amount of time it was shown that 
our simulation also reproduced the motion of the actual Moon (Fig.8). 
 

 
Fig.8: Change in the Moon’s x-position relative to the Earth as time elapses  

 
The moon takes around a month to orbit the Earth. 30 days corresponds to ~2.5 million seconds 
and that is approximately the period of our moon. The average radius 3.84*108 m, and because 
we have circular orbits, the amplitudes of our curve makes sense as well. 
 
Finally, we have a graph of the Sun’s motion (Fig.9). It may look a bit suspicious because we 
don’t normally think of the sun as something that has an orbit. But when two bodies are orbiting, 
they orbit around the system’s centre of mass. The centre of mass of the Earth Sun system is 
around 450 km from the Sun,  and if you cut the graph horizontally through the middle you can 
see that our Sun’s orbit does have a radius that is that size.  
 
 



 
Fig.9: Change in the Sun’s x-position as time elapses 

 
From these graphs we could see that our model seems to be a fairly accurate representation of 
the actual Earth/Moon/Sun system.  
 
 
Putting our Satellite into Orbit 
 
The satellite we added, that is initially orbiting the Earth, is just another body in this system. 
Considering the satellite has a mass of only 1500 kg (extremely small compared to the masses 
of the other bodies), it will not have a significant effect on the model, and the model will remain 
fair representation of the actual system.  
 
For the mass of our satellite, we just browsed through a list of typical satellite masses and 
selected one of the heavier ones. For the initial conditions of the satellite, we knew we wanted it 
to start in low Earth orbit, which is around 200 km to 2000 km from the Earth’s surface. Of 
course, model considers the Earth to be a point-mass, so we have to add the altitude to the 
radius of the Earth to get the satellite’s initial distance from the Earth.  Once we had its distance 
from the Earth, we determined its orbital velocity with the following equation: 
 

 
​  

vo : Orbital velocity of one body orbiting a larger body 
​ G : Gravitational constant 
​ M : Mass of the larger body 
​ r : Distance between the centres of the two bodies 



 
This equation is an approximation, and can only be used if the following conditions are met: 

●​ The orbit has a small eccentricity (we are assuming a circular orbit, so...check!) 
●​ The mass of one of the bodies must be negligible compared to the other (Mass Earth >> 

1500 kg...check!) 
 
To see a video of our satellite orbiting the Earth click here. 
 
 
Getting it to the Moon 
 
We decided to minimize the fuel required to send the satellite to the moon by using a Hohmann 
transfer.  The Hohmann transfer is a manoeuvre used to transfer between two circular orbits in 
the same plane (Fig.10). It minimizes fuel by minimizing the energy required to change the orbit 
size and direction of the satellite. 
 

  
Fig 10: Outline of Hohmann Transfer 

 
As the diagram shows, essentially a spacecraft in a circular orbit accelerates so that it follows an 
elliptical path. And then when the spacecraft reaches the furthest point of its elliptical orbit, it 
accelerates once more to enter a larger circular orbit. The problem is that we don’t want our 
satellite to enter a larger circular orbit, we want our satellite to orbit the moon. So we just used 
elliptical transfer orbit to get the satellite close to the moon, and then tried to get the moon to 
capture the satellite. If we start in a circular orbit with radius r1, and we wish to reach an orbit 

https://www.youtube.com/watch?v=E-kPbePDmks


with radius r2, then we must provide our satellite with a delta-v given by the following equation 
(derived from the conservation of angular momentum and the conservation of energy). 
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: Delta-v required to put the satellite into an elliptical orbit ∆𝑣

1

​ G : Gravitational constant 
​ M : Mass of the larger body 
​ r1 : Radius of the initial circular orbit 
​ r2 : Radius of the orbit that needs to to be reached 
 
We chose the r2 to be 3.82 x 108 so the satellite could get very close to the moon. We added this 
delta-v when the satellite was at its furthest point right (relative to the Earth) so that it could 
reach the moon when the moon was at the leftmost point in its orbit. To make sure Moon and 
the satellite came close together, we played with the initial position of the moon. We were 
making quite the assumption that the slight incline of the moon’s orbit wouldn’t affect the 
transfer. It was a fairly foolish assumption, but we couldn’t figure out how to account for it. 
Unfortunately, we could not get the moon to capture the satellite after a single delta-v, so we 
decided to give the satellite a second delta-v when its in proximity of the moon so that it has an 
appropriate velocity needed to be captured by the moon. To that end, we decided to complete 
the Hohmann transfer (provide shown in Fig 9) the  so that the satellite gets a velocity similar ∆𝑣
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to that of the moon. We assumed that if they begin moving together, it will be more likely that the 

moon will capture the satellite. The (or the  in Fig 9) can be obtained from the following ∆𝑣
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: Delta-v required to change the elliptical orbit of the satellite ∆𝑣

2

​ G : Gravitational constant 
​ M : Mass of the larger body 
​ r1 : Radius of the initial circular orbit 
​ r2 : Radius of the orbit that needs to to be reached 
 
After this second delta-v, our satellite was captured by the moon. To see a video showing the 
satellite launch and capture click here. In this run we also used a third Delta-v to get the orbit 
around the moon a bit smaller. 
 

https://www.youtube.com/watch?v=H8odmMXOPmU


 
Calculating the fuel used by the Hohmann Transfer 
 
The amount of fuel used depends quite a bit on the thrust specific fuel consumption 
consumption (TSFC) of the rocket used in satellite. TSFC is fuel efficiency of the rocket with 
respect to thrust output, in other words, it is the rate of fuel consumption per unit thrust ). ( 𝑘𝑔/𝑠

𝑁

Admittedly, we didn’t spend too much time deciding the TSFC of the rocket used in our satellite. 
We read that the TSFC of rockets used in satellites are much lower than the TSFC of rockets 
used in shuttle, and so, after finding a list of rockets and their TSFC, we selected one of the 
lowest ones. 
 
The delta-v in the Hohmann transfer is an instantaneous change in velocity.  We implemented 
this delta-v into our code by giving a sudden acceleration to our satellite at certain, calculated 
times. This sudden acceleration would act over the timestep DT (the 2s that is in our code in our 
Verlet’s method). This acceleration which would act over 2s would give the satellite the required 
delta-v.  
 
With this in mind,, we could calculate the necessary thrust by using the acceleration that 
corresponds to each delta-v. The thrust required for a certain acceleration can be found using 
Newton’s Second Law, 

 𝐹 =  𝑚𝑎
​ F : Thrust (N) 
​ m : Mass of the satellite (kg) 
​ a : Magnitude of the sudden acceleration of the satellite (m/s2) 
 
 
Multiplying the necessary thrust by the thrust specific fuel consumption would give the rate of 
fuel consumption(kg/s) necessary to produce such a thrust. In our code, the acceleration acts 
over two seconds to produce the necessary change in satellite velocity, so logically, the thrust 
also acts over two seconds and the rate of fuel consumption is maintained over two seconds. 
 
So the fuel consumed at each use of our satellite’s rocket can be calculated as follows, 
 

Fuel Consumed = a*m*TSFC*DT 
 
m : Mass of the satellite (kg) 

​ a : Magnitude of the sudden acceleration of the satellite (m/s2) 
TSFC : Thrust specific fuel consumption of the satellite rocket ) ( 𝑘𝑔/𝑠

𝑁

DT : Timestep over which the satellite is subject to the rocket’s acceleration (s) 
 
The total amount of fuel consumed is just the sum of the fuel consumed at each “boost”. 
 



 
Minimizing fuel with some manual fixes… 
 
From this you could see that to minimize the fuel consumed, the delta-v used for the transfers 
must be minimized. It would have been nice to be able to write some algorithm that evaluates a 
bunch of situations with the moving bodies, and then finds the optimal delta-v that acts on the 
satellite at the best timel time and gets it to orbit the moon. Unfortunately, we were not able to 
think of such a code. Instead, our method was much more crude. As mentioned previously (in 
the Hohmann transfer section), with a little analysis of the motion of the bodies, we found a 
delta-v (and an an appropriate time to apply this delta-v) that would get our satellite to orbit the 
moon (we actually needed two delta-v because we weren’t able to figure out a way to get it to 
orbit with only one…).  
 
And then once our satellite was orbiting the moon, we just played with the delta-v (just as we 
messed with the parameters in the Earthquake lab to minimize the resonance curve) so that the 
delta-v would be lowered while the orbit was maintained. 
 
Our embedded video shows one of our older runs in which the first two delta-v got the satellite 
to orbit the moon, and then the third delta-v was just there to make the orbit of the satellite 
around moon smaller. Since then, we have manage to remove the third delta-v by making it so 
that the orbit was acceptable after the second delta-v (we don’t have a video of this because of 
software problems, but if you just run our code you should be able to see the animation). This 
came about because we noticed that even if we decrease the second delta-v somewhat, the 
satellite still gets captured by the moon. When the second delta-v was decreased far enough, 
the orbit the satellite became more circular than it is after the second delta-v in the v (though if 
we decreased the second delta-v too much the moon would simply not capture the satellite).  
 
In the run shown in the video, after the second delta-v approximately 93 kg of fuel is used and 
after the third delta-v, the fuel consumed goes up to roughly 102 kg. After the bit of tinkering 
mentioned in the above paragraph, the fuel consumed after the second delta-v is 88 kg and 
there is no third delta-v. 
  
Admittedly, it was a fairly crude method, but we did find a solution that maybe does not minimize 
but at least lowers the amount of fuel needed to get a satellite to orbit the moon. 
 
So if it ever happens that you have met these conditions: 

●​ You have a 1500 kg satellite orbiting 8000 km from the centre of the Earth with a velocity 
of 7056.425 m/s 

●​ The Earth, Moon, Sun, and Satellite are at the following positions relative to one another 
(in m):  

○​ Sun (-1.49 x 1011, 0, 0) 
○​ Earth (0, 0, 0)  
○​ Moon (0, 3.84 x 108 x cos(5), 3.84 x 108 x sin(5)) 



○​ Satellite (8 x 106, 0, 0) 
 

Then wait 100,000 s, and then provide an acceleration of 1,410 m/s2 over two seconds in a 
direction perpendicular to the line connecting the Earth and the Satellite (in the xy-plane). After 
this acceleration, wait another 427,998 s, and provide an acceleration of 300.09 m/s2 over two 
seconds, once again in the direction perpendicular to the line connecting the Earth and the 
satellite (in the xy-plane). If it all goes well, your satellite should be orbiting the moon. And if 
your satellite happened to have a thrust specific fuel consumption of 17 x 10-6kg/(N*s), then you 
will have only consumed around 88 kg of fuel.  
 
 


