
Conveniences that I wished prolog had

Term deconstructor and alias:

my_pred(X=(Part1, Part2)) :-
 …

An elegant (in my opinion) alternative to adding another rule to the body of the predicate; Also
easier to understand at a glance what kind
of term holds for the predicate.

Ignore empty commas (or colon) in a predicate body:

my_pred(...) :-
 rule1,
 rule2, % This comma is ignored
 .

Useful when you are quickly debugging a predicate.

A have a skip predicate:

my_pred(...):-

 rule1,

 skip,

 rule2. % Only rule 1 is checked

Useful for debugging only part of a predicate without wrangling with comments.

Note:

metalevel says that you can produce such behavior using the false atom:

https://www.metalevel.at/prolog/reading

my_pred(...):-

 rule1,

 false,

 rule2.

However in my tests my_pred(X) always evaluates to false, that makes intuitive sense to me
since the above rule can be rewritten as

my_pred(...) <- rule1 and false and rule2, which should evaluate to false
unconditionally.

I could emulate a skip predicate with …; false,...:

my_pred(...):-

 rule1;

 false,

 rule2.

Due to operator precedence rules the above is equivalent to: my_pred(...) <- rule1 or
(false and rule2) which should evaluate to my_pred(...) <- rule1.

Type hints

Currently prolog and prolog linters only check for a predicate arity to statically determine if a
predicate holds. Knowing if you even provided a variable
of the correct type to a predicate can only be determined during execution.

my_child_pred(X=type_tuple(type_clpf_integer, type_integer),
Y=type_list(all, type_string)) :- …

my_parent_pred(X=type_clpf_integer):-
 my_child_pred((X, 1), [hello]).

A type checker would accuse that I’m using the incorrect types because I’m trying to pass a list
of atoms to the second term of my_child_pred, which expects a list of strings.

I think this could be implemented with a library if term deconstructor aliases were implemented
to the language. And I believe it would be able to be done statically.

	Conveniences that I wished prolog had
	Term deconstructor and alias:
	Ignore empty commas (or colon) in a predicate body:
	A have a skip predicate:
	Note:

	Type hints

