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ABSTRACT  

This paper introduces a trimetric methodology 
combining production diversity, correlation analysis, 
and absolute difference evaluations to assess the 
geographic diversity of wind and solar energy sites. 
Using data from Ameren Missouri’s prospective wind 
and solar expansions and coverage statistics that 
validate data completeness, the study evaluates how 
pairing sites across different locations can reduce 
simultaneous low-output hours and smooth out power 
generation. 

The production diversity component measures how 
often one site generates power while the other is idle, 
highlighting complementary behavior. Correlation 
coefficients reveal whether two sites tend to follow 
the same output patterns, while absolute differences 
quantify the magnitude of that variability over time. 
These metrics present a reproducible framework for 
identifying site pairs that minimize collective 
volatility and maximize overall efficiency. 

Key findings demonstrate that highly mismatched, 
low-correlation pairs (e.g., wind farms separated by 
hundreds of miles, or solar sites in distinct climates) 
consistently exhibit more stable combined output. 
This outcome supports regulatory and utility 
discussions about locating renewable infrastructure 
beyond local state lines, particularly where policy 
resistance exists. By rigorously quantifying site-level 
diversity, this approach equips utilities and regulators 
with actionable insights for optimizing 
geographically distributed renewables. 

 

INTRODUCTION 

Ameren Missouri faces a critical challenge in its 
renewable energy expansion: balancing regulatory 
preferences for in-state development with the 
demonstrated benefits of geographic diversity. While 
MISO has approved the utility’s renewable growth, 
skepticism persists about locating assets across state 
lines, despite evidence that distributed wind and solar 
sites can reduce volatility and enhance grid stability 
by leveraging complementary weather patterns. The 
crux of the issue lies in proving that specific 
out-of-state pairings offer measurable advantages 
over localized clusters. 

Despite widespread agreement on the value of 
geographic diversity, a systematic analytical 
framework for assessing how effectively two sites 
complement each other is still lacking. Much of the 
existing literature focuses on broad system-level 
models or provides generic guidelines for spacing 
wind and solar farms. Missing, however, is a 
replicable methodology that can zero in on specific 
site pairs and quantitatively measure (1) production 
diversity–how often one site produces when the other 
does not; (2) correlation–how synchronized or 
unsynchronized two sites’ energy outputs are; and (3) 
absolute differences–the magnitude of power output 
fluctuations. Each metric provides a distinct 
perspective on whether two locations are 
“geographically diverse” and how that diversity may 

 



 
 

translate into greater efficiency and operational 
reliability. 

Hence, this project introduces a tri-metric approach 
intended to identify and validate geographically 
diverse pairs of renewable energy sites in a practical, 
reproducible manner. Combining production diversity 
metrics, Pearson correlation coefficients, and 
absolute difference evaluations, the framework 
highlights which site pairings are most likely to 
smooth out each other’s energy dips, maintain 
consistent production, and reduce the risk of 
simultaneous low-output events. This is especially 
relevant for Ameren Missouri, which needs robust, 
data-driven arguments to justify the placement of 
renewables outside state lines. The theoretical 
framework driving this analysis lies in two central 
ideas: 

1.​ Diversity-Driven Stability: Sites in 
climatically distinct regions exhibit 
anti-correlated generation patterns, 
smoothing aggregate output. 

2.​ Quantifiable Complementarity: Statistical 
modeling (correlation coefficients, threshold 
analyses) can rank pairings by their diversity 
potential. 

Research Hypothesis 

●​ The proposed tri-metric framework reliably 
identifies highly diverse site pairings (e.g., 
pairs with low correlation and high 
mismatch). 

●​ Site pairs with greater geographic separation 
will exhibit stronger diversity metrics, 
compared to closely spaced pairs, due to 
reduced climatological overlap. 

Under the umbrella question, “How can we measure 
site-level geographic diversity and demonstrate that 
it enhances efficiency?” this project’s objectives 
include: 

●​ Defining a simple, data-driven approach for 
identifying whether two wind or solar farms 
exhibit sufficient diversity to warrant 
combined planning. 

●​ Quantifying how strongly or weakly 
correlated their power outputs are, how 
often they offset each other’s downturns, 
and whether large power differences 
consistently help the grid. 

●​ Generate evidence to inform Ameren’s 
cross-state siting negotiations with MISO 
and state regulators. 

Paper Structure 

Looking forward to the structure of this writing, 
Section 2 (Literature Review) provides an overview 
of prior work on geographic diversity for renewable 
energy. It highlights the theoretical basis for 
multi-site synergy, the economic justifications for 
distributed renewable installations, and the research 
gaps this study aims to fill. Section 3 (Methodology) 
details the tri-metric approach, explaining how data is 
collected, cleaned, and analyzed to measure 
production diversity, correlation, and absolute 
differences. Section 4 (Results) discusses the 
coverage of each site, followed by metrics for wind 
and solar pairs, culminating in insights on how 
distance and local climate shape output patterns. 
Section 5 (Discussion and Future Work) interprets the 
findings, addresses methodological limitations, and 
identifies potential areas for aggregate pair analysis 
and advanced correlation. Finally, Section 6 
(Conclusion) summarizes the project’s key 
takeaways, emphasizing the policy and practical 
ramifications for utilities like Ameren Missouri 
considering broader geographic deployment of 
renewables. 

By establishing a reproducible tri-metric 
methodology, this study aims to inform utility 
planners, support regulatory discussions, and 
illustrate how differently located renewable energy 
sites can collectively improve power reliability and 
efficiency. Suppose the results convincingly show 
that out-of-state projects complement in-state 
resources. In that case, Ameren Missouri may 
successfully navigate regulatory barriers and 
optimize its renewable expansion across a broader 
geographical spectrum. 

 

 



 
 

LITERATURE REVIEW 

1. Theoretical Background: Geographic Diversity in 
Renewable Energy 

The concept of geographic diversity has gained 
prominence in renewable-energy research as a means 
to mitigate the inherent variability of wind and solar 
power. By distributing generation sources over large 
areas, fluctuations in power output can be smoothed, 
helping to meet grid reliability and efficiency 
standards. Early systematic approaches to this idea 
date back to stochastic-geometry models and 
multi-dimensional analyses [1,10]. For example, 
Diakov employs a vector-based angle metric to assess 
how wind and solar generation align with load in 
high-dimensional space [1]. Although this 
perspective is valuable for system-wide balancing, it 
does not explicitly focus on diversity at the individual 
site-pair level.  

Meanwhile, applications of the Central Limit 
Theorem (CLT) underpin much of the rationale: 
aggregating multiple (partially) independent 
renewable generators reduces variability. Handschy et 
al. apply Monte Carlo simulations to hypothetical 
wind-farm arrays and show that the probability of 
simultaneous low-output events decreases 
exponentially as independent sites are added [5]. This 
highlights the benefit of dispersing wind farms over 
hundreds of miles to lower inter-site correlations.  

Together, these foundations demonstrate that 
geographic diversity can reduce short-term variability 
[10], diminish extremely low-generation events [5], 
and enhance overall system reliability [1]. However, 
most existing studies either focus on the entire power 
system or broad geographic expansions, without 
offering a simple, reproducible “tri-metric” 
framework tailored to practical, site-pair 
decision-making. 

 

2. Key Concepts 

2.1 Production Diversity  

Production diversity measures how often one site 
produces energy while another does not—a direct 
indicator of complementary behavior. Mills and 

Wiser analyze short-term insolation data across 
multiple solar sites and find that aggregated PV 
output smooths sub-hourly ramps [10]. A related 
“zero-output mismatch” metric is often applied to 
wind [4]. While these metrics highlight the value of 
non-synchronous generation, none unify mismatch 
hours with correlation and absolute differences in a 
single standardized framework.  

2.2 Correlation Analysis  

Correlation quantifies the linear relationship between 
outputs. Tutorials from Kent State University 
Libraries define Pearson’s r for this purpose [7], 
while the pandas documentation details its 
implementation [12]. In renewable-energy studies, 
low Pearson correlation between site pairs indicates 
higher diversity—if wind drops at Site A, Site B may 
remain stable [10,9]. Although rank-based measures 
(e.g., Spearman) can capture nonlinear dependencies 
[3], Pearson’s r remains the standard due to its 
interpretability and widespread tooling support.  

2.3 Absolute Power Differences  

Absolute power difference captures the magnitude of 
output discrepancies between sites. Mills and Wiser 
introduce “step changes” to gauge sub-hourly solar 
ramps [10], and Diakov’s angle metric similarly 
explores differences in multi-dimensional generation 
space [1]. Focusing on pairwise deltas—e.g., a 
consistent 0.05 MW output gap—yields an intuitive 
measure for site-level planning. Handschy et al. note 
that real-world correlations may temper assumed 
independence [5], but large absolute differences often 
signal valuable complementarity. 

 

3. Related Work 

3.1 Renewable Site Selection Strategies  

Policy and economics have long driven site selection. 
Gómez-Quiles applies modern portfolio theory to 
wind farms, showing a 5 % increase in annual returns 
when capacity is spread across multiple sites versus a 
single zone [4]. Ghorbani et al. argue that single-issue 
decarbonization overlooks broader sustainability 
dimensions (biodiversity, equity, local acceptance), 
advocating for globally inclusive yet locally adaptive 

 



 
 

siting [3]. While they don’t propose a tri-metric 
evaluation, their emphasis on regional context aligns 
with the need for metrics that go beyond energy 
output alone.  

3.2 Limitations in Existing Policies  

Utility-scale renewables often face regulatory 
barriers. Mills and Wiser observe that state-level 
policies can restrict the cost-saving potential of 
wide-area solar deployment [10]. Single-utility 
“monopsony” rules similarly limit aggregated 
wind-farm expansions [4]. Although the literature 
supports broad geographic dispersion [1,5,9], policy 
constraints still hamper implementation at the scale 
needed for maximum diversity benefits. 

 

4. Research Gaps and Contributions 

Despite ample evidence that geographic diversity 
enhances system reliability and can boost financial 
returns, most existing studies adopt either broad 
system-level models [1] or purely economic 
frameworks [4], without providing a simple, 
reproducible approach for individual site-pair 
evaluation. In particular, there is no unified method 
that simultaneously quantifies:  

1.​ Production Diversity: the frequency with 
which one site generates power while its 
partner is idle. 

2.​ Correlation Coefficients: the linear 
alignment or independence of their outputs.  

3.​ Absolute Differences: the magnitude and 
frequency of their output discrepancies. 

By merging these three metrics into a single 
framework, we can capture complementary behavior 
(mismatch), linear synergy or divergence 
(correlation), and the scale of variability (absolute 
delta) in one analysis. Applying this “tri-metric” 
approach to Ameren Missouri’s prospective wind and 
solar expansions enables straightforward ranking and 
optimization of site pairs, directly addressing 
stakeholders’ need for practical, site-level decision 
support.  

Moreover, while some authors touch on aggregate 
variability, such as combined standard deviations or 

coefficients of variation [5,10], they stop short of 
standardizing these into a replicable procedure for 
utilities. Nor do they explore how incorporating 
alternative correlation measures (e.g., Spearman’s ρ) 
might refine evaluations in the presence of nonlinear 
dependencies [3]. Our study fills these gaps by:  

-​ Providing a step-by-step, Python-friendly 
workflow for computing all three metrics on 
any pair of time-series generation datasets. 

-​ Demonstrating the approach on 
Ameren-sourced wind and solar data to 
show how out-of-state pairings yield fewer 
correlated dips. 

-​ Extending the methodology to include 
optional rank-based correlation calculations 
and combined‐variability aggregations for 
robust, year-to-year planning. 

Novelty and Significance This tri-metric framework 
goes beyond traditional single-metric studies by 
delivering a reproducible, site-focused tool that 
regulated utilities can immediately adopt. It 
quantitatively illustrates how geographic dispersion 
reduces joint low-output events and smooths overall 
power delivery, directly confronting policy barriers 
that favor in-state siting [10]. By offering clear, 
data-driven evidence that out-of-state sites can 
outperform local ones on diversity metrics, our 
approach equips MISO, regulators, and local 
communities with actionable insights to support more 
geographically diverse renewable deployments. 

 

METHODOLOGY 

Data Collection and Preprocessing 

This section outlines the data sources, preprocessing 
procedures, and power output estimation techniques 
used to analyze geographic diversity in solar and 
wind energy production across the United States, 
specifically, the Midwest. 

We collected historical solar and wind data from 
multiple locations spanning 2018 to 2023 [11, 8]. For 
solar energy, we sourced high-resolution irradiance 
and meteorological data from the National 
Renewable Energy Laboratory’s National Solar 

 



 
 

Radiation Database (NSRDB), which offers hourly 
records at 2 km spatial and 10-, 30-, or 60-minute 
temporal resolution [11], providing a robust and 
standardized foundation for solar energy analysis. 

For wind energy, we utilized the Meteostat Python 
library to access historical weather records—wind 
speed and air temperature—from thousands of 
stations worldwide [8], making it a trusted source for 
wind modeling. 

Each dataset includes key environmental variables 
necessary for power estimation—Direct Normal 
Irradiance (DNI), Diffuse Horizontal Irradiance 
(DHI), and wind speed—along with timestamps and 
site metadata. 

Data Preprocessing Steps 

The data preprocessing stage consisted of several 
critical steps to ensure consistency, accuracy, and 
relevance across all sites: 

●​ Fetching Data:​
Solar and wind datasets were 
programmatically retrieved for each site 
using API credentials stored in a secure 
Excel file. This streamlined process ensured 
reproducibility and traceability of the data 
collection workflow. 

●​ Time Standardization:​
All datetime values were converted to a 
uniform format and adjusted for local time 
zones when appropriate. This allowed for 
accurate temporal alignment across 
geographically diverse sites. 

●​ Filtering Operational Hours:​
To focus on periods of meaningful energy 
production: 

○​ For solar sites, we retained only 
experimental daylight hours 
(07:00–19:00). 

○​ For wind sites, we retained all 
operational hours, reflecting the 
24/7 nature of wind energy 
generation. 

●​ Cleaning and Calculating Power Output:​
Raw environmental variables were used to 
estimate power output for both solar and 
wind using standardized, academically 
validated approaches: 

○​ Solar Power Calculation:​
Power output was estimated using 
the sum of Direct Normal 
Irradiance (DNI) and Diffuse 
Horizontal Irradiance (DHI) rather 
than Global Horizontal Irradiance, 
to avoid needing the exact tilt for 
every station (we assume panels 
remain perpendicular to the sun or 
use sun-tracking). An assumed 
panel efficiency of 21% and a 1 m² 
area yields: 

Power = (DNI + DHI) × Efficiency 
× Area 

■​ This conversion method 
aligns with established 
solar PV modeling 
practices [2, 13]. 

■​ Note: moving to true 
global irradiance by 
incorporating measured 
panel tilt is flagged as 
Future Work. 

○​ Wind Power Calculation:​
Wind speeds (measured in meters 
per second) were mapped to power 
output using a standardized turbine 
power curve based on industry 
models and academic methods [6]. 

○​ Scaling and Normalization:​
Estimated outputs were converted 
to megawatts (MW) to ensure 
consistency across all sites and 
energy types. Unit normalization 
allowed for valid comparisons. 

●​ Ensuring Data Completeness:​
To assess data quality and availability, we 
generated coverage statistics for each site. 

 



 
 

These statistics quantify the proportion of 
valid records over the analysis period and 
provide transparency regarding data gaps 
and reliability. (See Coverage Data in the 
subsection below.) 

Coverage Data 

In addition to the basic data cleaning steps, we 
compiled coverage statistics for each site to quantify 
the proportion of hours that contained valid data. This 
coverage data was collected in separate CSV files for 
both solar and wind packages (e.g., 
yearly_coverage_stats.csv). Each file indicates, for 
every site and year: 

●​ ActualHours: Number of hours where data 
was successfully retrieved and validated. 

●​ ExpectedHours: Number of hours expected 
for that year (e.g., 8,760 for a non–leap 
year). 

●​ CoveragePercent: (ActualHours / 
ExpectedHours) × 100%. 

Locations with CoveragePercent below a 
predetermined threshold (80% in this study, based on 
visual inspection and data stability needs) were 
flagged for caution. This threshold balances data 
reliability with the desire to retain enough sites for 
meaningful comparison. 

Note: The Results section highlights how coverage 
data is used to adjust visualization opacity or 
otherwise annotate sites with lower coverage, 
enabling readers to interpret the data’s reliability and 
completeness. 

 

Determining Geographic Diversity 

Geographic diversity analysis identifies location pairs 
with complementary power output patterns through 
three analyses: Production, Correlation, and Absolute 
Difference Evaluation. 

1. Production Analysis: Wind vs. Solar 

This analysis evaluates how geographic diversity 
impacts renewable energy production by identifying 

instances where one site produces power while 
another does not. Wind and solar are analyzed 
separately due to fundamental generation differences. 

A. Wind Production Analysis (Zero Output 
Comparison) 

Wind production can drop to zero when speeds are 
insufficient. This analysis highlights complementary 
pairings where one location produces power while 
another fails to meet the threshold. 

Method: 

●​ Compare hourly power outputs for location 
pairs (e.g., Howard, IA vs. Atchison, MO). 

●​ Define zero-output hours as time intervals 
where power output strictly equals 0 MW 
(no generation). This absolute threshold 
identifies complete production stoppages. 

●​ Visualize mismatches (see Figure X) and log 
instances where one site produces while the 
other is at zero. 

​
Figure X: Hourly power outputs (May 13–17, 2023) 
for Howard, IA (blue) and Atchison, MO (orange). 
Red highlights indicate zero-output 
mismatches—critical for geographic diversity 
assessment. 

Metrics Generated: 

●​ Total Hours with Zero-Output Mismatch  

●​ Percentage of Mismatch Hours  

●​ Total Available Hours from data sources 

 



 
 

Interpretation:​
Pairs with higher mismatch percentages exhibit 
stronger geographic diversity, ensuring more 
consistent generation when one site underperforms. 

B. Solar Production Analysis (Baseline Performance 
Comparison) 

Unlike wind, solar plants rarely have zero output 
during daylight hours. Instead, variability arises due 
to cloud cover, atmospheric turbidity, and seasonal 
changes. This analysis assesses solar diversity by 
comparing actual solar output to a clear-sky baseline 
model supplied by the NSRDB, which represents 
expected performance under ideal conditions. 

Method: 

●​ Compare hourly power output for each 
location pair against a modeled clear-sky 
irradiance baseline (see Figures Y and Z). 

●​ Log a mismatch if one site matches its 
clear-sky baseline (ideal production) while 
the other deviates. 

 

Figure Y: Cass County actual vs. clear-sky solar 
output (June 28), to which no gaps are seen, 
indicating perfect alignment with Cass County’s 
actual output to expected (ideal). 

 

Figure Z: Cape Girardeau actual vs. clear-sky solar 
output (June 28). Highlighted regions show 
mismatches where one site meets baseline while the 
other underperforms. 

Metrics Generated: 

●​ Total Hours of Mismatch 

●​ Percentage of Mismatch Hours 

●​ Total Available Hours 

Interpretation:​
A higher percentage of mismatch hours indicates 
stronger geographic diversity in solar production. 
Figures Y and Z illustrate this phenomenon: when 
one site maintains near-ideal output (e.g., Cass 
County's close alignment with clear-sky baseline), 
while another shows significant deviations (e.g., 
Cape Girardeau's early dips), the pair demonstrates 
complementary generation patterns. This metric 
avoids false diversity signals from nighttime 
non-production. 

2. Correlation Analysis 

This analysis quantifies how similarly power outputs 
behave at different sites using the Pearson correlation 
coefficient (*r*), which measures the strength and 
direction of linear relationships between two datasets 
[7]. 

Why Pearson? 

●​ Python Default: Pandas/NumPy uses 
Pearson as the default correlation method 
(df.corr()), making it computationally 
efficient and widely adopted [12]. 

●​ Interpretability: Pearson’s *r* clearly 
indicates: 

○​ r ≈ 1: Near-perfect positive 
correlation (sites produce power 
similarly).  

○​ r ≈ 0: No linear relationship (sites 
vary independently, suggesting 
diversity).  

 



 
 

○​ r < 0: Inverse correlation (rare for 
renewables; one site’s high output 
aligns with another’s low output). 

●​ Alignment: Solar/wind outputs tend to have 
positive correlations (since weather systems 
affect nearby regions similarly), but 
geographic spread can reduce this effect. 

Method: 

●​ Compute Pearson’s *r* for hourly power 
outputs of each site pair.  

●​ Analyze multiple years of data to capture 
long-term trends (avoiding short-term 
noise). 

Metrics Generated:  

●​ Pearson Correlation Coefficient (*r*) value 
and experimental value interpretation. 

○​ *r* > 0.7: High similarity (low 
diversity). 

○​ 0.3 < *r* < 0.7: Moderate similarity 
and potential geographic diversity. 

○​ *r* < 0.3: Good geographic 
diversity. 

Interpretation:  

●​ Low/negative *r* indicates strong diversity 
(e.g., clouds over Site A but clear skies at 
Site B).  

●​ Why negative *r* is rare: Solar/wind outputs 
rarely oppose each other 
completely—regional weather patterns 
typically create, at best, weak positive 
correlations. 

3. Absolute Difference Evaluation 

This analysis measures how much and how often 
power outputs diverge between sites, complementing 
correlation by quantifying magnitude gaps rather than 
just patterns. 

Method: 

●​ Hourly Absolute Differences: 

○​ Calculate |Site_A - Site_B| each 
hour (see Figure A for wind sites 
Atchison, MO vs. Howard, IA). 

○​ Figure B shows these differences 
over time, with peaks indicating 
significant mismatches. 

 

Figure A: Hourly power outputs for Atchison, MO 
(blue) vs. Howard, IA (orange), May 13–17, 2023. 
Gaps between lines represent absolute differences. 

●​ Experimental Threshold Filtering: 

○​ Solar: Flag differences > 0.00005 
MW (sensitive to small PV 
variations). 

○​ Wind: Flag differences > 0.05 MW 
(accounts for turbine scalability). 

 

Figure B: Atchison, MO vs. Howard, IA Absolute 
differences (MW) over time. The red dashed line 
marks the wind experimental threshold (0.05 MW); 
peaks above it indicate significant mismatches. 

Metrics Generated: 

 



 
 

●​ Hours Above Threshold: Total count of 
meaningful deviations. 

●​ Percentage of Hours Above Threshold 

Interpretation:  

●​ High values suggest strong geographic 
diversity:  

○​ Example: Figure B's peaks (>0.05 
MW) show hours where one site 
significantly outperformed the 
other.  

●​ Low values indicate consistent output parity 
and suggest balanced generation (even if 
correlation is weak). 

 

Visualization and Output 

The outputs from these three analyses are CSV files 
containing all key metrics and results, which can be 
used to recreate any scatter plots, bar charts, or other 
visualizations presented here (or to build new ones). 
Note that the packaged graphs themselves aren’t 
included in the reproducible repository, but the CSVs 
are supplied for full rebuild capability. Additionally, 
interactive Plotly maps were developed to show how 
solar irradiance and wind speed change over daily, 
weekly, monthly, and yearly intervals, helping to 
intuitively explore site relationships and identify the 
most geographically diverse location pairs visually. 

Key Visual Outputs:  

●​ Production Analysis: CSVs with wind 
power mismatch metrics and solar output vs. 
clear-sky baseline; visualizations can 
include threshold-based or time series plots. 

●​ Correlation Analysis: CSVs with solar and 
wind correlation metrics; potential 
visualizations include heatmaps and scatter 
plots showing correlation vs. distance. 

●​ Absolute Difference Evaluation: CSVs 
detailing absolute difference distributions; 
visualizations can include boxplots, 
histograms, or time series for selected site 
pairs. 

Data & Code Ownership  

The entire reproducible analysis package (CSV data, 
scripts, notebooks) was developed for this study but 
remains the intellectual property of Ameren 
Innovation Center; Ameren retains all ownership 
rights. 

 

Summary of Methodology 

This tripartite approach—production mismatches, 
correlation strength, and difference 
magnitude—systematically identifies site pairs that 
maximize geographic diversity. The visual outputs 
transform complex metrics into actionable insights 
for:  

●​ Grid reliability: Prioritizing pairs that 
minimize simultaneous generation drops.  

●​ Efficiency: Allocating resources to sites with 
complementary output profiles. 

 

RESULTS  

1. Data Coverage and Reliability 

Validating data completeness is essential before 
interpreting production or correlation metrics. We 
assessed coverage gaps using two heatmaps—one for 
wind sites from Meteostat (Figure 1a) and one for 
solar from the NSDRB (Figure 1b)—which quantify 
the percentage of available hourly data per site per 
year. 

 

 



 
 

Figure 1a: Wind data coverage heatmap 
(2018–2023). Carroll, AR (2018–2020) shows critical 
gaps (0% coverage), while Howard, IA, and Illinois 
sites maintain ≥90% coverage. Most locations 
achieve ≥95% by 2021. 

 

Figure 1b: Solar data coverage heatmap (2019–2022). 
All Missouri/Illinois sites maintain near-complete 
coverage (≥99.7%), ensuring high reliability for solar 
analyses. 

For low-coverage wind sites (e.g., Carroll, AR), we: 

●​ Reduced their weight in the visualizations 
(alpha transparency). 

●​ Subject them to scrutiny in our tripartite 
approach and metrics generated for the 
affected years. 

Conclusion: With ≥95% coverage for most of the 
site-years, the dataset supports robust analysis of 
production diversity, correlation, and absolute 
differences. 

 

2. Production Diversity (Zero Output and Mismatch 
Analyses) 

2.1 Wind Production Diversity 

Wind farms frequently experience zero-output hours 
when wind speeds fall below operational thresholds. 
Our analysis quantifies how effectively site pairs 
compensate for these gaps by identifying hours where 
one site generates power while the other is idle. 

 

Figure 2a: Wind production diversity across site 
pairs (2018–2023). Atchison, MO & McLean, IL, 
lead with 17.55% mismatch hours (9,230 hours), 
demonstrating strong complementarity. 

 

Figure 2b: Production diversity vs. distance between 
sites, with a line of best fit added to clarify the overall 
trend. Most lower outliers involve Carroll, AR 
(coverage < 5% in 2018–2020), which pulls down the 
diversity metrics. 

Key Findings: 

●​ Top performers: 

○​ Atchison, MO & McLean, IL 
(17.55% mismatch) and Atchison, 
MO & Monroe, IL (16.81%). 

○​ These pairs show consistent 
complementarity during low-wind 
events. 

●​ Distance Relationship: 

○​ Diversity generally increases with 
distance (Figure 2b trendline). 

○​ Outlier Note: Pairs with Carroll, 
AR (e.g., Atchison, MO & Carroll, 

 



 
 

AR) underperform due to poor data 
coverage, not a true lack of 
diversity. 

Interpretation:  

High mismatch percentages indicate sites that 
stabilize aggregate output—when one falters, the 
other often produces. This is particularly valuable for:  

●​ Grid Reliability: Reducing coincident 
downtime.  

●​ Resource Planning: Prioritizing pairs like 
Atchison-McLean for joint deployment. 

 

2.2 Solar Production Diversity 

Unlike wind farms, solar sites rarely drop to zero 
output during daylight hours. Instead, diversity 
emerges from mismatches in cloud cover and 
atmospheric conditions, measured by deviations from 
clear-sky baseline generation. 

Figure 3a: Solar absolute difference diversity 
(2019–2022). Cape Girardeau, MO & Cass County, 
IL, lead with 28.49% mismatch hours (4,991 hours), 
where one site met clear-sky targets while the other 
underperformed. 

Figure 3b: Diversity vs. distance for solar pairs. The 
positive trend confirms that spacing sites extensively 
enhances mismatch frequency, with optimal gains at 
150–200 miles. 

Key Findings: 

●​ Top performers: 

○​ Cape Girardeau, MO & Cass 
County, IL (28.49% mismatch). 

○​ Reform Callaway, MO & White, IL 
(27.31%). 

○​ These pairs show resilience to 
localized cloud cover. 

●​ Distance Relationship: 

○​ Sites spaced closely show limited 
diversity, as they frequently 
experience similar cloud cover and 
irradiance conditions. 

○​ Diversity increases steadily with 
distance, peaking for pairs 150–200 
miles apart (22–28% mismatch). 
Beyond 200 miles, gains a small 
plateau, suggesting an optimal 
range for Midwest solar 
deployments. 

Interpretation:  

High mismatch percentages (>20%) indicate:  

●​ Microclimate Leverage: Cloud systems 
often miss one site while hitting another.  

 



 
 

●​ Grid Benefits: Closer pairs see fewer 
mismatch hours, possibly limiting resilience 
benefits. 

 

3. Correlation Analysis 

Correlation quantifies how similarly two sites' power 
outputs fluctuate. Lower Pearson coefficients (r) 
indicate stronger geographic diversity, as sites are 
less likely to experience simultaneous production 
dips. 

3.1 Correlation Results 

Figure 4a: Wind correlation coefficients 
(2018–2023). Atchison, MO & Monroe, IL show 
notably low correlation (r=0.25), making them ideal 
complements. 

Figure 4b: Solar correlation coefficients 
(2019–2022). Cape Girardeau, MO & Cass County, 
IL (r=0.64) offer moderate diversity, while Cape 
Girardeau & White, IL (r=0.81) are nearly 
synchronized. 

Key Findings:  

●​ Wind:  

○​ High-diversity pairs: Atchison, MO 
& Monroe, IL (r=0.25) and 
Howard, IA & Carroll, AR (r=0.28) 
(Up to be discarded due to Carroll’s 
data coverage gaps). 

○​ Low-diversity pairs: McLean, IL & 
Piatt, IL (r=0.85) and Piatt, IL & 
Monroe, IL (r=0.59). 

●​ Solar:  

○​ Relatively high-diversity pairs: 
Cape Girardeau, MO & Cass 
County, IL (r=0.64) and Reform 
Callaway, MO & White, IL 
(r=0.66). 

○​ Relatively low-diversity pairs: Cass 
County, IL & Warren, MO (r=0.79) 
and Cape Girardeau, MO & White, 
IL (r=0.81). 

3.2 Correlation vs. Distance 

Figure 5a: Wind correlation declines sharply as 
distance increases. 

Figure 5b: Solar correlation declines moderately as 
distance increases. 

Interpretation:  

●​ Wind:  

 



 
 

○​ Strong distance effect: Wind 
patterns vary significantly between 
spaced-out sites. 

○​ Exception: Local terrain (e.g., river 
valleys or plains) can override 
trends.  

●​ Solar:  

○​ Cloud cover variability drives 
moderate correlations even at 
shorter distances. 

 

4. Absolute Difference Evaluation 

This analysis identifies how frequently and 
dramatically two sites' power outputs diverge—a 
critical measure of their ability to compensate for 
each other's fluctuations. 

4.1 Hours Above Threshold 

We quantify how often absolute power output 
differences exceed experimental thresholds: 

●​ Wind: >0.05 MW 
●​ Solar: >0.00005 MW 

 

Figure 6a: Wind absolute difference diversity 
(2018–2023). Atchison, MO & Piatt, IL lead with 
10.97% of hours (5,769) exceeding the 
threshold—ideal for offsetting low-wind events. 

 

Figure 6b: Solar absolute difference diversity 
(2019–2022). Cape Girardeau, MO & Cass County, 
IL, show the highest variability (17.61% of hours), 
demonstrating cloud-cover resilience. 

Key Findings:  

●​ Wind:  

○​ High-diversity pairs: Atchison, MO 
& Piatt, IL, and Howard, IA & 
Piatt, IL. 

○​ Low-diversity pairs: McLean, IL & 
Piatt, IL, and Schuyler, MO & 
Carroll, AR (Low coverage pair). 

●​ Solar:  

○​ Relatively high-diversity pairs: 
Cape Girardeau, MO & Cass 
County, IL, and Reform Callaway, 
MO & White, IL. 

○​ Relatively low-diversity pairs: Cass 
County, IL & Warren, MO, and 
Cape Girardeau, MO & White, IL. 

Distance Relationship: 

 

 



 
 

Figure 7a (Wind): Diversity has a general upward 
trend, but is scattered along with outlier values of low 
coverage pairs (Carroll, AK). 

 

Figure 7b (Solar): Strong positive trend, with optimal 
gains at 150–200 miles (25–35% threshold hours). 

Interpretation:  

●​ Wind:  

○​ Atchison, MO & Piatt, IL (10.97% 
threshold hours) show strong 
complementary generation – when 
one underperforms, the other 
compensates by >0.05 MW ~11% 
of the time 

○​ Optimal spacing: >200 miles, 
especially across state lines. 

●​ Solar:  

○​ Cape Girardeau, MO & Cass 
County, IL (17.61% threshold 
hours) demonstrate cloud-cover 
resilience, with one site offsetting 
the other by >0.00005 MW ~18% 
of daylight hours. 

○​ Optimal spacing: 150-200 mile 
spacing, across state lines. 

 

Summary of Results 

Our analysis confirms that geographic diversity is a 
powerful tool for stabilizing renewable energy 

generation. Wind farm pairs like Atchison, MO, and 
Monroe, IL, with their low correlation (r=0.25) and 
high production mismatch (15.2% of hours), 
demonstrate how strategic siting can create 
complementary generation profiles. Similarly, solar 
pairs such as Cape Girardeau, MO, and Cass County, 
IL, achieve significant production offsets (17.61% 
threshold hours), effectively mitigating localized 
cloud cover impacts. These high-performing pairs 
contrast sharply with closely clustered sites like 
McLean, IL, and Piatt, IL (r=0.85), which exhibit 
nearly synchronized output patterns and minimal 
diversification benefits. Energy planners can now 
identify optimal site pairings that maximize grid 
reliability by systematically evaluating production 
mismatches, correlation coefficients, and absolute 
differences. This tri-metric approach provides utilities 
like Ameren Missouri with data-driven evidence to 
advocate for strategically distributed renewable 
assets, particularly across state lines where weather 
patterns diverge most significantly. The results 
underscore a critical opportunity: Renewable 
portfolios across diverse geographies can reduce 
reliance on fossil fuel backups while maintaining 
more consistent power delivery. 

 

DISCUSSION AND FUTURE WORK 

Discussion 

Interpretation of Findings 

1.​ Variability Reduction in Select Pairs​
Several site pairings exhibit low correlation 
and high mismatch hours, implying they do 
not slump simultaneously. Notably, 
Atchison, MO & Monroe, IL (wind) and 
Cape Girardeau, MO & Cass County, IL 
(solar) are prime examples of geographic 
diversity. This mitigates sudden drops in 
total output, potentially reducing reliance on 
costly reserves. 

2.​ Geographic Distance: Helpful but Not 
Absolute​
While distance correlates negatively with 
output similarity, local climate zones can 
override pure distance. Some solar pairs 

 



 
 

100–150 miles apart remain moderately 
correlated; conversely, pairs 300–400 miles 
apart can remain surprisingly in sync if they 
share similar weather patterns. 

3.​ Diversity vs. Integration Challenges​
Large absolute differences can minimize 
joint lulls, but they might produce sharper 
combined ramps. Operators must balance 
the benefit of offsetting dips against the cost 
of volatile or “peaky” aggregates. 

Theoretical Contributions 

1.​ Empirical Methodology for Site 
Complementarity​
This study provides a structured, tri-metric 
framework by merging zero-output 
mismatch analysis, correlation, and absolute 
difference. Previously, much analysis 
occurred at a broad system scale (Diakov, 
2012) or hinged on single metrics like 
correlation or step changes. 

2.​ Foundation for Aggregate Pair Analysis​
Although the current approach focuses on 
mismatch frequencies and correlation, it sets 
the stage for advanced aggregate metrics, 
such as standard deviation of combined 
outputs, coefficient of variation, and 
aggregated low-output hours, indicating how 
pairs behave as a unit. 

Practical Implications 

1.​ Data-Driven Site Selection​
Utility planners can systematically rank 
potential site pairs by mismatch percentages, 
correlation coefficients, and absolute 
differences. Instead of broad climate 
assumptions, they obtain empirical synergy 
indicators for each pair. 

2.​ Informed Renewable Energy Policy​
Out-of-state renewable projects may 
overcome local regulatory resistance if data 
shows that such sites effectively offset 
in-state shortfalls. This supports 
cross-border expansions and the rethinking 

of state-centric restrictions that hamper grid 
stability. 

3.​ Infrastructure and Grid Planning​
Where synergy is high, additional 
transmission lines or storage might be 
cost-effective. Conversely, pairs with 
minimal synergy do not merit robust 
interconnection unless additional factors 
(e.g., local load) justify it. 

Limitations 

1.​ Grid Integration​
The study does not incorporate transmission 
constraints, real-time load matching, or 
economic dispatch modeling. Thus, 
feasibility remains partially theoretical until 
grid operators account for the costs of 
connecting these distant sites. 

2.​ Historical Weather Dependence​
The analysis relies on 2018–2023 data. 
Future climate patterns (e.g., increasingly 
frequent extreme weather) could shift 
synergy levels. Regular reassessment with 
updated data is needed. 

3.​ Scope: Wind & Solar​
The tri-metric approach is valid for major 
renewables but does not yet include hydro, 
geothermal, or energy storage. Expanding 
the method to multi-resource synergy would 
deepen its applicability. 

Future Work 

1. Efficiency Analysis Using Aggregate Pair Analysis 

Evaluating Site Pair Stability Using Aggregate 
Standard Deviation, Coefficient of Variation, and 
Low-Output Hours: 

●​ If Std_Aggregate < each site’s std dev, 
pairing reduces volatility. 

●​ If CV_Aggregate < site CVs, the combined 
output stabilizes more effectively. 

 



 
 

●​ If Low_Output_Hours_Aggregate < that of 
each site individually, the pair significantly 
cuts blackout risks. 

2. Advanced Correlation Metrics 

Spearman Rank or Mutual Information could detect 
non-linear or more complex dependencies. Where 
wind speed or solar irradiance forms nonlinear 
relationships, these measures might expose 
complementary patterns overlooked by Pearson’s r. 

3. Refined “Three-Pronged” Approach 

Alongside absolute difference, consider net 
difference (ensuring consistent coverage) and 
efficiency (aggregated total production). Even high 
diversity can be unhelpful if the pair lacks adequate 
overall generation. 

4. Real-Time Data Integration 

Moving from historic data to live monitoring or 
frequent updates would allow dynamic site pairing to 
reflect seasonal or even weekly weather shifts, 
optimizing scheduling and grid dispatch. 

5. Global Solar Irradiance Calculation  

Springer defines Total Radiation as the “sum of beam 
and diffuse radiation,” and Global Radiation as “the 
sum of direct, diffuse, and reflected radiation” [13]. 
Incorporating Global Radiation into our solar power 
estimates would account for ground-reflected 
irradiance and better capture real-world panel 
performance. In this study, however, we did not use 
Global Radiation because we lacked data on panel tilt 
angles and surface albedo needed to model reflected 
components, so we approximated solar output using 
only Direct Normal Irradiance (DNI) + Diffuse 
Horizontal Irradiance (DHI) or Total Radiation. 

6. Ongoing Package Configurability 

The existing analysis packages for wind and solar can 
gain: 

●​ Aggregate Pair Analysis Modules—to 
display aggregated standard deviations, 
CVs, and low-output hours. 

●​ Flexible Correlation Options—(Pearson, 
Spearman, etc.). 

●​ Enhanced Visualization, interactive 
dashboards for stakeholders, and policy 
briefings. 

 

CONCLUSION 

The analyses presented in this study confirm that 
geographic diversity plays a pivotal role in improving 
renewable energy reliability and overall generation 
stability. By employing a tri-metric approach, this 
research offers a structured framework for identifying 
which site pairings are most likely to offset each 
other’s downturns and deliver a more continuous 
energy supply. Notably, certain wind pairs (e.g., 
Atchison, MO & Monroe, IL) demonstrate strong 
mismatch hours and low correlation, indicating true 
complementarity. In the solar domain, Cape 
Girardeau, MO & Cass County, IL, exemplify how 
sites 100–200 miles apart can produce markedly 
different generation patterns that collectively smooth 
power output. 

The implications for utilities and policymakers are 
extensive. First, local or state-bound restrictions may 
reduce the full potential benefits of renewables if 
high-potential out-of-state sites are barred or 
discouraged. Second, a data-driven tri-metric 
methodology allows for transparent ranking and 
selection of site pairs, ensuring decisions are rooted 
in empirical evidence rather than broad assumptions 
about climate zones. Third, the methodology can be 
expanded beyond wind and solar to include hydro, 
geothermal, or even hybrid resources, as long as 
reliable hourly (or sub-hourly) data are available. 

Looking forward, integrating real-time data—or at 
least frequently updated data streams—would allow 
continuous optimization of site pairing and power 
scheduling. Moreover, advanced correlation measures 
and aggregate pair analysis can refine the framework 
further, potentially leading to a robust tool for grid 
operators. Ultimately, these approaches can 
strengthen the argument for widely distributed 
renewable projects, reduce the risk of simultaneous 

 



 
 

low-output periods, and help utilities cost-effectively 
meet sustainability goals. 

This research provides a concrete, reproducible 
methodology to evaluate the reliability and 
complementarity of wind and solar site pairings. As 
utilities and regulators confront the twin challenges 
of climate variability and policy constraints, this 
tri-metric approach offers a practical tool to guide 
siting decisions that balance resilience, efficiency, 
and regulatory acceptance. 
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