
GSoC 2019 Project Proposal

ARTful Buffer Manager
Objective

The main goal of this project is to implement and evaluate an adaptive radix
tree as an alternative to the current underlying data structure of PostgreSQL’s buffer
manager. ART is a space efficient data structure that supports fast lookup operation,
provides data locality and preserves order.

Introduction
Application-level memory management is an essential activity in every

user-space program, despite the applied allocation strategy or the tasks to be solved.
Relational database management systems(RDBMS) are not an exception, on the
contrary, notably attentively try to operate accessible resources. One of the major
components of disk-oriented RDBMS is a buffer manager, which main goal is to
minimize the number of block transfers between the disk and memory. Traditionally, a
data structure such as a hashtable is used for this purpose, mainly, due to its ability to
efficiently convert sparse keys into dense array indexes and provide fast lookup.
Unfortunately, typical hashtable does not preserve order and has poor data locality -
properties, that can be useful during data integrity ensuring process and relation or
index removal.

PostgreSQL uses Write-Ahead-Logging(WAL) mechanism to guarantee
reliable operation that significantly reduces the number of disk writes because only the
log file needs to be flushed to disk to guarantee that a transaction is committed. To
keep log file small and decrease system recovery time after crush, all changes to data
files must be saved. To do that, a special checkpoint process marks all dirty(changed)
buffers, performs sorting and flushes them to disk. Sorting part can be eliminated if an
underlying structure can preserve order.

Another problem, that can be solved by a data structure with data locality, is
deletion or truncation of an existing relation. Currently, the whole hashtable must be
scanned in order to remove buffers that belong to the interested object. Taking into
account the memory size of modern server machines, this can be a fairly expensive
operation. Moreover, typical hashtable does not optimally utilize CPU cache lines and
the Translation Lookaside Buffer that leads to cache misses.

With above being said, i would like to introduce a data structure that provides
properties, stated in project objective - Digital/Radix Tree. Early explorations of
digital trees apparently discarded them as memory pit not worth pursuing further, but
a lot of studies have been made in the area since, namely Judy Array[0], Generalized
prefix trees[1], KISS-tree[2], ART[3], HOT[4], etc. The digital tree can be used to
index arbitrary data, requires no rebalancing operation, stores keys implicitly and its
height depends on the length of the keys.



Project Description
The goal of this project is to implement and evaluate digital tree as a base data

structure for buffer management in PostgreSQL. The digital tree consists of two types
of nodes: inner(intermediate) nodes and leaf(data) nodes. Span is a S bit chunk of the
key is used as the index into an array of inner node. The most efficient representation
of an inner node is an array of 2S pointers that point to the next layer of inner nodes or
data itself. Such representation determines the next child node without additional
comparisons, but, unfortunately, can consume a lot of memory in case of sparse input
keys. Span size is critical for the performance, as it determines the height of the tree
for a given key. K bit keys imply ceil(K/S) levels of inner nodes.

Currently, BufferTag structure in PostgreSQL that is used for disk page
identification occupies 20 bytes, so for a span of 1 byte, the height of the tree will be
20, which, in turn, will have large memory footprint. Due to this reason, adaptive
radix tree[3] will be used as a basis for development, since the Linux kernel variant[6]
is less space efficient (comparison provided in [3]). ART utilizes path compressions
and lazy expansion to reduce the average height of the tree. Four inner node types,
named according to their maximum capacity, are used to map partial keys to child
pointers. This segregation strategy keeps the representation compact while permitting
an efficient search.

Digital tree in contrast to the PostgreSQL hash table implementation has
increased requirements to memory management, as its structure dynamically adapts to
the keys. For this reason, separate shared memory allocator should be designed and
implemented. For simplicity, a pre-allocated memory region can be used in a
stack-based manner, with an ability to recycle nodes by keeping separate list for each
type of node. On the base of that, first version of ART tree can be developed.

Once base ART tree is implemented it can be extended to support concurrent
access(buffer loading and pinning) by multiple backend processes, so that they also
can perform tree modifications. Several approaches are presented in ART sync
paper[5]. The workflow of buffer manager differs from pure index structure in the
way that readers can modify tree during an attempt to read the required buffer, instead
of inserting the specified key. If the path already exists, they simply traverse to the
leaf and try to lock buffer in shared or exclusive mode. Anyway, despite this
difference, mechanisms that are presented in [5] can be adapted and applied.

At the final stage, the digital tree can be benchmarked with different workload
profiles, using pgbench and TPC-* datasets as well as checkpoint/drop operations.

Expected Outcomes
A result of this project can produce specific numerical evaluations of the

benefits, that can be achieved by substitution of the current underlying buffer manager
data structure with ART. Among them are: faster checkpoint and drop/truncate
relation operations, possibly higher buffer lookup speed. Most importantly, the digital
tree can open new perspective improvement directions in the area such as “neighbour
buffer prefetching”, “multiple buffers write combining” and “fine-grained
shrink/extend relation operation”.

I am planning to continue work in this area afterward and foresee another
extensibility direction of PostgreSQL(among many others) - common interface for
different buffer manager realizations.



Timeline

Time Period From To

Community Bonding period 07.05 26.05

● introduce the project to the community, get in touch with a mentor;
● setup repository, read the documentation (Buffer manager, WAL, Checkpointer, etc);
● briefly describe related to the project research papers;
● explore source code of existing buffer manager, especially shared memory initialization, buffer

allocation/eviction;
● explore open source implementations of the digital tree;
● design memory allocator that will satisfy digital tree needs in different node types, its recycling

strategy.

Work period objectives 27.05 27.06

● 75% goal: implement memory allocator and a raw version of the digital tree;
● 100% goal: refine basic digital tree, cover code with sanity checks;
● 125% goal: add validation functionality, perform synthetic lookup/inorder traversal tests and

evaluate results.

Phase 1 Evaluation 24.06 28.06

Work period objectives 29.06 25.07

● 75% goal: add concurrency support and perform regression tests;
● 100% goal: evaluate checkpoint/drop operations improvements, play with tree configurations,

caching strategies(fast jumps to Relation’s tree of blocks, by skipping first 12 bytes of
BufferTag), observe subsequent performance changes;

● 125% goal: perform medium-lasting workload tests, stabilize allocator and improve recycling.

Phase 2 Evaluation 22.07 26.07

Work period objectives 27.07 25.08

● fix bugs, run long-lasting workload test, make sure validation functionality works correctly;
● refine and refactor code, apply code style, cover with comments;
● prepare a final report by describing obtained results, present it to the community.

Final Evaluation 19.08 26.08



References

[0] http://judy.sourceforge.net/
[1] https://subs.emis.de/LNI/Proceedings/Proceedings180/227.pdf
[2] http://www.qucosa.de/fileadmin/data/qucosa/documents/8808/damon-kissIndex

-camera-ready.pdf
[3] https://db.in.tum.de/~leis/papers/ART.pdf
[4] https://dbis-informatik.uibk.ac.at/sites/default/files/2018-06/hot-height-optimiz

ed.pdf
[5] https://db.in.tum.de/~leis/papers/artsync.pdf
[6] https://lwn.net/Articles/175432/


