
Essential Apps Script livecoding 10 walkthrough: ​
On edit trigger

This walkthrough guide accompanies the Essential Apps Script 10: On edit trigger video
and the Essential Apps Script guide. You can use the video, this document, or both, to help
you do this livecoding exercise.

In this exercise, we are going to use an 'on edit' trigger to cause some code to run
whenever someone edits a spreadsheet.

Livecoding instructions

1.​ In your Google Drive folder for the course, create a new Google Sheet and call it 'On
edit cell demo' then go to Extensions > Apps Script to open the Apps Script editor
and give the project the same name. Rename the Apps Script file on the left hand
side to onEditCell and then rename the function to onEditCell as well. Put your
cursor at the end of the first line, hit Enter twice, and then Save.​
​
function onEditCell(){​
​
}

2.​ Create a comment using two forward slashes // saying get spreadsheet then Enter
and we will store the spreadsheet in variable as usual so write var ss =
SpreadsheetApp.getActiveSpreadsheet();​
​
function onEditCell(){​
​
 // get spreadsheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
​
}

3.​ We don't need a specific sheet as we are just going to target the active cell, which
will be the one that was just edited. So a new comment using // saying get active
cell and then hit Enter. We will store the active cell in a variable so write var
activeCell = and then we'll use the spreadsheet and the command getActiveCell()
so write ss.getActiveCell() and end the line with a semicolon ;​
​
function onEditCell(){​
​
 // get spreadsheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
​
 // get active cell​
 var activeCell = ss.getActiveCell();​
​
}

https://www.youtube.com/watch?v=bEomTJqE5ZM
https://subjectguides.york.ac.uk/apps-script

4.​ Hit Enter twice and now we need a final comment, so write // set active cell colour
and then hit Enter again. We don't need to store anything in variable, but we are
going to work with the active cell, so write activeCell and then .setBackground() to
change the background colour. Inside the brackets it needs a colour as a string, so
it needs to be in single or double quotes, so write 'yellow' (or any other colour you
like). End the line with a semicolon and hit Save.​
​
function onEditCell(){​
​
 // get spreadsheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
​
 // get active cell​
 var activeCell = ss.getActiveCell();​
​
 // set active cell colour​
 activeCell.setBackground('yellow');​
​
}

5.​ Next, we need to set up a trigger to make this happen when someone edits the
sheet. If you hover your cursor over the left hand side of the screen there's some
menu options and one is Triggers. Click on this and you'll open the Triggers page (if
this is the first time you've accessed Triggers there may be a dialogue box
welcoming you).

6.​ Click on the Add Trigger button and a window will open. We will need to tweak
some of the options here.

a.​ Under Choose which function to run make sure the function selected is your
onEditCell function (you shouldn't have any others in the project anyway).

b.​ No need to change anything for Choose which deployment should run.

c.​ No need to change anything for Select even source as it will be From
spreadsheet because it is a spreadsheet cell edit that will cause the trigger.

d.​ Under Select event type change it to on edit.

e.​ Under Failure notification settings you may want to change it to Notify me
immediately so you don't get any Apps Script failure emails long after the
script has failed or you've been working on it.

7.​ Click Save and it will ask us the authorise the script just like when we run one. It will
run on whichever Google account sets up the trigger, regardless of who edits the
spreadsheet.

8.​ Return to the Google Sheet and try editing a cell by writing something in it. It may
take a few seconds for the colour to change the first time.

Now you can move on to the next part of section 4.

Reference: full code from exercise:

function onEditCell(){​
​
 // get spreadsheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
​
 // get active cell​
 var activeCell = ss.getActiveCell();​
​
 // set active cell colour​
 activeCell.setBackground('yellow');​
​
}

https://subjectguides.york.ac.uk/apps-script/forms#s-lg-box-wrapper-19136317

	Essential Apps Script livecoding 10 walkthrough: ​On edit trigger
	Livecoding instructions
	Reference: full code from exercise:

