Практическая работа № 6.

9 класс

Тема: «Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов».

Цель: научить получать углекислый газ реакцией обмена; продолжить ознакомление с химическими свойствами углекислого газа; познакомить с методами распознавания карбонатов.

Планируемые результаты: уметь получать и собирать углекислый газ в лаборатории, описывать наблюдаемые явления, доказывать наличие оксида углерода (IV), распознавать соли угольной кислоты в растворе.

Техника безопасности: осторожное обращение с химреактивами и стеклянной посудой.

Оборудование и реактивы: кусочки мрамора или мела, фенолфталеин, лакмус, растворы: соляной кислоты, гидроксида натрия, нитрата серебра(I), хлорида бария; вода, известковая вода, в пронумерованных пробирках кристаллические вещества(сульфат натрия, хлорид цинка, карбонат калия, силикат натрия), пробирки, газоотводная трубка с пробкой, стакан.

- 1. Запишите: тему практической работы № 6, цель, отдельно запишите оборудование и реактивы (пишите в столбик, через клетку, под номерами; реактивы формулы и названия).
- Посмотрите видео: «Получение углекислого газа и изучение его свойств» http://files.school-collection.edu.ru/dlrstore/15e9c4c8-4d51-a643-b626-db48ff50f3b9/index.htm «Взаимопревращение карбонатов и гидрокарбонатов» http://files.school-collection.edu.ru/dlrstore/b6fee80d-0e96-27d0-8393-38abcc545a0b/index.htm
- 3. Нарисуйте рисунок с подписями: «Получение углекислого газа»
- 4. Оформите работу в виде таблицы. Напишите наблюдения, выводы сами.
- 5. Напишите общий вывод к работе.

Ход работы

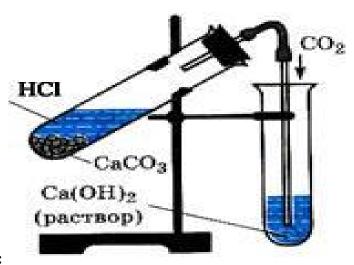


Рисунок:

Ход работы:

	Что делали	Что наблюдали	Уравнения реакции	Выводы	
	1.Получение оксида углерода (IV) и определение его свойств				
не мр	Плолучение оксида углер Поместите в пробирку сколько кусочков мела или рамора и прилейте немного збавленной соляной кислоты	ода (11) и определ	CaCO ₃ + HCl = CaCl ₂ + CO_2 \uparrow +H ₂ O CaCO ₃ +2H ⁺ \rightarrow Ca ²⁺ + CO ₂ \uparrow + H ₂ O		
пр Ко др на	Пробирку быстро закройте обкой с газоотводной трубкой. онец трубки поместите в угую пробирку, в которой ходится 2-3 мл известковой ды		$CO_2 + Ca(OH)_2 = CaCO_3 \downarrow + H_2O$		
1	ропускаем углекислый газ некоторое время		$CaCO_3 + CO_2 + H_2O =$ $Ca(HCO_3)_2$		
вын в ди пом 3 мл прог неск из р полу уни	онец газоотводной трубки ьте из раствора и сполосните стиллированной воде. Затем естите трубку в пробирку с 2- и дистиллированной воды и пустите через неё газ. Через колько минут выньте трубку аствора, внесите в ученный раствор версальную индикаторную агу (синий лакмус)		H ₂ CO ₃ ↔CO ₂ ↑ + H ₂ O		
разб гидр нему фен	пробирку налейте 2-3 мл бавленного раствора воксида натрия и добавьте к у несколько капель олфталеина. Затем через вор пропустите газ		CO ₂ +2NaOH = Na ₂ CO ₃ + H ₂ O		

- 6. Проведите мысленный эксперимент по распознаванию веществ.
- 7. Оформите эту часть работы в виде таблицы.
- 8. Напишите все уравнения химических реакций в молекулярном, полном ионном и сокращенном ионном виде.
- 9. Сделайте общий вывод к работе, исходя из цели работы.

2.Распознавание карбонатов						
В четырёх пронумерованных пробирках даны кристаллические вещества: сульфат натрия, хлорид цинка, карбонат калия, силикат натрия. Определите, какое вещество находится в каждой пробирке. Na ₂ SO ₄ , ZnCl ₂ ,						
K ₂ CO ₃ , Na ₂ SiO ₃	вывод					
В каждую из пробирок добавляем раствор соляной кислоты 1) Na ₂ SO ₄ + HCl = 2) ZnCl ₂ + HCl = 3) K ₂ CO ₃ + HCl = 4) Na ₂ SiO ₃ + HCl =	В двух пробирках ничего не изменилось, в одной из пробирок выделился газ, в другой студенистый осадок	3) K ₂ CO ₃ + HCl = 4) Na ₂ SiO ₃ + HCl =				
Два оставшихся вещества растворяем водой и добавляем раствор хлорида бария 1)Na ₂ SO ₄ + BaCl ₂ = 2)ZnCl ₂ + BaCl ₂ =	1) Выпал белый осадок	1)Na ₂ SO ₄ + BaCl ₂ =				
В оставшийся раствор добавляем раствор нитрата серебра (I)	2) Выпал белый осадок	2)ZnCl ₂ + 2AgNO ₃ =				

Вывод: качественной реакцией на карбонат-ион является действие сильной кислоты, которая вытесняет слабую кислоту из раствора ее соли, происходит выделение углекислого газа.

Общий вывод к работе: