Practical 1:

#Stepl. Create Database:

CREATE DATABASE IF NOT EXISTS PRACTICAL;

USE PRACTICAL;

Step2. CREATE TABLE

CREATE TABLE IF NOT EXISTS STUDENTS

(S id int primary key,

S Name varchar (55),

DOB date,

City varchar (25));

describe students;

ALTER attributes of the table

alter

ALTER

ALTER

ALTER

ALTER

ALTER

table

TABLE

TABLE

TABLE

TABLE

TABLE

students

studentS

studentS

STUDENTS

STUDENTS

STUDENTS

insert function

INSERT INTO students

(1001,

"Hari Singh",
"Kathmandu", "singh hari@gmail.com") ;

INSERT INTO students

modify s name varchar (55) not null;

MODIFY DOB date not null;

MODIFY CITY wvarchar (25) not null;

ADD COLUMN EMAIL wvarchar (60)
ADD COLUMN Gender char(1l);

MODIFY COLUMN GENDER CHAR(1)

values

"M", "2002/05/25",

(s ID, S Name, gender)

UNIQUE;

AFTER S NAME;

values (1002, "Janak Singh", "M"),

(1003, "Sita Karki", "F");

INSERT INTO students wvalues

(1004, "Jamuna Shahi"™, "F", "2001/10/28", "Butwal",
"jamunashahil@gmail.com"),

(1005, "Sajan KC", "M", "2000/02/02", "Bhaktapur",
"kc sajan@gmail.com"),

(1006, "Ram Thapa", "M", "2010/06/12", "Pokhara", "null");

#update records
UPDATE students
SET city="Kathmandu"

WHERE s ID=1003;

select *from students; # DISPLAY ALL RECORDS

#Display specified columns

SELECT S id, S name, Email from Students;
WHERE Clause For Filter data
SELECT * FROM Students

WHERE CITY="KATHMANDU";

SELECT * FROM Students

WHERE CITY="kATHMANDU" AND GENDER='M';

SELECT * FROM Students

WHERE CITY="KATHMANDU" OR CITY="POKHARA";

SELECT * FROM Students

WHERE NOT CITY="kKATHMANDU";

SELECT *FROM students WHERE s name LIKE 'H%';
Group by clause

SELECT CITY, COUNT (S ID) AS TOTAL STUDENTS
FROM students GROUP BY CITY;
HAVING clause

SELECT CITY, COUNT (s ID) AS TOTAL STUDENTS

FROM studentS group by CITY HAVING COUNT (S id)<3;

ORDER by

SELECT * FROM students ORDER BY S NAME;

SELECT * FROM students ORDER BY S NAME DESC;

STRING FUNCTION: UPPER/UCASE, LOWER/ LCASE

SELECT UCASE ('bca program') ;

SELECT LCASE ("BCA PROGRAM") ;

SELECT character length ('BCA PROGRAM') ; # or char lenght ()

SELECT S name, character length (S NAME) AS NAME LENGHT

FROM students;

select concat('mr. ',"Raj") as join name;

SELECT s 1D, concat ("MR/MS ",s name,"-",city) as togather

from students;

select reverse('nepal');

#replace function

select replace ("apple is veg", "veg","fruit");

trim functions: ltrim

select length (" NEPAL ")

select length (LTRIM (" NEPAL "))

select Length (RTRIM (" NEPAL ")),
select length (TRIM(" NEPAL "))

Number functions:

select abs (-25);

select mod(5,2);

select mod(25,4) as remainder;
select power(3,2) as power;
select sqgqrt(81);

select greatest(55,24,42,64,22);
select least (55,24,42,04,22);

select truncate(2.5378,2);

truncate function defined the number of digits after decimal
select round(5.86); #find the round ceiling number;
select round(2.5678,2);

select ceil (5.8);

select floor(5.8);

select sum(3+5+3+8);

Practical 2:

Pg. 158, Q 15. Create the following table by specifying the Primary key, Not

NULL, foreign key constraints DDL statement in SQL:
1. Department (dept_no, d_name, city),
2. Employee (emp_id, e_name, salary) and
3. Works (dept_no, emp_id)

CREATE DATABASE IF NOT EXISTS glb5;
USE Q15;
-- Create the Department table

CREATE TABLE Department (

dept no INT PRIMARY KEY, -- Primary Key constraint
d name VARCHAR (50) NOT NULL, -— Not NULL constraint
city VARCHAR (50) NOT NULL -- Not NULL constraint

-- Create the Employee table
CREATE TABLE Employee (
emp id INT PRIMARY KEY, -—- Primary Key constraint

€ name VARCHAR (50) NOT NULL, -— Not NULL constraint

salary DECIMAL (10, 2) NOT NULL DEFAULT 40000 -— Not NULL
constraint

) 7

-- Create the Works table
CREATE TABLE Works (

dept no INT NOT NULL, -— Foreign Key to
Department.dept no

emp id INT NOT NULL, -- Foreign Key to
Employee.emp id

PRIMARY KEY (dept no, emp id), —-— Composite Primary Key
constraint

FOREIGN KEY (dept no) REFERENCES Department (dept no)

ON DELETE CASCADE ON UPDATE CASCADE, -- Foreign Key
constraint with cascading options

FOREIGN KEY (emp id) REFERENCES Employee (emp id)

ON DELETE CASCADE ON UPDATE CASCADE -—- Foreign Key
constraint with cascading options

) 7

Note: & A composite primary key is defined on dept_no and emp_id to ensure unique
combinations.

i Foreign keys:

e dept_no references Department(dept_no).
e emp_id references Employee(emp_id).

i ON DELETE CASCADE ON UPDATE CASCADE ensures related rows are maintained or deleted
appropriately.

Practical 3:

Consider the following schemas: BOOK (Book_ID, Title, Publisher_ID, Year_of
Pub, Price) AUTHOR (Author_ID, Book ID, Author Name) PUBLISHER

(Publisher_ID, Book ID, Address, Name_of Pub, No._of Copies) Write a query in
SQL for the following:

(i) to create a table and insert some data and Find the name of authors whose books
are published by "ABC Press".

(ii) Find the name of the author and price of the book, whose Book_ID is '100'.

(iii) Find the title of the books which are published by Publisher_ID '20' and are
published in 2011.

(iv) Find the address of the publisher who has published Book ID "500".

CREATE DATABASE P1;

USE P1;

-- Create BOOK Table

CREATE TABLE BOOK (
Book ID INT PRIMARY KEY,
Title VARCHAR(100) NOT NULL,
Publisher_ID INT NOT NULL,
Year of Pub INT NOT NULL,

Price DECIMAL (10, 2) NOT NULL

-- Create AUTHOR Table
CREATE TABLE AUTHOR (
Author_ID INT PRIMARY KEY,
Book ID INT NOT NULL,
Author Name VARCHAR (100) NOT NULIL,
FOREIGN KEY (Book ID) REFERENCES BOOK (Book ID)

ON DELETE CASCADE ON UPDATE CASCADE

-- Create PUBLISHER Table

CREATE TABLE PUBLISHER (

Publisher ID INT PRIMARY KEY,

Book ID INT NOT NULL,

Address VARCHAR (255) NOT NULL,

Name of Pub VARCHAR (100) NOT NULL,

No of Copies INT NOT NULL,

FOREIGN KEY (Book ID) REFERENCES BOOK (Book ID)

ON DELETE CASCADE ON UPDATE CASCADE

-- Insert Sample Data
INSERT INTO BOOK (Book ID, Title, Publisher ID, Year of Pub, Price)
VALUES

(100, 'Book One', 20, 2011, 299.99),

(200, 'Book Two', 30, 2020, 499.99),

(500, 'Book Three', 20, 2015, 399.99);

INSERT INTO AUTHOR (Author ID, Book ID, Author Name)
VALUES

(L, 100, '"John Doe'),

(2, 200, 'Jane Smith'),

(3, 500, 'Alice Brown');

INSERT INTO PUBLISHER (Publisher ID, Book ID, Address, Name of Pub,
No of Copies)

VALUES
(20, 100, '123 Main St', 'ABC Press', 500),
(30, 200, '456 Elm St', 'XYZ Publishers', 300),

(10, 500, '123 Main St', 'ABC Press', 700);

select * from publisher;

-- Find Authors Published by "ABC Press":

SELECT DISTINCT A.Author Name

FROM AUTHOR A

JOIN BOOK B ON A.Book ID = B.Book ID

JOIN PUBLISHER P ON B.Publisher ID = P.Publisher ID

WHERE P.Name of Pub = 'ABC Press';

-- (ii) Find the Name of the Author and Price of the Book with Book_ID = 100
SELECT A.Author Name, B.Price

FROM AUTHOR A

JOIN BOOK B ON A.Book ID = B.Book ID

WHERE B.Book ID = 100;

-- (iii) Find Titles of Books Published by Publisher_ ID = 20 in 2011
SELECT B.Title
FROM BOOK B

WHERE B.Publisher ID = 20 AND B.Year of Pub = 2011;

-- (iv) Find Address of Publisher Who Published Book_ID = 500
SELECT P.Address
FROM PUBLISHER P

WHERE P.Book ID = 500;

Domain Types in SQL

Char (n). Fixed length character string, with user-specified length n.

Varchar(n). Variable length character strings, with user-specified maximum length n.
int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer domain type).

i

Numeric (p,d). Fixed point number, with user-specified precision of p digits, with
n digits to the right of decimal point.
Real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.
. Float (n). Floating point number, with user-specified precision of at least n digits.
. date: Dates, containing a (4 digit) year, month and date
a. Example: date 2024-7-27’

9. Time: Time of day, in hours, minutes and seconds.

a. Example: time ‘09:00:30’ time ‘09:00:30.75’
10. timestamp: date plus time of day

a. Example: timestamp 2024-7-27 09:00:30.75’
11. interval: period of time

o

(ol

a. Example: interval ‘1’ day
b. Subtracting a date/time/timestamp value from another gives an interval value
c. Interval values can be added to date/time/timestamp values

12. Operations on complex types:
a. Subtracting a date/time/timestamp value from another gives an interval value
b. Interval values can be added to date/time/timestamp values

c. Values of individual fields can be extracted from date/time/timestamp:
extract (year from r.starttime)

d. String types can typically be cast to date/time/timestamp: cast
<string-valued- expression> as date

Integrity constraints

Integrity constraints ensure that changes made to the database by authorized
users do not result in loss of data consistency.

Domain Constraints
1. A domain of possible values must be associated with every attribute in the database.
2. Declaring an attribute of a particular domain acts as a restraint on the values it can
take.

3. They are easily tested by the system. EX1: cannot set an integer variable to “cat”.

Data Integrity
1. Databases are used to store data

2. The data is used to create information which is needed for making decisions.
Therefore, we need to make sure that the data which is stored in the database
is correct and consistent. This is known as data integrity.

3. For relational databases, there are entity integrity and referential integrity
rules which help to make sure that we have data integrity

Attribute Integrity

Attribute integrity is not part of the relational model. It is used by database software
to help with data integrity. The software makes sure that data for particular fields is
of the correct type (eg letters or numbers) or the correct length

Entity Integrity

1. The entity integrity rule applies to Primary Keys. The entity integrity rule says
that the value of a Primary Key in a table must be unique and it can never
have no value (null)

2. Operations on the database which insert new data, update existing data, or delete
data must follow this rule

Referential Integrity

1. The referential integrity key applies to Foreign Keys. A relation schema may have
an attribute that corresponds to the primary key of another relation. The
attribute is called a foreign key.

2. The referential integrity key says that the value of a Foreign key must either be
null (ie have no value) or be equal to the value in the linked table where the
Foreign Key is the Primary Key

3. Ensuring that a value that appears in one relation for a given set of attributes
also appears for a certain set of attributes in another relation.

4. EX1: In a banking system, the attribute branch-name in Account-Schema is a
foreign key referencing the primary key of Branch-Schema.

Database Modification

—

. Inserting, deleting and updating can cause violations of referential integrity.
2. Therefore, the system must check that referential integrity is maintained when
you perform these operations.

3. If referential integrity is violated during these operations, the default action is
to reject the operation.

. Referential Integrity in SQL: Foreign Keys

. Foreign Keys are specified as part of the SQL ‘create table’ statement by using
the ‘foreign key’ clause.

SN

6. By default, foreign key references the primary key attributes of the referenced
table.

Cascading

-> When referential integrity is violated during a modification, instead of just
rejecting the modification, you can cascade:
€ Delete cascade
€ Update cascade
-> Delete Cascade
€ In a delete cascade, anything that has references to the deleted item is
also deleted.
-> Update Cascade
€ In an update cascade, when the updated item results in a violation of
referential integrity, the system will update accordingly to fix the problem.

Integrity Constraints in Create Table

Constraint restricts the values that the table can store. We can declare integrity
constraints at the table level or column level. In column-level constraints the constraint
type is specified after specifying the column data type i.e., before the delimiting comma.
Whereas in the table-level constraints the constraint type is going to be specified as
separate comma-delimited clauses after defining the columns.

There are six constraints

Not Null
Unique Key
Check
Primary Key
Foreign Key
Default

Sk

1. Not Null

If a column in a table is specified as Not Null, then it's not possible to insert a
null in such a column. It can be implemented with create and alter commands.
When we implement the Not Null constraint with the alter command there should
not be any null values in the existing table.

2. Unique Key
-> The unique constraint doesn’t allow duplicate values in a column. If the unique
constraint encompasses two or more columns, no two equal combinations are
allowed. Note: There is a different behavior in the following Relational Databases.
-> MS SQL Server: In this, we can insert one Row with a Null value against the
Unique Key constraint column.

= Oracle: In this, we can insert any number of Rows with a Null value against the
Unique Key constraint column. Please keep it in mind that two Null values are not
equal.

3. Check

Check constraint is used to restrict the values before inserting into a table.
4. Primary Key

=> The key column with which we can identify the entire Table is called as a primary
key column. A primary key is a combination of a Unique and a Not Null
constraint; it will not allow null and duplicate values. A table can have only one
primary key.

=> A primary key can be declared on two or more columns as a Composite Primary
Key.

5.Foreign Key

Columns defined as foreign keys refer the Primary Key of other tables. The Foreign Key
"points" to a primary key of another table, guaranteeing that you can t enter data into a
table unless the referenced table has the data already which enforces the REFERENTIAL
INTEGRITY. This column will take Null values.

6. Default

The DEFAULT constraint is used to insert a default value into a column.
The default value will be added to all new records, if no other value is specified.

Data Definition Language (DDL)
TABLE CREATION Syntax

CREATE TABLE <table name> (
<column_namel> <data type>[(<width>)]
[constraint <constraint name> <constraint type>],
<column_name2> <data type>[(<width>)],
<column_name3> <data type>[(<width>)],
<column_name4> <data type>[(<width>)],

<column_nameN> <data type>[(<width>)]

);

Example
Create table section (course_id varchar (8),
sec_id varchar (8) , Semester varchar (6),

Year numeric (4,0),

Building varchar (15),

room_number varchar (7),

Time slot id varchar (4),

Primary key (course_id, sec_id, semester, year),

Check (semester in ('Fall’, 'Winter’, 'Spring’, ‘'Summer’))

Create table person (ID char (10),
name char(40),
mother char(10),
father char(10),
primary key (ID),
foreign key father references person,
foreign key mother references person)

Create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20)
foreign key (dept_name) references department on delete cascade on update
cascade)

Create table Employee (
mpno number (4) constraint pk_emp primary key,
ename varchar2(50),
salary number(10,2),
hire_date date,
gender char(1l) constraint chk_gen check(gender in (M, 'F', 'm', '),
email varchar2(50) unique);

CREATE table Persons (
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255) DEFAULT 'Sandnes')

	# Integrity constraints
	# Domain Constraints
	
	 Data Integrity
	# Attribute Integrity
	# Entity Integrity
	# Referential Integrity
	# Database Modification
	 # Cascading
	1. Not Null
	2. Unique Key
	3. Check
	4. Primary Key
	5. Foreign Key
	6. Default
	## Data Definition Language (DDL)
	Example

