Name:	Date:
Mr. Croom's Physics	Chapter 3: Two Dimensional Motion

	Advanced Symmetrical Projectile Motion						
1.	A football is kicked at an angle of 45° and travels 82 m before hitting the ground. a) Find its <u>initial velocity</u> b) <u>How long</u> was it in the air? c) What is its <u>maximum height</u> ?						
2.	A shot put is released with a velocity of 12 m/s and stays in the air for 2.0 sec. a) At what <u>angle</u> was it released? [HINT: Think of ALL the kinematic equations with 6 in it!] b) What was the shot put's <u>range</u> ?						
3.	Find the <u>angle of elevation Θ</u> of a tank's cannon which fires a shell with a muzzle velocity of 120 m/s and hits a target on the same level (What is Δy ?) but 1300 m distant.						
4.	A baseball is thrown straight downward with initial velocity of 8 m/s from a height of 25 m. Compute the following: a) Compute the <u>time</u> it takes the baseball to reach the ground. b) Calculate the <u>velocity</u> the baseball strikes the ground with.						
5.	A marble dropped from a bridge strikes the water in 5 sec. a) Calculate the impact velocity (v _y). b) What is the height of the bridge?						

Name: Mr. Croom's <mark>Phys</mark>	ics	Date:Chapter 3: Two Dimensional Motion			
of the ba a. 1 b. 1 c. 1 d. 1	Anderson, a place kicker, tri Il is 23 m/s. Determine the maximum he Determine the time of flight Determine the range of the f If the uprights were 27 yard find y at the time t where x	ight that the ball atta between kickoff and football. s away, and the upri	nins. d landing. ghts are 10 feet off		
;	aims <i>directly</i> at a target 120 a) If the bullet leaves the gu b) At what angle should the	n at a velocity of 25	0 m/s, by how muc e target will be hit	ch will it miss the targe?	et?

8. A projectile is launched from ground level to the top of a cliff which is 195 m away and 155 m high. If the projectile lands on top of the cliff 7.6 sec after it is fired, find the **initial velocity** of the projectile (**BOTH** magnitude **AND** direction). Neglect drag.